Удельное электрическое сопротивление объемное – таблицы электронного справочника по химии, содержащие Удельное электрическое сопротивление объемное

Удельное сопротивление металлов, электролитов и веществ (Таблица)

Удельное электрическое сопротивление объемное  - таблицы электронного справочника по химии, содержащие Удельное электрическое сопротивление объемное

В справочной таблице даны значения удельного сопротивления р некоторых металлов и изоляторов при температуре 18—20° С, выраженные в ом·см.

Величина р для металлов в сильной степени зависит от примесей, в таблице даны значения р для химически чистых металлов, для изоляторов даны приближенно.

Металлы и изоляторы расположены в таблице в порядке возрастающих значений р.

Таблица удельное сопротивление металлов

Чистые металлы104 ρ (ом·см)Чистые металлы104 ρ (ом·см)
Серебро0,016Хром0,131
Медь0,017Тантал0,146
Золото0,023Бронза 1)0,18
Алюминий0,029Торий0,18
Дюралюминий0,0335Свинец0,208
Магний0,044Платинит 2)0,45
Кальций0,046Сурьма0,405
Натрий0,047Аргентан0,42
Марганец0,05Никелин0,33
Иридий0,063Манганин0,43
Вольфрам0,053Константан0,49
Молибден0,054Сплав Вуда 3)0,52 (0°)
Родий0,047Осмий0,602
Цинк0,061Сплав Розе 4)0,64 (0°)
Калий0,066Хромель0,70-1,10
Никель0,070
Кадмий0,076Инвар0,81
Латунь0,08Ртуть0,958
Кобальт0,097Нихром 5)1,10
Железо0,10Висмут1,19
Палладий0,107Фехраль 6)1,20
Платина0,110Графит8,0
Олово0,113

Таблица удельное сопротивление изоляторов

Изоляторыρ (ом·см)Изоляторыρ (ом·см)
Асбест108Слюда1015
Шифер108Миканит1015
Дерево сухое1010Фарфор2·1015
Мрамор1010Сургуч5·1015
Целлулоид2·1010Шеллак1016
Бакелит1011Канифоль1016
Гетинакс5·1011Кварц _|_ оси3·1016
Алмаз1012Сера1017
Стекло натр1012Полистирол1017
Стекло пирекс2·1014Эбонит1018
Кварц || оси1014Парафин3·1018
Кварц плавленый2·1014Янтарь1019

Удельное сопротивление чистых металлов при низких температурах

В таблице даны значения удельного сопротивления (в ом·см) некоторых чистых металлов при низких температурах (0°С).

Чистые металлыt (°С)Удельное сопротивление, 104 ρ (ом·см)
Висмут-2000,348
Золото-262,80,00018
Железо-252,70,00011
Медь-258,60,00014 1
Платина-2650,0010
Ртуть-183,50,0697
Свинец-252,90,0059
Серебро-258,60,00009

Отношение сопротивлении Rt/Rq чистых металлов при температуре Т °К и 273° К

В справочной таблице дано отношение Rt/Rq сопротивлений чистых металлов при температуре Т °К и 273° К.

Чистые металлыТ (°К)RT/R0
Алюминий77,71,008
20,40,0075
Висмут77,80,3255
20,40,0810
Вольфрам78,20,1478
20,40,0317
Железо78,20,0741
20,40,0076
Золото78,80,2189
20,40,0060
Медь81,60,1440
20,40,0008
Молибден77,80,1370
20,40,0448
Никель78,80,0919
20,40,0066
Олово79,00,2098
20,40,0116
Платина91,40,2500
20,40,0061
Ртуть90,10,2851
20,40,4900
Свинец73,10,2321
20,50,0301
Серебро78,80,1974
20,40,0100
Сурьма77,70,2041
20,40,0319
Хром80,00,1340
20,60,0533
Цинк83,70,2351
20,40,0087

Удельное сопротивление электролитов

В таблице даны значения удельного сопротивления электролитов в ом·см при температуре 18° С. Концентрация растворов с дана в процентах, которые определяют число граммов безводной соли или кислоты в 100 г раствора.

c (%)NH4ClNaClZnSO4CuSO4КОНNaOHH2SO4
510,914,952,452,95,85,14,8
105,68,331,231,33,23,22,6
153,96,124,123,82,42,91,8
203,05,121,32,03,01,5
252,54,720,81,93,71,4

_______________

Источник информации: КРАТКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ СПРАВОЧНИК/ Том 1, – М.: 1960.

Источник: http://infotables.ru/fizika/102-udelnoe-soprotivlenie-i-otnositelnaya-dielektricheskaya-pronitsaemost-dielektrikov-tablitsa

Электрическое сопротивление и проводимость

Удельное электрическое сопротивление объемное  - таблицы электронного справочника по химии, содержащие Удельное электрическое сопротивление объемное

26 марта 2013.
Категория: Электротехника.

При замыкании электрической цепи, на зажимах которой имеется разность потенциалов, возникает электрический ток. Свободные электроны под влиянием электрических сил поля перемещаются вдоль проводника.

В своем движении электроны наталкиваются на атомы проводника и отдают им запас своей кинетической энергии.

Скорость движения электронов непрерывно изменяется: при столкновении электронов с атомами, молекулами и другими электронами она уменьшается, потом под действием электрического поля увеличивается и снова уменьшается при новом столкновении.

В результате этого в проводнике устанавливается равномерное движение потока электронов со скоростью нескольких долей сантиметра в секунду. Следовательно, электроны, проходя по проводнику, всегда встречают с его стороны сопротивление своему движению. При прохождении электрического тока через проводник последний нагревается.

Электрическое сопротивление

Электрическим сопротивлением проводника, которое обозначается латинской буквой r, называется свойство тела или среды превращать электрическую энергию в тепловую при прохождении по нему электрического тока.

На схемах электрическое сопротивление обозначается так, как показано на рисунке 1, а.

Рисунок 1. Условное обозначение электрического сопротивления

Переменное электрическое сопротивление, служащее для изменения тока в цепи, называется реостатом. На схемах реостаты обозначаются как показано на рисунке 1, б.

В общем виде реостат изготовляется из проволоки того или иного сопротивления, намотанной на изолирующем основании.

Ползунок или рычаг реостата ставится в определенное положение, в результате чего в цепь вводится нужное сопротивление.

Длинный проводник малого поперечного сечения создает току большое сопротивление. Короткие проводники большого поперечного сечения оказывают току малое сопротивление.

Если взять два проводника из разного материала, но одинаковой длины и сечения, то проводники будут проводить ток по-разному. Это показывает, что сопротивление проводника зависит от материала самого проводника.

Температура проводника также оказывает влияние на его сопротивление. С повышением температуры сопротивление металлов увеличивается, а сопротивление жидкостей и угля уменьшается. Только некоторые специальные металлические сплавы (манганин, констаитан, никелин и другие) с увеличением температуры своего сопротивления почти не меняют.

Итак, мы видим, что электрическое сопротивление проводника зависит от: 1) длины проводника, 2) поперечного сечения проводника, 3) материала проводника, 4) температуры проводника.

За единицу сопротивления принят один Ом. Ом часто обозначается греческой прописной буквой Ω (омега). Поэтому вместо того чтобы писать “Сопротивление проводника равно 15 Ом”, можно написать просто: r = 15 Ω.
1 000 Ом называется 1 килоом (1кОм, или 1кΩ),
1 000 000 Ом называется 1 мегаом (1мгОм, или 1МΩ).

При сравнении сопротивления проводников из различных материалов необходимо брать для каждого образца определенную длину и сечение. Тогда мы сможем судить о том, какой материал лучше или хуже проводит электрический ток.

1. Сопротивление проводников

Удельное электрическое сопротивление

Сопротивление в омах проводника длиной 1 м, сечением 1 мм² называется удельным сопротивлением и обозначается греческой буквой ρ (ро).

В таблице 1 даны удельные сопротивления некоторых проводников.

Таблица 1

Удельные сопротивления различных проводников

Материал проводникаУдельное сопротивление ρ в
Серебро Медь Алюминий Вольфрам Железо Свинец Никелин (сплав меди, никеля и цинка) Манганин (сплав меди, никеля и марганца) Константан (сплав меди, никеля и алюминия) РтутьНихром (сплав никеля, хрома, железа и марганца)0,016 0,0175 0,03 0,05 0,13 0,2 0,42 0,43 0,5 0,941,1

Из таблицы видно, что железная проволока длиной 1 м и сечением 1 мм² обладает сопротивлением 0,13 Ом. Чтобы получить 1 Ом сопротивления нужно взять 7,7 м такой проволоки. Наименьшим удельным сопротивлением обладает серебро.

1 Ом сопротивления можно получить, если взять 62,5 м серебряной проволоки сечением 1 мм². Серебро – лучший проводник, но стоимость серебра исключает возможность его массового применения. После серебра в таблице идет медь: 1 м медной проволоки сечением 1 мм² обладает сопротивлением 0,0175 Ом.

Чтобы получить сопротивление в 1 Ом, нужно взять 57 м такой проволоки.

Химически чистая, полученная путем рафинирования, медь нашла себе повсеместное применение в электротехнике для изготовления проводов, кабелей, обмоток электрических машин и аппаратов. Широко применяют также в качестве проводников алюминий и железо.

Сопротивление проводника можно определить по формуле:

где r – сопротивление проводника в омах; ρ – удельное сопротивление проводника; l – длина проводника в м; S – сечение проводника в мм².

Пример 1. Определить сопротивление 200 м железной проволоки сечением 5 мм².

Пример 2. Вычислить сопротивление 2 км алюминиевой проволоки сечением 2,5 мм².

Из формулы сопротивления легко можно определить длину, удельное сопротивление и сечение проводника.

Пример 3. Для радиоприемника необходимо намотать сопротивление в 30 Ом из никелиновой проволоки сечением 0,21 мм². Определить необходимую длину проволоки.

Пример 4. Определить сечение 20 м нихромовой проволоки, если сопротивление ее равно 25 Ом.

Пример 5. Проволока сечением 0,5 мм² и длиной 40 м имеет сопротивление 16 Ом. Определить материал проволоки.

Материал проводника характеризует его удельное сопротивление.

По таблице удельных сопротивлений находим, что таким сопротивлением обладает свинец.

Выше было указано, что сопротивление проводников зависит от температуры. Проделаем следующий опыт. Намотаем в виде спирали несколько метров тонкой металлической проволоки и включим эту спираль в цепь аккумулятора.

Для измерения тока в цепь включаем амперметр. При нагревании спирали в пламени горелки можно заметить, что показания амперметра будут уменьшаться.

Это показывает, что с нагревом сопротивление металлической проволоки увеличивается.

У некоторых металлов при нагревании на 100° сопротивление увеличивается на 40 – 50 %. Имеются сплавы, которые незначительно меняют свое сопротивление с нагревом.

Некоторые специальные сплавы практически не меняют сопротивления при изменении температуры.

Сопротивление металлических проводников при повышении температуры увеличивается, сопротивление электролитов (жидких проводников), угля и некоторых твердых веществ, наоборот, уменьшается.

Способность металлов менять свое сопротивление с изменением температуры используется для устройства термометров сопротивления. Такой термометр представляет собой платиновую проволоку, намотанную на слюдяной каркас. Помещая термометр, например, в печь и измеряя сопротивление платиновой проволоки до и после нагрева, можно определить температуру в печи.

Изменение сопротивления проводника при его нагревании, приходящееся на 1 Ом первоначального сопротивления и на 1° температуры, называется температурным коэффициентом сопротивления и обозначается буквой α.

Если при температуре t0 сопротивление проводника равно r0, а при температуре t равно rt, то температурный коэффициент сопротивления

Примечание. Расчет по этой формуле можно производить лишь в определенном интервале температур (примерно до 200°C).

Приводим значения температурного коэффициента сопротивления α для некоторых металлов (таблица 2).

Таблица 2

Значения температурного коэффициента для некоторых металлов

МеталлαМеталлα
Серебро Медь Железо ВольфрамПлатина0,0035 0,0040 0,0066 0,00450,0032Ртуть Никелин Константан НихромМанганин0,0090 0,0003 0,000005 0,000160,00005

Из формулы температурного коэффициента сопротивления определим rt:

rt = r0 [1 ± α (t – t0)].

Пример 6. Определить сопротивление железной проволоки, нагретой до 200°C, если сопротивление ее при 0°C было 100 Ом.

rt = r0 [1 ± α (t – t0)] = 100 (1 + 0,0066 × 200) = 232 Ом.

Пример 7. Термометр сопротивления, изготовленный из платиновой проволоки, в помещении с температурой 15°C имел сопротивление 20 Ом. Термометр поместили в печь и через некоторое время было измерено его сопротивление. Оно оказалось равным 29,6 Ом. Определить температуру в печи.

Электрическая проводимость

До сих пор мы рассматривали сопротивление проводника как препятствие, которое оказывает проводник электрическому току. Но все же ток по проводнику проходит. Следовательно, кроме сопротивления (препятствия), проводник обладает также способностью проводить электрический ток, то есть проводимостью.

Чем большим сопротивлением обладает проводник, тем меньшую он имеет проводимость, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем большей проводимостью он обладает, тем легче току пройти по проводнику. Поэтому сопротивление и проводимость проводника есть величины обратные.

Из математики известно, что число, обратное 5, есть 1/5 и, наоборот, число, обратное 1/7, есть 7. Следовательно, если сопротивление проводника обозначается буквой r, то проводимость определяется как 1/r. Обычно проводимость обозначается буквой g.

Электрическая проводимость измеряется в (1/Ом) или в сименсах.

Пример 8. Сопротивление проводника равно 20 Ом. Определить его проводимость.

Если r = 20 Ом, то

Пример 9. Проводимость проводника равна 0,1 (1/Ом). Определить его сопротивление,

Если g = 0,1 (1/Ом), то r = 1 / 0,1 = 10 (Ом)

Источник: Кузнецов М. И., “Основы электротехники” – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Источник: https://www.electromechanics.ru/electrical-engineering/482-resistance-resistivity-and-conductivity-of-conductors.html

Удельное сопротивление меди

Удельное электрическое сопротивление объемное  - таблицы электронного справочника по химии, содержащие Удельное электрическое сопротивление объемное

> Теория > Удельное сопротивление меди

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Формула вычисления сопротивления проводника

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l.

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Удельное сопротивление металлов

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l)/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

g=1/R.

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Выбор сечения кабеля

Сопротивление медного провода

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

P=I²*R.

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Таблица выбора сечения провода по допустимому нагреву

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

U=I*R.

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Максимально допустимая длина кабеля данного сечения

Электросопротивление других металлов

Сопротивление тока: формула

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте.

В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода.

Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

Источник: https://elquanta.ru/teoriya/udelnoe-soprotivlenie-medi.html

Электротехнические материалы

Удельное электрическое сопротивление объемное  - таблицы электронного справочника по химии, содержащие Удельное электрическое сопротивление объемное

 15.1. Подготовка образцов и   условий испытания.                        

15.2. Поддержание контроль условий испытания.                                 

15.3. Электрические испытания.                               

             15.3.1.Определение общих и удельных сопротивлений образцов.                                                                                 
             15.3.2.

Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь на низких частотах.    
             15.3.3. Определение электрической прочности.      
             15.3.4. Определение стойкости к внешним электрическим воздействиям.

        
             15.3.5. Определение параметров статической электризации. 

15.4.  Тепловые испытания.                                                                                                                             

15.5.  Механические испытания.                                                                                                                   

15.1. Подготовка образцов и условия испытаний

Условиями окружающей среды при проведении испытаний называют сочетание температуры и относительной влажности воздуха или температуры и жидкости, в которых находится образец.

Подготовка образцов преследует две цели – устранить предшествовавшие испытанию воздействия среды и стабилизировать свойства материала. Этим целям служат нормализация и кондиционирование.

Нормализация – предварительная обработка образцов твердых электроизоляционных материалов в течение определенного времени и при определенных условиях окружающей среды с целью устранения или частичного снижения предшествующего состояния материала. Если стандартом на материал не предусмотрены особые условия нормализации, то она заключается в выдержке образца в течение 24 ч при 50 ºС и относительной влажности не более 20%.

Кондиционирование – вторичная обработка образцов в определенных условиях в течение определенного времени с целью стабилизации свойств материала.

Условия нормализации, кондиционирования и испытаний указываются в стандартах на материал и должны выбираться из ряда, определенного в ГОСТ 6433.1-71.

В течении этих процессов к образцам должен быть обеспечен свободный доступ окружающей среды. Образцы не должны соприкасаться со стенками камеры или друг с другом.

Время между кондиционированием и испытанием не должно превышать, как правило, 5 мин.

В тех случаях, когда температуры при подготовке и испытаниях различны, необходимо довести температуру образца до испытательной и выдержать его при этой температуре.

15.2. Поддержание и контроль условий испытания

При подготовке и проведении испытаний требуется соблюдать определенные значения температуры среды, в которой находится образец. Для этой цели применяют термостаты (термокамеры) или криостаты.

В зависимости от диапазона рабочих температур они делятся на термокамеры (20-400 ºС), электропечи (до 1000 ºС и выше) и криостаты для создания отрицательных температур. Регулировка температуры осуществляется, как правило, автоматически.

Во всем рабочем объеме камеры температура должна быть по возможности одинаковой, чувствительный элемент датчика должен быть помещен возможно ближе к образцу. Может применяться принудительная циркуляция воздуха при помощи вентилятора.

Существуют также термовлагокамеры, позволяющие получить не только заданную температуру, но и необходимую влажность. Эти камеры оборудованы специальным испарителем, размещенным в нижней части камеры.

Для испытаний малых образцов могут применяться эксикаторы, где требуемая влажность достигается химическим путем, для снижения влажности в эксикатор помещают вещества, поглощающие влагу, например: фосфорный ангидрид, силикагель и пр., при этом достигается близкая к нулю влажность.

Влажность от 50 до 100% получают, помещая в камеру насыщенные растворы в воде различных веществ.

15.3.1. Определение общих и удельных сопротивлений образцов

Если к диэлектрику приложить постоянное напряжение, то по нему будет протекать ток утечки.

Постоянная составляющая этого тока называется сквозным током и может быть представлена в виде двух составляющих: поверхностного сквозного тока, протекающего по тонкому электропроводящему слою влаги с растворенными в ней веществами, образовавшимся в результате взаимодействия со средой, и объемного сквозного тока, т.е. тока, проходящего через объем материала.

Этим двум составляющим тока соответствуют два сопротивления: поверхностное электрическое сопротивление диэлектрика Rs – отношение приложенного напряжения к поверхностному току, и объемное электрическое сопротивление диэлектрика R – отношение приложенного напряжения к объемному току. Соответственно, обратные этим сопротивлениям величины называются поверхностной и объемной проводимостями. Эти характеристики диэлектрика зависят как от материала диэлектрика, так и от геометрических размеров образца.

Более удобными в применении являются удельные поверхностное и объемное сопротивления. Удельное объемное сопротивление r [Ом·м]- это величина, равная отношению напряженности электрического поля E внутри образца к плотности тока J, проходящего через объем образца.

Под удельным поверхностным сопротивлением rs [Ом] понимают поверхностное сопротивление плоского участка поверхности твердого диэлектрика в форме квадрата при протекании электрического тока между двумя противоположными сторонами этого квадрата.

Форма и размеры образцов испытуемых материалов зависит от измеряемой величины. Образцы для определения объемного и поверхностного сопротивлений производят на плоских (круглых или квадратных) или трубчатых образцах.

Внутреннее сопротивление определяют на плоских образцах с двумя несквозными отверстиями.

Сопротивление изоляции измеряют на плоских, трубчатых или стержневых образцах.

Число испытуемых образцов должно быть не менее трех.

Электроды  для испытания твердых диэлектриков должны удовлетворять следующим условиям: обладать высокой проводимостью и обеспечивать хороший электрический контакт по всей поверхности соприкосновения с образцом, не влиять на образец (не деформировать, не оказывать химического воздействия).

Металлические нажимные электроды применяют для измерения объемного и поверхностного удельных сопротивлений. Представляют собой систему из трех электродов: измерительного, напряжения (высоковольтного) и охранного.

Напряжение прикладывается между измерительным электродом и электродом напряжения и измеряется ток в их цепи, охранный электрод служит для уменьшения краевых эффектов, он заземляется. В зависимости от измеряемой величины электроды выполняют различные функции.

№ электрода на рис.R и rRs и rs
1ОхранныйНапряжения
2ИзмерительныйИзмерительный
3НапряженияОхранный

Контакт с материалом создается прижатием давлением 10±0,2 кПа. Эти электроды применяют при испытаниях всех твердых, а также эластичных материалов при температурах -60…+250 С.

Фольговые электроды применяют для определения удельных сопротивлений и сопротивления изоляции. Их выполняют из отожженной алюминиевой, оловянной или свинцовой фольги толщиной от 5 до 20 мкм.

Контакт обеспечивается путем притирания с помощью тонкого слоя трансформаторного масла, кремнийорганической жидкости. Толщина смазки не должна превышать 1 мкм. Контакт также может быть создан прижатием через резину давлением 10±0,2 кПа, если в стандарте на материал не оговорено иное значение.

Способы закрепления фольги на резине для внутреннего и наружнего электродов показаны на рисунке.

Электроды из осажденных металлов представляют собой плотно прилегающие пленки  драгоценных или цветных металлов. Нанесение производится с помощью следующих операций: нанесение распылением в вакууме, нанесение шоопированием, нанесение кистью (разнообразные пасты).

Графитовые электроды применяют в виде жидкой суспензии водной или на лаке или в виде порошка графита. Электроды из суспензии на воде применяют для испытаний негигроскопичных материалов. Наносят с помощью кисти, после чего сушат.

Графитово-лаковые суспензии наносят пульвелизатором через трафарет. После сушки толщина нанесеного покрытия должна быть примерно 0,1 мм. Сопротивление слоя из лакографита не должно превышать 100 Ом. Способ получения электродов из порошка графита показан на рисунке.

Графит уплотняют давлением 10 кПа.

Помимо названных применяются также следующие виды электродов: штифтовые, ленточные, ножевые, брусковые, ртутные и на основе токопроводящей резны.

Измерительные ячейки для определения удельного сопротивления жидких материалов. Удельное объемное сопротивление жидких диэлектриков определяют на образцах объемом не менее 50 см2, число проб – не менее двух. Измерительная ячейка представляет собой двух- или трехэлектродную систему с плоскими или цилиндрическими электродами. Схематичный вид трехэлектродной ячейки изображен на рисунке.

Методы и средства измерения сопротивлений.

Сопротивление образца может быть измерено прямо или косвенно.

  В первом случае применяют электронные омметры (мега-, тераомметры), реже мосты постоянного тока, значения сопротивления считывается сразу со шкалы прибора.

При косвенных измерениях сопротивление определяют расчетным путем по результатам измерения тока, протекающего в образце, при известном значении напряжения, приложенного к образцу.

Независимо от метода измерения  и применяемых средств при определении сопротивления материала необходимо выполнить ряд требований. Погрешность измерения сопротивления не должна превышать ±5, ±10, ±15% при измерении сопротивлений до 109, 109-1013, более 1013 Ом соответственно. Измерение сопротивления должно выполняться при постоянном напряжении, погрешность измерения напряжения не более 2%.

Электронные магаомметры и тераомметры. Представляют собой усилитель постоянного тока с большим коэффициентом усиления, охваченный глубокой обратной связью, в прямую или обратную цепь которого включается измеряемое сопротивление.

Схемы измерения объемного и поверхностного сопротивлений, где Л- высокоомный входной зажим, К – входной зажим, Э – экран (электрический нуль прибора):

Различные типы мегаомметров и тераомметров обеспечивают различные пределы измеряемых сопротивлений и погрешностей измерения.

Мосты постоянного тока. Применяют для точных измерений сопротивлений в тех случаях, когда измерительное напряжение на образце по условиям испытаний не должно превышать 100 В. Схема включения:

Здесь: R3 – неизменно, R2 – регулируется плавно и R3 – дискретно. Класс точности 0,05 – 10 в зависимости от диапазона.

Косвенные методы измерения сопротивлений. Наибольшее распространение получил метод измерения тока, протекающего через исследуемый образец при фиксированном напряжении на образце.

Для получения требуемой точности измерения Rx  погрешность установки напряжения U не должна превышать 0,5%, такой же должна быть погрешность шунта, погрешность резистора R0 – 1%:

Отсчет показаний гальванометра должен производиться после определенной выдержки после подачи напряжения, что вызвано установлением сквозного тока. Сопротивление R0 порядка 107 Ом.

Расчет удельных электрических сопротивлений.

r = RS/l, где R – измеренное объемное сопротивление, S – эффективная площадь измерительного электрода, l – средняя толщина образца.

15.3.2. Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь на низких частотах

Образец диэлектрика с потерями может быть представлен в виде эквивалентной последовательной или параллельной схемы:

Независимо от выбора схемы сдвиг фазы j, ток I, напряжение U и диэлектрические потери P неизменны. Для последовательной схемы справедливы следующие соотношения:

tg d = w Cs Rs;  P = I2 Rs = U2 w Cs tg d / ( 1 + tg2 d)

Для параллельной схемы:

tg d = 1 / ( Rp w Cp);    P = U2 w Cp tg d.

При tg d

Источник: http://sermir.narod.ru/lec/lect15.htm

Удельное сопротивление металлов. Таблица

Удельное электрическое сопротивление объемное  - таблицы электронного справочника по химии, содержащие Удельное электрическое сопротивление объемное

Удельное сопротивление металлов является мерой их свойства противодействовать прохождению электрического тока. Эта величина выражается в Ом-метр (Ом⋅м). Символ, обозначающий удельное сопротивление, является греческая буква ρ (ро). Высокое удельное сопротивление означает, что материал плохо проводит электрический заряд.

Сопротивление провода

Величина сопротивления провода зависит от трех параметров: удельного сопротивления металла, длины и диаметра самого провода. Формула для расчета сопротивления провода:

где:R — сопротивление провода (Ом)ρ — удельное сопротивление металла (Ом.m)L — длина провода (м)

А — площадь поперечного сечения провода (м2)

В качестве примера рассмотрим проволочный резистор из нихрома с удельным сопротивлением 1.10×10-6 Ом.м.  Проволока имеет длину 1500 мм и диаметр 0,5 мм. На основе этих трех параметров рассчитаем сопротивление провода из нихрома:

R=1,1*10-6*(1,5/0,000000196) = 8,4 Ом

Нихром и константан часто используют в качестве материала для сопротивлений. Ниже в таблице вы можете посмотреть удельное сопротивление некоторых наиболее часто используемых металлов.

Поверхностное сопротивление

Величина поверхностного сопротивления рассчитывается таким же образом, как и сопротивление провода. В данном случае площадь сечения можно представить в виде произведения w и t:

Для некоторых материалов, таких как тонкие пленки, соотношение между удельным сопротивлением и толщиной пленки называется поверхностное сопротивление слоя RS:

где RS измеряется в омах. При данном расчете толщина пленки должна быть постоянной.

Часто производители резисторов для увеличения сопротивления вырезают в пленке дорожки, чтобы увеличить путь для электрического тока.

Свойства резистивных материалов

Удельное сопротивление металла зависит от температуры. Их значения приводится, как правило, для комнатной температуры (20°С). Изменение удельного сопротивления в результате изменения температуры характеризуется температурным коэффициентом.

Например, в термисторах (терморезисторах) это свойство используется для измерения температуры. С другой стороны, в точной электронике, это довольно нежелательный эффект.
Металлопленочные резисторы имеют отличные свойства температурной стабильности. Это достигается не только за счет низкого удельного сопротивления материала, но и за счет механической конструкции самого резистора.

Много различных материалов и сплавов используются в производстве резисторов.

Нихром (сплав никеля и хрома), из-за его высокого удельного сопротивления и устойчивости к окислению при высоких температурах, часто используют в качестве материала для изготовления проволочных резисторов.

Недостатком его является то, что его невозможно паять. Константан, еще один популярный материал, легко паяется и имеет более низкий температурный коэффициент.

Отправить сообщение об ошибке.

Источник: http://www.joyta.ru/7968-udelnoe-soprotivlenie-metallov-tablica/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.