Молекулярных орбиталей методы

Метод молекулярных орбиталей

Молекулярных орбиталей методы

Мы уже знаем, что в атомах электроны находятся на разрешенных энергетических состояниях – атомных орбиталях (АО). Аналогичным образом, электроны в молекулах  существуют в разрешенных энергетических состояниях – молекулярных орбиталях (МО).

Молекулярная орбиталь устроена намного сложнее атомной орбитали. Приведем несколько правил, которыми мы будем руководствоваться при построении МО из АО:

  • При составлении МО из набора атомных орбиталей, получается такое же число МО, сколько АО в данном наборе.
  • Средняя энергия МО, полученных из нескольких АО, примерно равна (но может быть больше или меньшее)средней энергии взятых АО.
  • МО подчиняются принципу запрета Паули: на каждой МО не может находиться более двух электронов, которые должны иметь противоположные спины.
  • АО, которые обладают сопоставимой энергией, комбинируются наиболее эффективно.
  • Эффективность, с которой комбинируют две атомные орбитали, пропорциональна их перекрыванию друг с другом.
  • При образовании МО при перекрывании двух неэквивалентных АО связывающая МО содержит больший вклад АО с наиболее низкой энергией, а разрыхляющая орбиталь – вклад АО с более высокой энергией.

Введем понятие порядок связи. В двухатомных молекулах, порядок связи показывает насколько число связывающих электронных пар превышает число разрыхляющих электронных пар:

Теперь на примере рассмотрим как можно применить эти правила.

Молекулярно-орбитальные диаграммы элементов первого периода

Начнем с образования молекулы водорода из двух атомов водорода.

В результате взаимодействия 1s-орбиталей каждого из атомов водорода, образуются две молекулярные орбитали. При взаимодействии, когда электронная плотность концентрируется в пространстве между ядрами, образуется связывающая сигма – орбиталь (σ).

Эта комбинация имеет более низкую энергию, чем исходные атомы. При взаимодействии, когда электронная плотность концентрируется в за пределами межъядерной области, образуется разрыхляющая сигма – орбиталь (σ*).

Эта комбинация имеет более высокую энергию, чем исходные атомы.

диаграммы МО молекул водорода и гелия

Электроны, в соответствии с принципом Паули, занимают сначала орбиталь с самой низкой энергией σ-орбиталь.

Теперь рассмотрим образования молекулы He2, при сближении двух атомов гелия.

В этом случае тоже происходит взаимодействие 1s-орбиталей и образование и σ*-орбиталей, при этом два электрона занимают связывающую орбиталь, а другие два электрона – разрыхляющую.

Σ*-орбиталь дестабилизирована в такой же мере, насколько стабилизирована σ –орбиталь, поэтому два электрона, занимающие σ*-орбиталь, дестабилизируют молекулу He2. Действительно, экспериментально доказано, что молекула He2 очень неустойчива.

Далее рассмотрим образования молекулы Li2, принимая во внимание, что 1s- и 2s-орбитали слишком сильно отличаются по энергии и поэтому между ними не возникает сильного взаимодействия.

Диаграмма энергетических уровней молекулы Li2 показана ниже, где электроны, находящиеся на 1s-связывающих и 1s-разрыхляющих орбиталях не вносят значительного вклада в связывание. Поэтому за образование химической связи в молекуле Li2 отвечают 2s-электроны.

Это действие распространяется и на образование других молекул, в которых заполненные атомные подоболочки (s, p, d) не дают вклада в химическую связь. Таким образом, рассматриваются только валентные электроны.

В итоге, для щелочных металлов, молекулярно-орбитальная диаграмма будет иметь вид подобный рассмотренной нами диаграмме молекулы Li2.

диаграмма МО молекулы лития

Порядок связи n в молекуле Li2 равен 1

Молекулярно-орбитальные диаграммы элементов второго периода

Рассмотрим, как взаимодействуют  два одинаковых атома второго периода между собой, имеющие набор из s- и p-орбиталей. Следует ожидать, что 2s-орбитали будут соединяться только друг с другом, а 2p-орбитали – только с а 2p-орбиталями. Т.к.

2p-орбитали могут взаимодействовать друг с другом двумя различными способами, то образуют σ- и π-молекулярные орбитали.

Пользуясь обобщенной диаграммой, показанной ниже, можно установить электронные конфигурации двухатомных молекул второго периода, которые приведены в таблице.

обобщенная диаграмма МО элементов второго периода

Так, образование молекулы, например, фтора F2 из атомов в системе обозначений теории молекулярных орбиталей может быть записано следующим образом:

2F [1s22s22p5] =F2[(σ1s)2(σ*1s)2(σ2s)2(σ*2s)2(σ2px)2(π2py)2(π2pz)2(π*2py)2(π*2pz)2].

Т.к. перекрывание 1s-облаков незначительно, то участием электронов на этих орбиталях можно пренебречь. Тогда электронная конфигурация молекулы фтора будет такой:

F2[KK(σs)2(σ*s)2(σx)2(πy)2(πz)2(π*y)2(π*z)2],

где К — электронная конфигурация К-слоя.

диаграммы МО двухатомных молекул элементов 2 периода

Молекулярные орбитали полярных двухатомных молекул

Учение о МО позволяет объяснить и образование двухатомных гетероядерных молекул. Если атомы в молекуле не слишком отличаются друг от друга (например, NO, CO, CN), то можно воспользоваться диаграммой, приведенной выше для элементов 2 периода.

При значительных различиях между атомами, входящих в состав молекулы, диаграмма видоизменяется. Рассмотрим молекулу HF, в которой атомы сильно отличаются по электроотрицательности.

Энергия 1s-орбитали атома водорода выше энергии самой высокой из валентных орбиталей фтора – 2p- орбитали. Взаимодействие 1s-орбитали атома водорода и 2p- орбитали фтора приводит к образованию связывающей и разрыхляющей орбиталей, как показано на рисунке. Пара электронов, находящиеся на связывающей орбитали молекулы HF, образуют полярную ковалентную связь.

Для связывающей орбитали молекулы HF 2p- орбиталь атома  фтора играет более важную роль, чем 1s-орбиталь атома водорода.

Для разрыхляющей орбитали молекулы HF наоборот: 1s-орбиталь атома водорода играет более важную роль, чем 2p- орбиталь атома  фтора

Диаграмма МО молекулы HF

Page 3

< Предыдущая СОДЕРЖАНИЕ Следующая >

Посмотреть оригинал

  • 1. Что такое химическая связь?
  • 2. Что такое химический элемент и каковы его разновидности?
  • 3. Чем химическая связь отличается от физической ван-дер-ваальсовой и водородной связи?
  • 4. Охарактеризуйте ван-дер-ваальсовые и водородные связи.
  • 5. Перечислите основные виды химической связи.
  • 6. Что такое ковалентная связь и каковы ее отличия от других типов связи?
  • 7. Перечислите основные положения метода валентных связей.
  • 8. Что такое гибридизация атомных орбиталей?
  • 9. Перечислите основные характеристики химической связи и критерии отнесения взаимодействия между элементами к химическому типу.
  • 10. Что такое ковалентность?
  • 11. Как в рамках метода валентных связей трактуется понятие «валентность»?
  • 12. Перечислите основные положения метода молекулярных орбиталей.
  • 13. Какие свойства оличают ковалентную химическую связь от металлической и ионной и почему?
  • 14. Зонная теория и что такое металличность ?
  • 15. Что такое металлическая связь и каковы ее отличия от других типов связи?
  • 16. Ионная теория и что такое ионность?
  • 17. Что такое ионная связь и каковы ее отличия от других типов связи?
  • 18. Что такое молекула, какой тип химической связи элементов в ней преобладает?

  Посмотреть оригинал

< Предыдущая СОДЕРЖАНИЕ Следующая >
Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть