Серная кислота

Серная кислота: свойства и все характеристики

Серная кислота

Некоторые физические свойства серной кислоты приведены в таблице.

Безводная H2SO4 — замечательное соединение с необычно высокой диэлектрической проницаемостью и очень высокой электропроводностью, которая обусловлена ионной автодиссоциацией (автопротолизом) соединения, а также эстафетным механизмом проводимости с переносом протона, обеспечивающим протекание электрического тока через вязкую жидкость с большим числом водородных связей.

Таблица 1. Физические свойства серной кислоты.

Температура плавления, oС 10,371
Температура кипения, oС ≈ 300 (разл.)
Плотность (25oС), г×см-3 1,8267
Вязкость (25oС), сантипуаз 24,55
Диэлектрическая проницаемость 100
Удельная электропроводность (25oС), Ом-1×см-1 1,0439×10-2

Получение серной кислоты

Серная кислота — самый важный промышленный химикат и самая дешевая из производимых в большом объеме кислот влюбой стране мира.

Концентрированную серную кислоту («купоросное масло») сначала получали нагреванием «зеленого купороса» FeSO4×nH2O и расходовали в большом количестве на получение Na2SO4 и NaCl.

В современном процессе получения серной кислоты используется катализатор, состоящий из оксида ванадия(V) с добавкой сульфата калия на носителе из диоксида кремния или кизельгура.

Диоксид серы SO2 получают сжиганием чистойсеры или при обжиге сульфидной руды (прежде всего пирита или руд Си, Ni и Zn) в процессе извлечения этихметаллов.

Затем SO2 окисляют до триоксида, а потом путем растворения в воде получают серную кислоту:

S + O2→ SO2 (ΔH0 — 297 кДж/моль);

SO2 + ½ O2→ SO3 (ΔH0 — 9,8 кДж/моль);

SO3 + H2O → H2SO4 (ΔH0 — 130 кДж/моль).

Химические свойства серной кислоты

Серная кислота – сильная двухосновная кислота. По первой ступени в растворах невысокой концентрации она диссоциирует практически нацело:

H2SO4↔H+ + HSO4—.

Диссоциация по второй ступени

HSO4—↔H+ + SO42-

протекает в меньшей степени. Константа диссоциации серной кислоты по второй ступени, выраженная через активности ионов, K2 = 10-2.

Как кислота двухосновная, серная кислота образует два ряда солей: средние и кислые. Средние соли серной кислоты называются сульфатами, а кислые – гидросульфатами.

Серная кислота жадно поглощает пары воды и поэтому часто применяется для осушения газов.

Способностью поглощать воду объясняется и обугливание многих органических веществ, особенно относящихся к классу углеводов (клетчатка, сахар и т.д.), при действии на них концентрированной серной кислоты.

Серная кислота отнимает от углеводов водород и кислород, которые образуют воду, а углерод выделяется в виде угля.

Концентрированная серная кислота, особенно горячая, — энергичный окислитель. Она окисляет HI и HBr (но не HCl) до свободных галогенов, уголь – до CO2, серу – до SO2. Указанные реакции выражаются уравнениями:

8HI + H2SO4 = 4I2 + H2S↑ + 4H2O;

2HBr + H2SO4 = Br2 + SO2↑ + 2H2O;

C + 2H2SO4 = CO2↑ + 2SO2↑ + 2H2O;

S + 2H2SO4 = 3SO2 + 2H2O.

Взаимодействие серной кислоты с металлами протекает различно в зависимости от её концентрации. Разбавленная серная кислота окисляет своим ионом водорода. Поэтому она взаимодействует только с теми металлами, которые стоят в ряду напряжений только до водорода, например:

Zn + H2SO4 = ZnSO4 + H2↑.

Однако свинец не растворяется в разбавленной кислоте, поскольку образующаяся соль PbSO4 нерастворима.

Концентрированная серная кислота является окислителем за счет серы (VI). Она окисляет металлы, стоящие в ряду напряжений до серебра включительно. Продукты её восстановления могут быть различными в зависимости от активности металла и от условий (концентрация кислоты, температура). При взаимодействии с малоактивными металлами, например с медью, кислота восстанавливается до SO2:

Cu + 2H2SO4 = CuSO4 + SO2↑ + 2H2O.

При взаимодействии с более активными металлами продуктами восстановления могут быть как диоксид, так и свободная сера и сероводород. Например, при взаимодействии с цинком могут протекать реакции:

Zn + 2H2SO4 = ZnSO4 + SO2↑ + 2H2O;

3Zn + 4H2SO4 = 3ZnSO4 + S↓ + 4H2O;

4Zn + 5H2SO4 = 4ZnSO4 + H2S↑ + 4H2O.

Применение серной кислоты

Применение серной кислоты меняется от страны к стране и от десятилетия к десятилетию. Так, например в США в настоящее время главная область потребления H2SO4 — производство удобрений (70%), за ним следуют химическое производство, металлургия, очистка нефти (~5% в каждой области).

В Великобритании распределение потребления по отраслям иное: только 30% производимой H2SO4 используется в производстве удобрений, зато 18% идет на краски, пигменты и полупродукты производства красителей, 16% на химическое производство, 12% на получение мыла и моющих средств, 10% на производство натуральных и искусственных волокон и 2,5% применяется в металлургии.

Примеры решения задач

Серная кислота

Серная кислота

Серная кислота(серная кислота, IUPAC — дигидрогенсульфат, устаревшее название — купоросное масло) — соединение серы с формулой H 2 SO 4. Бесцветная маслянистая, очень вязкая и гигроскопическая жидкость. Серная кислота — одна из самых сильных неорганических кислот и очень едкой и опасной.

Эта кислота образует два ряда солей: сульфаты и гидрогенсульфаты, в которых по сравнению с серной кислотой заменяются один или два атома водорода на катионы металлов. Серная кислота является одним из важнейших технических веществ в мире и лидирует по количеству производства.

Она используется в основном в форме водных растворов для производства удобрений, а также других неорганических кислот.

История

Серная кислота (или старое название — купоросное масло) была известна с давних времен. Первые упоминания о ней можно найти в текстах алхимика Джабира ибн Хайянь 8-го века. Возможные методы производства описаны в трудах Альберта Великого (1200-1280) и Василия Валентина (1600).

В основе этого метода лежит образование кислоты с хальканинту и квасцов. Устаревшее название происходит от устаревшей названия минералов из которых она приобреталась — купороса. Первые научные исследования с помощью серной кислоты провел Иоганн Рудольф Ґляубер.

Он провел реакцию между серной кислотой и солью и получил соляную кислоту и соль, которая была названа в его честь — глауберова соль. Методы, в которых были использованы сульфаты, были очень сложными и дорогими.

Для получения больших количеств этого вещества в 18-м веке разработали процесс, в котором использовалось сжигание серы и селитры в стеклянной таре. Так как стеклянные сосуды были очень хрупкими, то первая реакция была проведена в 1746 году Джоном Робак в свинцовых контейнерах.

Серная кислота создана методом Джона Робака имела концентрацию только 35-40%. Позже улучшения метода французским химиком Жозефом Луи Гей-Люссаком и английским Джоном Гловером дало выход вещества 78% концентрации. Тем не менее, по некоторым красителей и других химических веществ требует более концентрированного продукта.

В течение 18-го века серная кислота получалась сухой перегонкой минералов, процесс похож на оригинальные алхимические процессы.

Пирит (дисульфид железа, FeS 2) нагревали в воздухе для получения железа (II) сульфат, FeSO 4, который окисляется при дальнейшем нагревании до железа (III) сульфат Fe 2 (SO 4) 3, который при нагревании до 480 ° С, разлагается до железа (III) оксид и триоксида серы, который может быть использован для получения серной кислоты в любой концентрации. В 1831 году британский купец Перегрин Филлипс запатентовал контактный процесс, который был гораздо более экономичный. Сегодня почти вся серная кислота в мире производится с использованием этого метода.

Земля

Свободная серная кислота встречается в природе очень редко. В атмосфере она образуется из диоксида серы, который образуется при сгорании серосодержащих веществ или вулканических извержений.

Диоксид серы окисляется гидроксильными радикалами и кислородом с образованием триоксида серы, который вступая в реакцию с атмосферной влагой образует кислоту. В кислотных дождях она выступает в разбавленном виде.

Небольшое количество свободной серной кислоты также можно найти в некоторых вулканических источниках, которые называются сольфатары. Наибольшее количество серной кислоты в мире содержит озеро в кратере вулкана Иджен в Индонезии.

В отличие от свободной кислоты, ее соли, в частности, сульфаты, встречается в природе гораздо чаще. Существует много различных минералов сульфатов. Среди них самыми известными и важными являются гипс (CaSO 4 · 2 H 2 O), барит (BaSO 4), Халькантит (CuSO 4 · 5 H 2 O) и глауберова соль (Na 2 SO 4 · 10 H 2 O).

Нахождение вне земли

Серная кислота находится за пределами Земли в верхних слоях атмосферы Венеры. Она образуется в результате фотохимических реакций диоксида серы и воды, которые образуют капли 80-85% кислоты.

В более глубоких слоях, кислота распадается из-за высоких температуры снова на диоксид серы, и воду, которые поднимаясь вверх снова могут образовывать серную кислоту.

Инфракрасные спектры которые были получены аппаратом Галилео показывают различные степени поглощений на спутнике Юпитера, которые были отнесены к одному или нескольким видам гидратов серной кислоты.

Производство

Сырьем для производства серной кислоты является элементарная сера которую получают в огромных кильскостях на нефте- и газовопереробних заводах, с сероводорода, с помощью процесса, который известен как процесс Клауса. Затем серу оксилюють до диоксида серы:

Реакция серы с кислородом

Еще одним источником диоксида серы является выплавки руд, содержащих серу. Примерами являются медные, цинковые и свинцовые сульфиды. Диоксид серы образуется при обжиге с кислородом воздуха.

Реакция при обжига сульфида цинка

В 1999 году в Европе было выжжено около 3 млн тонн пирита для производства серной кислоты. В Азии эта цифра больше, поскольку и запасы его больше. Для бедных ресурсами странах, которые не имеют ни серы, ни сульфидных руд, существует процесс Мюллера-Кюне.

В этом процессе диоксид серы образуется при обжиге гипса и угля в печи. Этот процесс можно сделать прибыльным, если в печь добавлять песок и глину для образования цемента качестве побочного продукта. Для дальнейшего производства требуется серный ангидрид.

При низких температурах реакция проходит медленно, так как требует сравнительно редких в газовой фазе тройных столкновений, а при высоких равновесие смещено в сторону разложения серного ангидрида. Поэтому для проведения этой реакции нужны катализаторы.

На ранних порах использовали платину, позже перешли на ванадиевый ангидрид V 2 O 5 или ванадаты щелочных металлов KVO 3.

Окисления диоксида серы до триоксида

Триоксида серы разбавляется в воде сразу же: из-за слишком бурную начальную реакцию в контакте с водой образуется пленка тумана серной кислоты, препятствует дальнейшей реакции. Сначала его вводят в концентрированную серную кислоту, этот раствор называют — олеумом. Затем олеум растворяют в воде до образования серной кислоты.

Растворение серного ангидрита в концентрированной серной кислоте по созданию дисульфатнои кислоты Растворения дисульфатнои кислоты в воде

В последние годы производство серной кислоты возросло в основном в Китае, в то время как в европейских странах, производство сократилось.

https://www.youtube.com/watch?v=Td6itaNfJrU

В домашних условиях небольшие количества разбавленной серной кислоты можно получить электролизом раствора медного купороса с свинцовым анодом (напряжение должно быть выше 2 В из-за большого перенапряжения выделения кислорода на двуокиси свинца, который образуется на поверхности анода, но не более 5 В, чтобы не перегревать) .

Физические свойства

Почти вся 99% серная кислота теряет SO 3 при кипении с образованием 98,3% кислоты. 98% кислота является стабильной при хранении, и обычно также называется концентрированной. Другие концентрации используются для различных целей. Данные о различных концентрации:

Массовая доля H 2 SO 4 Плотность (кг / л) Концентрация (моль / л) Название
10% 1,07 ~ 1 Разведенная серная кислота
29-32% 1,25-1,28 4,2-5 аккумуляторная кислота (используется в свинцово-кислотных аккумуляторных батареях)
62-70% 1,52-1,60 9,6-11,5 Фотопаратна кислота удобрительный кислота
78-80% 1,70-1,73 13,5-14 Башенных кислота Гловерова кислота
95-98% 1,83 ~ 18 Концентрированная серная кислота

Химически чистая серная кислота представляет собой тяжелую бесцветную маслянистую жидкость. Продают, как правило, 96,5% — ный водный раствор плотностью 1,84 г / см 3 или так называемый «олеум», то есть раствор SO 3 в H 2 SO 4.

В воде H 2 SO 4 растворяется очень хорошо (смешивается с водой в неограниченных количествах). При этом выделяется тепло, и раствор очень сильно нагревается (вплоть до кипения воды).

Поэтому при добавлении воды к концентрированной серной кислоты последняя разбрызгивается вследствие быстрого преобразования воды в пар.

Поэтому при разведении концентрированной H 2 SO 4 надо кислоту вливать в воду (а не наоборот!) Тонкой струей при тщательном перемешивании раствора стеклянной палочкой. Концентрированная серная кислота как и чистая вода плохо проводит ток вследствие малой дисоциациии, удельная электропроводность 1,044 · 10 -2 S / см

Химические свойства

Диссоциация в водном растворе идет в несколько этапов:

Первый этап диссоциации; K 2 = 2.4 x 6 октября (сильная кислота)

Это значение кислотности взятое в качестве основного при определении суперкислот.

Вторая стадия дисоциациии; K 1 = 1,0 x 10 -2

Серная кислота разрушает также много органических веществ, в частности углеводы — дерево, бумага, хлопчатобумажные ткани, сахар и тому подобное. Разрушение этих веществ объясняется тем, что концентрированная серная кислота отнимает от них водород и кислород в виде воды, а углерод остается в виде пористого угля.

При действии разбавленной серной кислоты на металлы, которые в электрохимическом ряду активности металлов расположены слева водорода, выделяется водород. Концентрированная серная кислота обладает сильным окислительный эффект и способна реагировать, при нагревании, даже с благородными металлами, такими как медь, ртуть и серебро, хотя при этом она не взаимодействует с железом.

Поэтому для перевозки концентрированной серной кислоты используются железные цистерны.

Реакция меди с концентрированной серной кислотой

Применение

Серная кислота является очень важным товаром химической промышленности и является индикатором ее промышленной мощности.

Мировое производство в 2004 году составило около 180 млн тонн, при следующем географическом распределении: Азия 35%, Северная Америка 24%, Африка 11%, Западная Европа 10%, Восточная Европа и Россия 10%, Австралия и Океания 7%, Южная Америка 7 %.

Большая часть производимой кислоты (~ 60%) расходуется на производство удобрений, суперфосфата фосфата аммония, сульфатов, сульфата аммония.

Около 20% используется в химической промышленности для производства моющих средств, синтетических смол, красителей, фармацевтических препаратов, инсектицидов, антифриза, а также для различных технических процессов. Около 6% используют для производства пигментов, красок, эмалей, типографских красок. Используется также как осушитель газов.

Электролит

Серная кислота действует как электролит в свинцово-кислотных аккумуляторах:

На аноде:

Pb + 3 SO2-4 ⇌ PbSO 4 + 2 e —

На катоде:

PbO 2 + 4 H + + SO2-4 + 2 e — ⇌ PbSO 4 + 2 H 2 O

В общем:

Pb + PbO 2 + 4 H + + 2 SO2-4 ⇌ 2 PbSO 4 + 2 H 2 O

Катализатор

Серная кислота используется, также, для других целей в химической промышленности. Например, она кислотным катализатором для преобразования циклогексанона окси в капролактам, который используется для изготовления капрона.

Она используется для изготовления соляной кислоты из соли.

Серная кислота используется в нефтеперерабатывающей промышленности, в качестве катализатора реакции изобутана и изобутилена, для образования изооктана, соединения, имеет эталонное октановое число, и пригодной для создания высокооктанового бензина без металлосодержащих присадок.

Безопасность

Серная кислота едкая, хотя из-за значительной вязкость ожог может произойти за время достаточно для смывания кислоты, попавшей на кожу. В этом смысле более опасны олеум и хлорсульфоновая кислота, которые могут быстро наносить сильные ожоги.

По коррозионными свойствами менее опасна чем соляная или азотная кислоты поскольку менее летучее и не очень активный окислитель при обычных температурах. Наиболее опасно попадание на открытые слизистые оболочки.

Попадание в глаза может произойти при попытке разбавления концентрированной кислоты доливанием к ней воды (прямое нарушение правил обращения с концентрированной серной кислотой), при этом вода закипает и разбрызгивается вместе с кислотой. Пораженные участки промывают большим количеством воды и 5% раствором питьевой соды.

Серная кислота и реакции с ней

Серная кислота
[Deposit Photos]

Серная кислота (H₂­SO₄) – это одна из сильнейших двухосновных кислот.

Если говорить о физических свойствах, то серная кислота выглядит как густоватая прозрачная маслянистая жидкость без запаха. В зависимости от концентрации, серная кислота имеет множество различных свойств и сфер применений:

  • обработка металлов;
  • обработка руд;
  • производство минеральных удобрений;
  • химический синтез.

История открытия серной кислоты

Серная кислота известна людям еще с далеких времен. В основном ее находили в вулканических озерах.

[Deposit Photos]

В XIX веке алхимик из Персии Мухаммад Ар-Рази методом прокаливания медного и железного купороса получил раствор серной кислоты .

Cпустя четыре века европейский ученый Альберт Магнус усовершенствовал метод персидского алхимика.

Современный промышленный (контактный) метод получения серной кислоты заключается в окислении диоксида серы — газа, который образуется при горении серы или серного колчедана. Далее образующийся триоксид серы взаимодействует с водой.

via GIPHY

Контактная серная кислота имеет концентрацию от 92 до 94 процентов:

2SO₂ + O₂ = 2SO₂;

H₂O + SO₃ = H₂­SO₄.

Физические и физико-химические свойства серной кислоты

H₂­SO₄ смешивается с водой и SO₃ во всех соотношениях.

В водных растворах Н₂­SO₄ образует гидраты типа Н₂­SO₄·nH₂O

Температура кипения серной кислоты зависит от степени концентрации раствора и достигает максимума при концентрации больше 98 процентов.

Едкое соединение олеум представляет собой раствор SO₃ в серной кислоте.

При повышении концентрации триоксида серы в олеуме температура кипения понижается.

Химические свойства серной кислоты

[Deposit Photos]

При нагревании концентрированная серная кислота является сильнейшим окислителем, который способен окислять многие металлы. Исключение составляют лишь некоторые металлы:

  • золото (Au);
  • платина (Pt);
  • иридий (Ir);
  • родий (Rh);
  • тантал (Та).

Окисляя металлы, концентрированная серная кислота может восстанавливаться до H₂S, S и SO₂.

Активный металл:

8Al + 15H₂­SO₄(конц.) → 4Al₂(SO₄)₃ + 12H₂O + 3H₂S

Металл средней активности:

2Cr + 4 H₂­SO₄(конц.)→ Cr₂(SO₄)₃ + 4 H₂O + S

Малоактивный металл:

2Bi + 6H₂­SO₄(конц.) → Bi₂(SO₄)₃ + 6H₂O + 3SO₂

С холодной концентрированной серной кислотой железо и алюминий не реагируют, поскольку покрываются оксидной пленкой. Этот процесс называется пассивация.

Реакция серной кислоты и H₂O

При смешении H₂­SO₄ с водой происходит экзотермический процесс: выделяется такое большое количество тепла, что раствор может даже закипеть. Проводя химические опыты, нужно всегда понемногу добавлять серную кислоту в воду, а не наоборот.

Серная кислота является сильным дегидрирующим веществом. Концентрированная серная кислота вытесняет воду из различных соединений. Ее часто используют в качестве осушителя.

Реакция серной кислоты и сахара

Жадность серной кислоты к воде можно продемонстрировать в классическом опыте — смешении концентрированной H₂­SO₄ и сахара, который является органическим соединением (углеводом). Чтобы извлекать воду из вещества, серная кислота разрушает молекулы.

Для проведения опыта в сахар добавляют несколько капель воды и перемешивают. Затем осторожно вливают серную кислоту. Через короткий промежуток времени можно наблюдать бурную реакцию с образованием угля и выделением сернистого и углекислого газов.

Серная кислота и кубик сахара:

via GIPHY

Помните, что работать с серной кислотой очень опасно. Серная кислота — едкое вещество, которое моментально оставляет сильные ожоги на коже.

Здесь вы найдете безопасные эксперименты с сахаром, которые можно проводить дома.

Реакция серной кислоты и цинка

Эта реакция достаточно популярна и является одним из самых распространенных лабораторных методов получения водорода. Если в разбавленную серную кислоту добавить гранулы цинка, металл будет растворяться с выделением газа:

Zn + H₂­SO₄ → Zn­SO₄ + H₂.

Разбавленная серная кислота реагирует с металлами, которые в ряду активности стоят левее водорода:

Ме + H₂­SO₄(разб.) → соль + H₂↑

Реакция серной кислоты с ионами бария

Качественной реакцией на серную кислоту и ее соли является реакция с ионами бария. Она широко распространена в количественном анализе, в частности гравиметрии:

H₂­SO₄ + Ba­Cl₂ → Ba­SO₄ + 2HCl

Zn­SO₄ + Ba­Cl₂ → Ba­SO₄ + Zn­Cl₂

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Оксиды серы. Серная кислота

Серная кислота

Сера с кислородом образует два оксида: SO2 – оксид серы (IV) и SO3 – оксид серы (VI).

Оксид серы (IV) — SO2 (сернистый газ, сернистый ангидрид)

Сернистый газ – это бесцветный газ с резким запахом, ядовит. Тяжелее воздуха более чем в два раза. Хорошо растворяется в воде. При комнатной температуре в одном объёме воды растворяется около 40 объёмов сернистого газа, при этом образуется сернистая кислота H2SO3.

Химические свойства

Кислотно-основные свойства

Сернистый газ – типичный кислотный оксид. Он взаимодействует:

а) с основаниями, образуя два типа солей: кислые (гидросульфиты) и средние (сульфиты):

SO2 + NaOH = NaHSO3

SO2 + 2NaOH = Na2SO3 + H2O

б) с основными оксидами:

SO2 + CaO = CaSO3

SO2 + K2O = K2SO3

в) с водой:

SO2 + H2O = H2SO3

Сернистая кислота существуют только в растворе, относится к двухосновным кислотам. Сернистая кислота обладает всеми общими свойствами кислот.

Окислительно – восстановительные свойства

В окислительно-восстановительных  процессах сернистый газ может быть как окислителем, так и восстановителем, потому что атом серы в этом соединении имеет промежуточную степень окисления +4.

Как окислитель SO2 реагирует с более сильными восстановителями, например с сероводородом:

SO2 + 2H2S = 3S↓ + 2H2O

Как восстановитель SO2 реагирует с более сильными окислителями, например с кислородом в присутствии катализатора, с хлором и т.д.:

2SO2 + O2 = 2SO3

SO2 + Cl2 + 2H2O = H2SO3 + 2HCl

Получение

1) Сернистый газ образуется при горении серы:

S + O2 = SO2

2) В промышленности его получают при обжиге пирита:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

3) В лаборатории сернистый газ можно получить:

а) при действии кислот на сульфиты:

Na2SO3 + H2SO4 = Na2SO4 + H2SO3→SO2↑ + H2O

б) при взаимодействии концентрированной серной кислоты с тяжелыми металлами:

Cu + 2H2SO4 = CuSO4 + SO2↑ + 2H2O

Применение

Сернистый газ находит широкое применение в текстильной промышленности для отбеливания различных изделий. Кроме того, его используют в сельском хозяйстве для уничтожения вредных микроорганизмов в теплицах и погребах. В больших количествах SO2 идет на получение серной кислоты.

Оксид серы (VI) – SO3 (серный ангидрид)

Серный ангидрид SO3 – это бесцветная жидкость, которая при температуре ниже 17оС превращается в белую кристаллическую массу. Очень хорошо поглощает влагу (гигроскопичен).

Химические свойства

Кислотно-основные свойства

Как типичный кислотный оксид серный ангидрид взаимодействует:

а) с основаниями, образуя два типа солей – кислые (гидросульфиты) и средние (сульфаты):

SO3 + NaOH = NaHSO4

SO3 + 2NaOH = Na2SO4 + H2O

б) с основными оксидами:

SO3 + CaO = CaSO4

в) с водой:

SO3 + H2O = H2SO4

Особым свойством SO3 является его способность хорошо растворяться в серной кислоте. Раствор SO3 в серной кислоте имеет название олеум.

Образование олеума: H2SO4 + nSO3 = H2SO4 ∙ nSO3

Окислительно-восстановительные свойства

Оксид серы (VI) характеризуется сильными окислительными свойствами (обычно восстанавливается до SO2):

3SO3 + H2S = 4SO2 + H2O

Получение и применение

Серный ангидрид образуется при окислении сернистого газа:

2SO2 + O2 = 2SO3

В чистом виде серный ангидрид практического значения не имеет. Он получается как промежуточный продукт при производстве серной кислоты.

Серная кислота H2SO4

Упоминания о серной кислоте впервые встречаются у арабских и европейских алхимиков.

Ее получали, прокаливая на воздухе железный купорос (FeSO4∙7H2O): 2FeSO4 = Fe2O3 + SO3↑ + SO2↑ либо смесь серы с селитрой: 6KNO3 + 5S = 3K2SO4 + 2SO3↑ + 3N2↑, а выделяющиеся пары серного ангидрида конденсировали. Поглощая влагу, они превращались в олеум.

В зависимости от способа приготовления H2SO4 называли купоросным маслом или серным маслом. В 1595 г. алхимик Андреас Либавий установил тождественность обоих веществ.

Долгое время купоросное масло не находило широкого применения. Интерес к нему сильно возрос после того, как в XVIII в. был открыт процесс получения из индиго индигокармина – устойчивого синего красителя.

Первую фабрику по производству серной кислоты основали недалеко от Лондона в 1736 г. Процесс осуществляли в свинцовых камерах, на дно которых наливали воду. В верхней части камеры сжигали расплавленную смесь селитры с серой, затем туда запускали воздух.

Процедуру повторяли до тех пор, пока на дне ёмкости не образовывалась кислота требуемой концентрации.

В XIX в. способ усовершенствовали: вместо селитры стали использовать азотную кислоту (она при разложении в камере даёт NO2). Чтобы возвращать в систему нитрозные газы были сконструированы специальные башни, которые и дали название всему процессу – башенный процесс. Заводы, работающие по башенному методу, существуют и в наше время.

Серная кислота

Серная кислота – это тяжелая маслянистая жидкость без цвета и запаха, гигроскопична; хорошо растворяется в воде. При растворении концентрированной серной кислоты в воде выделяется большое количество тепла, поэтому ее надо осторожно приливать в воду (а не наоборот!) и перемешивать раствор.

Раствор серной кислоты в воде с содержанием H2SO4 менее 70% обычно называют разбавленной серной кислотой, а раствор более 70% — концентрированной серной кислотой.

Химические свойства

Кислотно-основные свойства

Разбавленная серная кислота проявляет все характерные свойства сильных кислот. Она реагирует:

а) с основными оксидами:

MgO + H2SO4 = MgSO4 + H2O

б) с основаниями:

H2SO4 + NaOH = Na2SO4 + 2H2O

в) с солями:

H2SO4 + BaCl2 = BaSO4↓ + 2HCl

Процесс взаимодействия ионов Ва2+ с сульфат-ионами SO42+ приводит к образованию белого нерастворимого осадка BaSO4. Это качественная реакция на сульфат-ион.

Окислительно – восстановительные свойства

В разбавленной H2SO4 окислителями являются ионы водорода Н+, а в концентрированной – сульфат-ионы SO42+. Ионы SO42+ являются более сильными окислителями, чем ионы Н+ (см.схему).

В разбавленной серной кислоте растворяются металлы, которые в электрохимическом ряду напряжений находятся до водорода. При этом образуются сульфаты металлов и выделяется водород:

Zn + H2SO4 = ZnSO4 + H2↑

Металлы, которые в электрохимическом ряду напряжений находятся после водорода, не реагируют с разбавленной серной кислотой:

Cu + H2SO4 ≠

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие металлы, неметаллы и некоторые органические вещества.

При взаимодействии концентрированной серной кислоты с металлами, которые в электрохимическом ряду напряжений находятся после водорода (Cu, Ag, Hg), образуются сульфаты металлов, а также продукт восстановления серной кислоты – SO2.

Реакция серной кислоты с цинком

Более активными металлами (Zn, Al, Mg) концентрированная серная кислота может восстанавливаться до свободной серы или сероводорода. Например, при взаимодействии серной кислоты с цинком, магнием, алюминием в зависимости от концентрации кислоты одновременно могут образовываться различные продукты восстановления серной кислоты – SO2, S, H2S:

Zn + 2H2SO4 = ZnSO4 + SO2↑ + 2H2O

3Zn + 4H2SO4 = 3ZnSO4 + S↓ + 4H2O

4Zn + 5H2SO4 = 4ZnSO4 + H2S↑ + 4H2O

На холоде концентрированная серная кислота пассивирует некоторые металлы, например алюминий и железо, поэтому ее перевозят в железных цистернах:

Fe + H2SO4 ≠

Концентрированная серная кислота окисляет некоторые неметаллы (серу, углерод и др.), восстанавливаясь до оксида серы (IV) SO2:

S + 2H2SO4 = 3SO2↑ + 2H2O

C + 2H2SO4 = 2SO2↑ + CO2↑ + 2H2O

Получение и применение

Реакция серной кислоты с сахаром

В промышленности серную кислоту получают контактным способом. Процесс получения происходит в три стадии:

  1. Получение SO2 путем обжига пирита:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2↑

  1. Окисление SO2 в SO3 в присутствии катализатора – оксида ванадия (V):

2SO2 + O2 = 2SO3

  1. Растворение SO3 в серной кислоте:

H2SO4 + nSO3 = H2SO4 ∙ nSO3

Полученный олеум перевозят в железных цистернах. Из олеума получают серную кислоту нужной концентрации, приливая его в воду. Это можно выразить схемой:

H2SO4 ∙ nSO3 + H2O = H2SO4

Серная кислота находит разнообразное применение в самых различных областях народного хозяйства. Ее используют для осушки газов, в производстве других кислот, для получения удобрений, различных красителей и лекарственных средств.

Соли серной кислоты

Железный купорос

Большинство сульфатов хорошо растворимы в воде (малорастворим CaSO4, еще менее PbSO4 и практически нерастворим BaSO4). Некоторые сульфаты, содержащие кристаллизационную воду, называются купоросами:

CuSO4 ∙ 5H2O              медный купорос

FeSO4 ∙ 7H2O               железный купорос

Соли серной кислоты имеют все общие свойства солей. Особенным является их отношение к нагреванию.

Сульфаты активных металлов (Na, K, Ba) не разлагаются даже при 1000оС, а других (Cu, Al, Fe) – распадаются при небольшом нагревании на оксид металла и SO3:

Na2SO4 ≠

CuSO4 = CuO + SO3

Скачать:

Скачать бесплатно реферат на тему: «Производство серной кислоты контактным способом» Производство-серной-кислоты-контактным-способом.docx (18 Загрузок)

Скачать рефераты по другим темам можно здесь

*на изображении записи фотография медного купороса

Серная кислота – „едкая кровь” промышленности — Портал Продуктов Группы РСС

Серная кислота

: 28-03-2018

Промышленность уже давно потребляет огромные количества серной кислоты. Учитывая разнообразие областей применения, это вещество производят в массовом масштабе. Несмотря на все более жесткие экологические и правовые ограничения, производство серной кислоты не снижается.

Постоянный спрос на это химическое соединение свидетельствует о том, насколько оно необходимо для мировой экономики. H2SO4 – это „едкая кровь” промышленности, пульсирующая в бесчисленных производственных установках по всему миру. С серной кислотой работают профессионалы, оперирующие в различных отраслях промышленности.

Для многих исследований и экспериментов используют ее ученые, а с ее помощью знания получают в химических лабораториях студенты и ученики. Сегодня сложно себе представить функционирование современной экономики без серной кислоты.

Свойства серной кислоты делают ее незаменимым сырьем и реактантом, которое трудно вытеснить даже самыми инновационными химическими соединениями, выпускаемыми на рынок производителями химических веществ.

Характеристика и свойства H2SO4

Серная кислота – это одна из наиболее сильно действующих минеральных кислот. Она представляет собой маслянистую, тяжелую и бесцветную жидкость с необыкновенно сильными гигроскопическими свойствами. В своей концентрированной форме обладает также сильными окислительными свойствами.

Серная кислота очень хорошо растворяется в воде во всех соотношениях, выделяя большое количество тепла. Именно поэтому необходимо помнить о том, чтобы наливать кислоту в воду, а не наоборот.

Возможно изготовление серной кислоты даже с концентрацией 99%, однако, потери оксида серы при температуре близкой к температуре кипения приводят к образованию азеотропа с водой концентрацией 98,3%. Из-за этого серную кислоту обычно хранят в виде 98%-ного раствора.

Конечно, H2SO4 может иметь разные концентрации. Наиболее широко применяемыми водными растворами серной кислоты являются:

— 10% — т.н. сильно разведенная серная кислота, используемая, обычно, в качестве обезвоживающего средства, регулятора pH, лабораторного реактива,

— 29-32% — применяют в популярных свинцово-кислотных аккумуляторах,

— 62-70% — используют в качестве удобрения,

— 77-80% — применяют в процессе получения H2SO4 „камерным” методом и используют для производства глауберовой соли, т.е. сульфата натрия (Na2SO4),

— 98% — уже упомянутая ранее серная кислота.

Получение серной кислоты

В промышленности серную кислоту получают контактным способом путем окисления диоксида серы, который образуется, в основном, в результате процессов сжигания серы или сульфидов металлов (напр. пирита).

Процесс производства серной кислоты при использовании серы можно разделить на три этапа. Первый из них заключается в производстве диоксида серы. Затем диоксид серы окисляют для получения триоксида серы.

Последний этап заключается в превращении оксида серы (VI) в серную кислоту.

Сжигание серы проводят при избытке воздуха с целью полного завершения реакции под давлением на уровне около 0,5 МПа. Весь этот процесс осуществляется при температуре около 150oC в баках, выложенных толстым слоем огне- и кислотостойкого кирпича.

Расплавленную серу фильтруют с целью удаления примесей (в основном это железо и органические соединения). Часто в процессе применяют также известь, чтобы уменьшить кислотность расплавленной серы, тем самым ограничивая ее коррозийные свойства. Расплавленную серу подают в горелки, где она сгорает.

Смесь диоксида серы и воздуха, выходящую из горелки, затем пропускают через фильтр, который удаляет любые загрязнения.

На следующем этапе диоксид серы превращают в триоксид серы в результате реакции с кислородом в присутствии катализатора. Широко используемым катализатором является пятиокись ванадия (V2O5), а в качестве его носителя используют сульфат калия.

Функцию подложки для катализатора, как правило, исполняет диоксид кремния или глинокремнеземы, которые характеризуются очень высокой пористостью, обеспечивая тем самым большую площадь для протекания реакции. Скорость протекания процесса зависит также от температуры.

На практике ее поддерживают на уровне около 500oC, чтобы обеспечить достаточную скорость реакции при максимально высокой конверсии.

Последний этап производства серной кислоты заключается в абсорбции SO3 в концентрированной H2SO4 или олеуме с целью предотвращения образования трудно поддающегося конденсации т.н. тумана серной кислоты. Серная кислота с концентрацией 98% циркулирует с такой скоростью, что вновь поглощаемый SO3 вызывает очень незначительное повышение ее концентрации.

Весь процесс осуществляется при температуре около 70oC, тем самым максимизируя эффективность поглощения SO3. Кроме того, в бак с кислотой добавляют также воду, разбавляющую кислоту до соответствующей концентрации. Поток серной кислоты постоянно сливают и охлаждают с помощью пластинчатых теплообменников перед подачей в резервуары для хранения.

Общее преобразование серы в серную кислоту составляет примерно 99%.

Применение серной кислоты

Серная кислота имеет огромное значение во многих отраслях промышленности. Наибольший расход H2SO4 наблюдается в производстве минеральных удобрений. Это, в основном, связано с производством суперфосфатов, а также фосфата и сульфата аммония.

Серная кислота имеет также большое значение при производстве других кислот, например, соляной, азотной и фосфорной кислот. Ее используют также в производстве взрывчатых веществ в качестве одного из видов сырья для производства тротила (TNT).

В свою очередь, в нефтехимической промышленности H2SO4 применяют, в основном, для осушения масел, керосина и парафина. Она выполняет также роль катализатора в реакции получения изооктана, являющегося одним из основных компонентов бензина.

Серную кислоту используют также в горнодобывающей и металлургической промышленностях в процессах обогащения руд меди. H2SO4 является также электролитом в популярных свинцово-кислотных аккумуляторах.

Кроме того, серная кислота находит широкое применение в производстве моющих средств (напр. лаурилсульфата натрия), а также в косметической промышленности, где ее используют для производства сырья и полуфабрикатов (напр. нитрата серебра), а также перекиси водорода или же душистых веществ.

Такое широкое применение серной кислоты приводит к тому, что в случае ее отсутствия невозможным или просто невыгодным было бы проведение многих основных и весьма важных промышленных процессов.

Серная кислота в промышленности

Серная кислота – это незаменимое сырье во многих технологических процессах, а ее чрезвычайно разнообразный рынок стоит на пороге многих вызовов.

Опасения, связанные с негативным воздействием на окружающую среду, могут сбалансировать или даже ослабить спрос на это популярное сырье.

Однако, тот факт, что H2SO4, несмотря на присутствие в химической промышленности уже столько лет, не теряет свою популярность и по-прежнему является одним из самых необходимых химических веществ, используемых в промышленности в массовом масштабе.

Серная кислота — химические свойства и промышленное производство

Серная кислота

Физические свойства серной кислоты:
Тяжелая маслянистая жидкость («купоросное масло»);
плотность 1,84 г/см3; нелетучая, хорошо растворима в воде – с сильным нагревом; t°пл. = 10,3°C, t°кип. = 296°С, очень гигроскопична, обладает водоотнимающими свойствами (обугливание бумаги, дерева, сахара).

Теплота гидратации настолько велика, что смесь может вскипать, разбрызгиваться и вызывать ожоги. Поэтому необходимо добавлять кислоту к воде, а не наоборот, поскольку при добавлении воды к кислоте более легкая вода окажется на поверхности кислоты, где и сосредоточится вся выделяющаяся теплота.

Промышленное производство серной кислоты (контактный способ):

1)      4FeS2 + 11O2 → 2Fe2O3 + 8SO2

2)      2SO2 + O2 V2O5→ 2SO3

3)      nSO3 + H2SO4 → H2SO4·nSO3 (олеум)

Измельчённый очищенный влажный пирит (серный колчедан) сверху засыпают в печь для обжига в «кипящем слое«. Снизу (принцип противотока) пропускают воздух, обогащённый кислородом.

Из печи выходит печной газ, состав которого: SO2, O2, пары воды (пирит был влажный) и мельчайшие частицы огарка (оксида железа). Газ очищают от примесей твёрдых частиц (в циклоне и электрофильтре) и паров воды (в сушильной башне).

В контактном аппарате происходит окисление сернистого газа с использованием катализатора V2O5 ( пятиокись ванадия) для увеличения скорости реакции. Процесс окисления одного оксида в другой является обратимым.

Поэтому подбирают оптимальные условия протекания прямой реакции — повышенное давление (т.к прямая реакция идет с уменьшением общего объема) и температура не выше 500 С ( т.к реакция экзотермическая).

В поглотительной башне происходит поглощение оксида серы (VI) концентрированной серной кислотой.
Поглощение водой не используют, т.

к оксид серы растворяется в воде с выделением большого количества теплоты, поэтому образующаяся  серная кислота закипает и превращается в пар.

Для того, чтобы не образовывалось сернокислотного тумана, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3

Химические свойства серной кислоты:

H2SO4 — сильная двухосновная кислота, одна из самых сильных минеральных кислот, из-за высокой полярности связь Н – О легко разрывается.

1)  В водном растворе серная кислота диссоциирует, образуя ион водорода и кислотный остаток:
H2SO4 = H+ + HSO4—;
HSO4— = H+ + SO42-.Суммарное уравнение:

H2SO4 = 2H+ + SO42-.

2)  Взаимодействие серной кислоты с металлами:Разбавленная серная кислота растворяет только металлы, стоящие в ряду напряжений левее водорода:

Zn0 + H2+1SO4(разб) → Zn+2SO4 + H2

3)   Взаимодействие серной кислоты с основными оксидами:
CuO + H2SO4 → CuSO4 + H2O

4)    Взаимодействие серной кислоты с гидроксидами:
H2SO4 + 2NaOH → Na2SO4 + 2H2O
H2SO4 + Cu(OH)2 → CuSO4 + 2H2O

5)     Обменные реакции с солями:
BaCl2 + H2SO4 → BaSO4↓ + 2HCl
Образование белого осадка BaSO4 (нерастворимого в кислотах) используется для обнаружения серной кислоты и растворимых сульфатов (качественная реакция на сульфат ион).

Особые свойства концентрированной H2SO4 :

1)     Концентрированная серная кислота является сильным окислителем; при взаимодействии с металлами (кроме Au, Pt) восстанавливаться до S+4O2, S0 или H2S-2  в зависимости от активности металла.

Без нагревания не реагирует  с Fe, Al, Cr – пассивация.

  При взаимодействии с металлами, обладающими переменной валентностью, последние окисляются до более высоких степеней окисления, чем в случае с разбавленным раствором кислоты: Fe0 Fe3+, Cr0 Cr3+, Mn0 Mn4+,Sn0 Sn4+

Активный металл

8 Al + 15 H2SO4(конц.)→4Al2(SO4)3 + 12H2O + 3H2S
4│2Al0 – 6e— → 2Al3+ — окисление
3│ S6+ + 8e → S2– восстановление

4Mg+ 5H2SO4 → 4MgSO4 + H2S­ + 4H2O

Металл средней активности

2Cr + 4 H2SO4(конц.)→ Cr2(SO4)3 + 4 H2O + S
1│ 2Cr0 – 6e →2Cr3+— окисление
1│ S6+ + 6e → S0 – восстановление

Металл малоактивный

2Bi + 6H2SO4(конц.)→ Bi2(SO4)3 + 6H2O + 3SO2
1│ 2Bi0 – 6e → 2Bi3+ – окисление
3│ S6+ + 2e →S4+ — восстановление

2Ag + 2H2SO4 →Ag2SO4 + SO2­ + 2H2O

 2)     Концентрированная серная кислота окисляет некоторые неметаллы как правило до максимальной степени окисления, сама восстанавливается до S+4O2:

С + 2H2SO4(конц) → CO2­ + 2SO2­ + 2H2O

S+ 2H2SO4(конц) → 3SO2­ + 2H2O

2P+ 5H2SO4(конц)→5SO2­ + 2H3PO4 + 2H2O

3) Окисление сложных веществ:Серная кислота окисляет HI и НВг до свободных галогенов:

2 КВr + 2Н2SO4 = К2SО4 + SO2 + Вr2 + 2Н2О

2 КI + 2Н2SО4 = К2SO4 + SO2 +  I2 + 2Н2ОКонцентрированная серная кислота не может окислить хлорид-ионы до свободного хлора, что дает возможность получать НСl по реакции обмена:

NаСl + Н2SO4(конц.) = NаНSO4 + НСl

Серная кислота отнимает химически связанную воду от органических соединений, содержащих гидроксильные группы. Дегидратация этилового спирта в присутствии концентрированной серной кислоты приводит к получению этилена:
С2Н5ОН = С2Н4 + Н2О.

Обугливание сахара, целлюлозы, крахмала и др. углеводов при контакте с серной кислотой объясняется также их обезвоживанием:
C6H12O6 + 12H2SO4 = 18H2O + 12SO2↑ + 6CO2↑.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть