Флокулянты

Виды флокулянтов и принцип их действия

Флокулянты

Для очистки больших объемов питьевой воды из открытых водоемов (сильно загрязненной) при водоканалах существуют фильтровальные станции.

На этих объектах на промышленном профессиональном оборудовании работники доводят состав воды до требований существующих нормативных документов.

На начальных этапах проведения очистки воды выполняется извлечение из коллоидной суспензии (каковой является вода из водозабора) твердых и расчиненных остатков органических и химических соединений.

Этот этап очистки состоит из нескольких стадий:

  1. Стадия коагуляции (образование микрохлопьев остатков загрязнений).
  2. Стадия флокуляции с образованием макрохлопьев. На этой стадии используется флокулянт для очистки воды.
  3. Выпадение и извлечение осадка.

Рассмотрим стадию флокуляции.

Что такое флокулянты?

Название этого реагента для очистки воды происходит от слова «флокулы», что означает хлопья. Именно образование макрохлопьев из взвешенных в заборной воде частиц является основной функцией флокулянтов.

Сначала коллоидные частицы связываются в хлопья коагулянтом, а флокулянт производит агломерирование этих малозаметных хлопьев в большие образования с достаточным для осаждения весом. Загрязнения в виде осадка легче фильтровать и удалять из очистных сооружений.

Флокуляция сточных вод

Большей частью, флокулянты представляют собой высокомолекулярные электролиты природного или синтетического происхождения. К природным флокулянтам относятся высшие полисахариды:

  • целлюлоза;
  • крахмал;
  • их производные.

Синтетическим флокулянтом является:

  • полиэтилен и производные полиэтилена;
  • полиакрилы;
  • полиамиды;
  • полиамины.

Большинство флокулянтов поставляются в виде порошков, но продается и флокулянт жидкий в виде эмульсии.

Флокулянт жидкий

Очистка воды при помощи флокулянтов

Алгоритм флокулирующего процесса следующий: нейтрализация заряда микрохлопьев; химическое взаимодействие с микрохлопьями; связывание отдельных частиц полимерными мостиками. Подразделяются флокулянты в основном на два вида:

Существуют на практике и неионные химикаты, но их применение ограничено.

Название химикатов связано с электродами электро-химического процесса: А – анод с положительным потенциалом; К – катод с отрицательным потенциалом. Использование анионитов и катионитов позволяет отказаться от дорогостоящего электротехнического оборудования и, в некотором смысле, сделать процесс более безопастным.

Флокулянт анионный

Анионо-активный флокулянт, притягивающий к себе загрязнения с отрицательным зарядом. Основой для изготовления флокулянта анионного служат сополимеры акриламида. Это может быть акриловая кислота со стабилизирующими добавками.

К анионным флокулянтам относится, например, продукциякомпании ЭнвироХЕМИ :

  • Envifloc 1100;
  • Envifloc 5110;
  • Envifloc 5100.

«Специализацией» этих химикатов является связывание в осадок катионов металлов.

Конкретная марка реагента выбирается по результатам химического анализа неочищенной воды и применяемого в технологическом процессе очистки коагулянта. Еще раз следует отметить, что применение флокулянтов наиболее эффективно при очень сильных загрязнениях воды.

Флокулянт катионный

Эти флокулянты очищают воду от осадка с положительными ионами на поверхности благодаря хемосорбции. Свои отрицательным зарядом они нейтрализуют положительный заряд и связывают загрязнения в длинные молекулярные цепочки. Примером таких химикатов могут быть:

  • Envifloc 5215;
  • Envifloc 5700;
  • Envifloc 5644.

Катионные флокулянты решают вопрос очистки воды от многих промышленных загрязнений. Химики-технологи фильтровальных станций хорошо осведомлены о составе и количестве загрязнений в воде из водозабора, знают применяемую технологию коагуляции, поэтому только они могут сделать окончательный выбор марки реагента для флокуляции.

Не лишним будет проконсультироваться с производителем или дистрибутором препарата.

Флокулянт неионогенный

В отличие от флокулянтов с предварительным зарядом, эти реагенты не несут ионов с определенным зарядом. Их действие связано с образованием водородных мостиков, которыми реагенты связывают в макрохлопья загрязнения в воле.

Эти флокулянты хорошо очищают воду от нефтяных загрязнений.

Как пример, можно привести неионогенные флокулянты BESFLOC.

В отличие от ионогенных (катионных, анионных), флокулянты этой группы менее эффективны. Особенно эта разница заметна при очистке маломутных вод.

Эффективность данного метода очистки воды

Этот метод очистки «работает» только после применения коагулянтов. Он позволяет в значительной степени интенсифицировать процесс на фильтровальной станции с минимальными затратами.

Очистка вод с применением флокулянтов эффективна при больших объемах очищаемой воды и ее сильном загрязнении. Применение их в таких случаях позволяет:

  1. Исключить перенос загрязняющих частиц на следующую стадию очистки.
  2. Значительно ускорить этап осаждения загрязнений.
  3. Значительно уменьшить расходы, связанные с длительностью процесса очистки и удалением осадка.
  4. Отказаться от дополнительных капитальных затрат для увеличения производительности очистных сооружений.
  5. Увеличит время службы механических фильтров на следующих этапах очистки.

Априори принимаем при оценке эффективности, что фильтровальная станция уже имеет налаженный поэтапный процесс очистки и необходимое оборудование для удаления осадка и фильтрации воды на конечных стадиях. Только в таком случае применение флокулянтов эффективно, сам по себе метод не работает.

Если уже существующие очистные сооружения требуют увеличения количества очищенной воды, но средств на капитальные затраты нет, достаточно добавить в технологию очистки флокулянты. Коагулянты и механические фильтры, обычно, на фильтровальных станциях уже присутствуют и необходимо понести затраты только для приобретения порошка или эмульсии флокулянта.

Выбор конкретной марки реагента и его количества будет зависеть от состава загрязнений в заборной воде и определяются они химиками фильтровальной станции после консультации с продавцами.

Применение флокулянтов – самый эффективный метод реконструкции фильтровальной станции без больших затрат.

5 Комментариев

Источник: http://oskada.ru/obrabotka-i-ochistka-vody/ochistka-vody-pri-pomoshhi-flokulyantov.html

Полиакриламидные флокулянты (стр. 1 из 4)

Флокулянты

Флокулянты — это водорастворимые высокомолекулярные соединения, которые при введении в дисперсные системы адсорбируются или химически связываются с поверхностью частиц дисперсной фазы и объединяют частицы в агломераты (флокулы), способствуя их быстрому осаждению.

История применения высокомолекулярных веществ для очистки жидкостей от взвешенных примесей уходит своими корнями в глубокую древность. Так, еще за 2000 лет до н.э. в Индии вытяжки некоторых растений, содержащие природные полимеры, применялись для очистки воды, а в Древней Греции природный полимер — яичный белок использовался для осветления вин.

В XVIII-XIX веках природные полимеры — желатина и крахмал стали использовать для очистки фруктовых соков. Несмотря на столь давнюю историю, практическое применение флокуляции в промышленных процессах началось в период между 30-ми и 50-ми годами XX века.

Флокулянты использовали для очистки шахтных вод от частиц угля и глины, для выделения и обезвоживания шлаков фосфоритов при получении урановых солей, для интенсификации очистки промышленных сточных вод.

Но действительно широкое применение флокулянты получили с середины 50-х годов в связи с необходимостью очистки увеличивающихся объемов сточных вод и модернизации технологических процессов, связанных с разделением твердых и жидких фаз.

Когда возросший спрос в флокулянтах не мог больше удовлетворяться природными полимерами, началось внедрение органических искусственных (производных крахмала и целлюлозы) и чаще синтетических полимеров. Среди синтетических полимеров наибольшее распространение и применение получила группа полиакриламидных флокулянтов (ПФ). В связи с большой практической значимостью ПФ в статье рассмотрены наиболее перспективные пути управления процессом флокуляции и эффективного использования ПФ. В современной экологии флокулянты применяют для очистки сточных вод теплоэлектростанций.

Глава 1. ОБЩИЕ ПРЕДСТАВЛЕНИЯ О ДИСПЕРСНЫХ СИСТЕМАХ И ИХ УСТОЙЧИВОСТИ

Дисперсные системы гетерогенны и состоят из двух фаз, одна из которых (дисперсная фаза) раздроблена и распределена в сплошной дисперсионной среде. Дисперсные системы очень многообразны (облака, туманы, природные и сточные воды, мыльная пена, молоко, кровь).

Они различаются агрегатным состоянием дисперсной фазы и дисперсионной среды (твердые, жидкие и газообразные), а также размерами частиц дисперсной фазы. Наиболее важными и распространенными являются системы с жидкой дисперсионной средой.

К ним относятся природные и сточные воды, а также промышленные суспензии. По кинетическим свойствам они являются свободнодисперсными системами, в которых частицы дисперсной фазы могут свободно передвигаться.

По размеру частиц дисперсии делят на грубодисперсные (> 10- 3 см), микрогетерогенные (от 10- 5 до 10- 3 см) и ультрамикрогетерогенные (от 10- 7 до 10- 5 см). Последние называются коллоидными системами.

Устойчивость дисперсных систем характеризуется неизменностью во времени равновесного распределения дисперсной фазы в объеме среды, которая определяется взаимодействием межмолекулярных сил притяжения и электростатических сил отталкивания между частицами (теория Дерягина — Ландау — Фервея — Овербека). Дисперсные системы разделяются на лиофильные и лиофобные.

Первые характеризуются интенсивным взаимодействием частиц со средой и термодинамической устойчивостью (например, дисперсии мыл, глины и агрегаты высокомолекулярных соединений в воде), а для вторых интенсивность взаимодействия между частицами превышает взаимодействие частиц со средой, что придает термодинамическую неустойчивость системе (например, коллоидные растворы — золи сульфидов металлов, суспензии грубодисперсных частиц). Различают седиментационную и агрегативную устойчивость системы. Способность частиц противостоять силе тяжести определяет седиментационную устойчивость, а способность частиц противостоять агрегированию — агрегативную устойчивость. Эти два типа устойчивости взаимосвязаны, и нарушение агрегативной устойчивости снижает седиментационную устойчивость системы, способствуя осаждению частиц. Процесс слипания одинаковых по природе и заряду поверхности частиц с образованием крупных агрегатов называется коагуляцией, а агрегация разнородных частиц, отличающихся природой, знаком или величиной поверхностного заряда, называется гетерокоагуляцией. Для интенсификации процесса агрегации частиц и достижения разделения фаз дисперсной системы применяют коагулянты и флокулянты, а также их смеси.

В качестве коагулянтов используют низкомолекулярные неорганические и органические электролиты. Процесс гетерокоагуляции применяют, например, при очистке природных и промышленных сточных вод.

Сущность обработки воды неорганическими коагулянтами, такими, как сернокислый алюминий или хлорное железо, заключается в гидролизе сульфатов и хлоридов с образованием положительно заряженных золей гидроксидов алюминия и железа, которые нейтрализуют отрицательно заряженные коллоидные частицы в воде, что способствует агрегации частиц и вызывает высаждение загрязняющих веществ в осадок. Дополнительное введение флокулянта после коагулянта содействует быстрому формированию крупных хлопьев, повышает плотность коагулята и степень осветления воды.

Подобен гетерокоагуляции и процесс флокуляции, происходящий при действии на дисперсные системы высокомолекулярных органических или неорганических соединений. Однако в отличие от компактных коагулятов, возникающих при действии на дисперсии низкомолекулярными электролитами, при флокуляции образуются более крупные и рыхлые агрегаты.

Флокуляция является необратимым процессом по сравнению с коагуляцией, когда возможна дезагрегация (пептизация) осадка при уменьшении содержания низкомолекулярного электролита в растворе.

Согласно представлениям Ла Мера, макромолекула флокулянта в результате одновременной адсорбции на двух или нескольких частицах дисперсии связывает их в агрегаты полимерными мостиками и снижает устойчивость дисперсной системы. Это мостичный механизм флокуляции.

В качестве высокомолекулярных водорастворимых флокулянтов используют неорганические полимеры (например, полимерную кремниевую кислоту), природные полимеры (производные целлюлозы, крахмал и его производные) и синтетические органические полимеры (полиэтиленоксид, поливиниловый спирт, поливинилпиридины, ПФ).

Из синтетических органических полимеров наиболее часто применяют ПФ. Широкому распространению ПФ способствовало освоение в 1955 году промышленного производства акриламида (АА) в США, а в последующие годы и в других странах, включая Россию. Только в США в 1984 году было произведено 39 тыс.т ПФ, а в 1989 году их производство возросло в 1,4 раза.

За тот же период в Японии производство ПФ возросло в 1,8 раза. Несмотря на значительный рост производства, увеличивающийся спрос на ПФ как по ассортименту, так и по объему производства удовлетворяется недостаточно.

Так, в 1983 году только для очистки воды ПФ применяли на более чем 55 водопроводных станциях бывшей РСФСР, было использовано 200 т ПФ, а потребность в них составляла 400-500 т.

В настоящее время ПФ применяют для очистки питьевой воды, природных и промышленных сточных вод, разделения, концентрирования и обезвоживания дисперсных систем в угольной, горнодобывающей, нефтяной, химической, целлюлозно-бумажной, текстильной, микробиологической и пищевой промышленности.

Согласно прогнозам специалистов, лидирующее положение этой группы флокулянтов с учетом всевозрастающего объема производства и применения водорастворимых полимеров сохранится, по крайней мере в обозримом будущем. Это обусловлено их высокой флокулирующей способностью, доступностью, сравнительно низкой стоимостью и малой токсичностью.

В немалой степени это связано и с успехами в управлении процессами полимеризации и сополимеризации АА, а также химическими превращениями полиакриламида (ПАА), которые позволили получить неионогенные, анионные и катионные флокулянты с регулируемыми значениями молекулярной массы, химического состава и распределения ионогенных звеньев в макромолекулах. Кроме того, это связано также с результатами исследований закономерностей флокулирующего действия ПФ на модельных и промышленных дисперсных системах.

Флокулирующая способность ПФ в промышленных дисперсных системах зависит от большого числа факторов, поэтому затруднена оценка влияния отдельных факторов на флокулирующий эффект.

По этой причине возникает необходимость определения флокулирующей активности ПФ на модельных дисперсных системах, в качестве которых были использованы каолин и охра.

При этом оценка влияния отдельных характеристик системы флокулянт-дисперсия на флокуляцию проводилась при сохранении неизменными других характеристик. За меру флокулирующего эффекта принимали показатель флокуляции D

D = (V — V0) / V0 ,

где V и V0 — соответственно скорости седиментации дисперсии с добавкой флокулянта и без него.

Чем больше значение параметра D, тем выше флокулирующий эффект полимерной добавки.

Следует отметить несомненные преимущества использования для оценки флокулирующей способности полимера относительно параметра D вместо V, поскольку при этом устраняются эффекты, связанные с несоответствием в показателях частиц дисперсной фазы (распределение по размерам, степень асимметрии) в различных экспериментальных сериях.

Эффективность флокуляции зависит как от характеристик флокулянта (природа и концентрация полимера, молекулярная масса, химический состав и гидродинамические размеры макромолекул), так и от характеристик дисперсной системы (концентрация дисперсной фазы и состав дисперсионной среды). Влияние различных факторов на флокулирующие показатели ПФ обобщено в работе. Рассмотрим влияние основных характеристик ПФ и дисперсионных систем на процесс флокуляции.

Источник: http://MirZnanii.com/a/329528/poliakrilamidnye-flokulyanty

Флокулянты SNF FLOERGER (Франция)Химия для водоочистки и водоподготовки

Флокулянты
(образцы предоставляем бесплатно)  Вы можете заказать продукцию прямо на нашем сайте

Предлагаемые нашей компанией химические реагенты используются потребителями, чтобы максимально улучшить эксплуатацию оборудования для водоочистки и водоподготовки, повысить его эффективность, значительно сократить затраты и минимизировать воздействие на окружающую среду. В отдельных отраслях промышленности можно улучшить качество готовой продукции.

ООО «ПКФ ЭКОХИМ», — официальный дистрибьютор компании SNF FLOERGER (Франция), что делает наши цены на флокулянты и коагулянты особенно привлекательными. Более того, мы готовы бесплатно подобрать оптимальные продукты для водоподготовки и водоочистки и разработать технологические схемы их применения. При необходимости специалисты ООО «ПКФ ЭКОХИМ» могут приехать на Ваше предприятие.

Компания SNF FLOERGER является одним из мировых лидеров в области производства флокулянтов и коагулянтов для очистки воды и занимает более 30% этого сектора мирового рынка. Компания имеет развитую сеть производственных предприятий, представительств и фирм сервисного обслуживания в 130 странах мира и более 100 000 конечных потребителей.

  • подготовка питьевой воды;
  • очистка сточных вод и обезвоживание сгущенного ила;
  • горно-обогатительная промышленность — разделение минералов и пустой породы, очистка хвостов, связующие агенты для производства окатышей;
  • целлюлозно-бумажная промышленность — удержание волокна и наполнителей, улучшение механических свойств и проклейки, очистка оборотных и сточных вод;
  • сельское хозяйство — удержание влаги, структурообразователи почв;
  • добыча нефти — увеличение нефтеотдачи, буровые растворы, снижение гидравлического сопротивления в трубопроводах, сорбционная очистка разливов нефти;
  • гигиена и косметика — суперабсорбенты для гигиенических прокладок и детских подгузников, косметические кондиционеры, загустители и пленкообразователи;
  • текстильная промышленность — фиксаторы красителей, очистка стоков.
  • обезвоживание осадка; осветление стоков; очистка канализации; проклейка на полотне; удержание на полотне; очистка питьевой воды;
  • очистка промышленных сточных вод; биологическая очистка сточных вод; в оборудовании для очистки питьевой воды;

Применение коагулянтов и флокулянтов
для обработки воды

Среди полимеров, используемых на этапе механической очистки воды от взвешенных и коллоидных частиц, можно выделить два больших семейства: коагулянты и флокулянты. В основе последних лежит полиакриламид.

В соответствии со своими задачами эти семейства имеют весьма различные характеристики.

Коагулянт должен дестабилизировать коллоидную систему путем нейтрализации сил различной природы, обеспечивающих ее устойчивость. Задача флокулянта — увеличение размера хлопьев, образовавшихся в ходе коагуляции и агломерация взвешенных частиц для их механического удаления.

Флокулянты

Флокулянты должны обладать весьма высокой молекулярной массой, чтобы обеспечить получение достаточно крупных хлопьев для последующего их выведения из жидкости.

Ионный заряд этих продуктов изменяется от 0 до 100% катионности или анионности, для того чтобы наилучшим образом подходить для различных применений.

Неионогенные флокулянты

Эти флокулянты изготавливаются методом полимеризации акриламида.
Характеристики этих флокулянтов:

  • молекулярная масса от 1,5 до 10 миллионов
  • вязкость при концентрации 5 г/л от 8 сП до 200 сП.

Анионные флокулянты

Эти флокулянты получаются методом сополимеризации акриламида и соли карбоновой или сульфокислоты. Наиболее часто используется акриловая кислота. Характеристики анионных полимеров:

  • молекулярная масса от 3 до 20 миллионов
  • вязкость при концентрации 5 г/л — от 60 до 200 сП.

Катионные флокулянты

Существуют четыре основных семейства катионных мономеров:

  • диметиламиноэтилакрилат (ADAM)
  • диметиламиноэтилметакрилат (MADAM)
  • диалилдиметиламмонийхлорид (DADMAC)
  • акриламидопропилтриметиламмонийхлорид (APTАС).

Катионные флокулянты получаются методом сополимеризации акриламида с одним из производных продуктов. Наиболее часто применяется ADAM хлорметил (ADCL).

Характеристики катионных полимеров:

  • молекулярная масса от 3 до 10 миллионов
  • вязкость при концентрации 5 г/л от 100 до 800 сП.

В настоящее время на рынке существует три коммерческих формы флокулянтов: эмульсии, порошки и шарики — гранулы небольшого диаметра. Эти разновидности флокулянтов изготавливаются посредством различных типов полимеризации:

Эмульсии: Мономеры эмульгируются в растворитель, а затем полимеризуются. В конце процесса полимеризации добавляется поверхностно-активное вещество, делающее эмульсию растворимой в воде.

Основными преимуществами таких продуктов являются их жидкая форма и сравнительно большая эффективность.

Порошкообразные флокулянты: Мономеры полимеризуются в жидкой форме. Полученная таким образом желеобразная масса дробится, затем высушивается.

Основными преимуществами подобных продуктов являются простота производственно-технологического процесса, удобство обращения и высокое содержание активного вещества в товарном продукте.

Шарики (гранулы): Мономеры во взвешенном состоянии помещаются в растворитель и полимеризуются. Затем растворитель выпаривается для получения микрошариков. Основными преимуществами подобных продуктов являются отсутствие пыли и быстрое растворение.

Иногда встречаются флокулянты в форме водного геля, производство которых осуществляется по той же схеме, что и порошкообразных, и заканчивается этапом полимеризации без дальнейшего высушивания.

Компания SNF FLOERGER производит широкий спектр флокулянтов для водоподготовки и водоочистки: катионные, анионные и неионные с различными молекулярными массами и плотностью заряда в форме порошков, гранул, эмульсий, и водных растворов.

Компания SNF FLOERGER производит широкий спектр флокулянтов: катионные, анионные и неионные с различными молекулярными массами и плотностью заряда в форме порошков, гранул, эмульсий, и водных растворов.

Области применения коагулянтов и флокулянтов

Питьевая вода или техническая вода

Объем использования органических коагулянтов в развитых странах неуклонно растет. Они применяются в дополнение или взамен минеральных коагулянтов. Во многом эта тенденция связана с возможностью при использовании органических коагулянтов сократить или даже исключить содержание остаточных солей металлов в питьевой воде.

Дозировки органических коагулянтов и объем получаемого осадка в несколько раз меньше, чем при использовании минеральных коагулянтов.

Флокулянты используются в дополнение к коагулянтам для увеличения размеров образующихся хлопьев и их последующего удаления. В данном случае применяются продукты с высокой молекулярной массой, слабой катионностью (до 15%) или анионностыо (от 0 до 50%).

Коммунальное хозяйство

Коагулянты и флокулянты широко используются для физико-химической очистки коммунальных и промышленных сточных вод (водоподготовка и водоочистка, обезвоживание осадка).

Экологически и экономически оправданным во многих случаях является строительство локальных очистных сооружений, либо модернизация уже имеющегося оборудования для водоподготовки, для небольших производств с целью очистки специфических стоков до сброса в общий коллектор. Это позволяет использовать высокоэффективные реагенты для данного типа стоков, повысив, таким образом, степень очистки и снизив удельные затраты.

Химическая промышленность

В химической промышленности коагулянты и флокулянты используются на стадии очистки при производстве: фосфорной кислоты, магния, гидрофосфата кальция, двуокиси титана, электролизе солей, и т.д.

Горно-обогатительная промышленность

Сгущение концентратов (железо, медь, цинк, алюминий, уран, золото, бокситы и др.).

Обработка хвостов флотации.

Обработка сточных вод для предотвращения загрязнения окружающей среды и обеспечения замкнутого цикла оборота воды.

Добыча нефти

Полимерное заводнение.

Повышение нефтеотдачи редкосшитыми полимерными системами и полимерными гелями.

Регулирование реологических свойств, стабильности и водоотдачи буровых жидкостей на водной основе, подавление набухания глин, укрепление стенок скважин.

Снижение гидравлических сопротивлений в трубопроводах.

Целлюлозно-бумажная промышленность

Удержание волокон и наполнителей в бумажной массе.

Улучшение дренажа.

Улучшение проклейки.

Обеспечение замкнутого цикла воды.

Сельское хозяйство

Удержание влаги в почве

Системы для гидропоники

Улучшение структуры почвы.

Снижение образования тумана при искусственном орошении.

Предотвращение образования корки на поверхности почвы.

Возможно также применение наших продуктов и в других областях.

Будем рады предоставить дополнительную информацию и ответить на Ваши вопросы!

Вы можете заказать продукцию прямо на нашем сайте

Проконсультироваться со специалистами, узнать цену и купить флокулянты Вы можете, позвонив по телефонам:

  • 8 (812) 677-57-20
  • 8 (951) 669-49-17

Источник: http://www.ecohim.spb.ru/Prod50.htm

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть