Соединения водорода и их применение

Водород, его особые свойства и реакции

Соединения водорода и их применение
[Deposit Photos]

Водород – особый элемент, занимающий сразу две ячейки в периодической системе Менделеева.

Он располагается в двух группах элементов, обладающих противоположными свойствами, и эта особенность делает его уникальным.

Водород является простым веществом и составной частью многих сложных соединений, это органогенный и биогенный элемент. Стоит подробно ознакомиться с основными его особенностями и свойствами.

Водород в периодической системе Менделеева

Главные особенности водорода, указанные в периодической системе:

  • порядковый номер элемента – 1 (протонов и электронов столько же);
  • атомная масса составляет 1,00795;
  • водород имеет три изотопа, каждый из которых обладает особыми свойствами;
  • благодаря содержанию только одного электрона, водород способен проявлять восстановительные и окислительные свойства, а после отдачи электрона водород имеет свободную орбиталь, принимающую участие в составлении химических связей по донорно-акцепторному механизму;
  • водород – легкий элемент с небольшой плотностью;
  • водород является сильным восстановителем, он открывает группу щелочных металлов в первой группе главной подгруппе;
  • когда водород вступает в реакцию с металлами и другими сильными восстановителями, он принимает их электрон и становится окислителем. Такие соединения называются гидридами. По указанному признаку водород условно относится к группе галогенов (в таблице он приводится над фтором в скобках), с которыми он имеет сходство.

Водород как простое вещество

Водород — это газ, молекула которого состоит из двух атомов. Это вещество было открыто в 1766 году британским ученым Генри Кавендишем. Он доказал, что водород является газом, который взрывается при взаимодействии с кислородом. После изучения водорода химики установили, что это вещество является самым легким из всех известных человеку.

Другой ученый, Лавуазье, присвоил элементу имя «гидрогениум», что в переводе с латыни означает «рождающий воду». В 1781 году Генри Кавендиш доказал, что вода является сочетанием кислорода и водорода. Другими словами, вода — это продукт реакции водорода с кислородом. Горючие свойства водорода были известны еще древним ученым: соответствующие записи оставил Парацельс, живший в XVI столетии.

via GIPHY

Молекулярный водород — это образующееся естественным путем распространенное в природе газообразное соединение, которое состоит из двух атомов и взрывается при поднесении горящей лучинки. Молекула водорода может распадаться на атомы, превращающиеся в ядра гелия, так как они способны участвовать в ядерных реакциях. Такие процессы регулярно протекают в космосе и на Солнце.

[Deposit Photos]

Водород имеет такие физические параметры:

  • кипит при температуре -252,76 °C;
  • плавится при температуре -259,14 °C;*в указанных температурный пределах водород — это не имеющая запаха бесцветная жидкость;
  • в воде водород слабо растворяется;
  • водород теоретически может перейти в металлическое состояние при обеспечении особых условий (низких температур и высокого давления);
  • чистый водород — взрывоопасное и горючее вещество;
  • водород способен диффундировать сквозь толщу металлов, поэтому хорошо в них растворяется;
  • водород легче воздуха в 14,5 раз;
  • при высоком давлении можно получить снегообразные кристаллы твердого водорода.

Химические свойства водорода

[Deposit Photos]

Так как водород может быть и окислителем, и восстановителем, его используют в промышленности для осуществления реакций и синтезов.

Окислительные свойства:

  • взаимодействует с активными (щелочными и щелочноземельными) металлами, в результате чего образуются гидриды — солеподобные образования;
  • при реакции водорода (под воздействием сильной освещенности или при нагревании) с малоактивными металлами также образуются гидриды.

Восстановительные свойства:

  • при обычных условиях водород вступает в реакцию только с активными металлами и фтором, который является сильным окислителем, в результате чего образуется плавиковая кислота HF или фтороводород;
  • при соблюдении жестких условий взаимодействует с большинством неметаллов;
  • обладает способностью восстанавливать металлы до простых веществ из их оксидов (этот промышленный способ получения металлов называют водородотермией).

В органических синтезах используются реакции насыщения водородом (гидрирования) и реакции отщепления водорода от молекулы (дегидрирования). Эти способы позволяют получать углеводороды и другие органические соединения.

Как получить водород

Промышленные способы получения водорода:

  • газификация угля;
  • паровая конверсия метана;
  • электролиз.

via GIPHY

Лабораторные способы:

  • взаимодействие разбавленных кислот с активными металлами и металлами средней активности;
  • гидролиз гидридов металлов;
  • реакция с водой щелочных и щелочноземельных металлов.

Соединения водорода:

• галогенводороды;• летучие водородные соединения неметаллов;• гидриды;• гидроксиды;• гидроксид водорода (вода);• пероксид водорода;• органические соединения (белки, жиры, углеводороды, витамины, липиды, эфирные масла, гормоны).Нажмите здесь, чтобы увидеть безопасные эксперименты на изучение свойств белков, жиров и углеводов.

Чтобы собрать образующийся водород, нужно держать пробирку перевернутой вверх дном. Водород нельзя собрать, как углекислый газ, ведь он намного легче воздуха. Водород быстро улетучивается, а при смешении с воздухом (или при большом скоплении) взрывается. Поэтому необходимо переворачивать пробирку. Сразу после заполнения пробирка закрывается резиновой пробкой.

Чтобы проверить чистоту водорода, нужно поднести зажженную спичку к горлышку пробирки. Если произойдет глухой и тихий хлопок — газ чистый, а примеси воздуха минимальные. Если хлопок громкий и свистящий — газ в пробирке грязный, в нем присутствует большая доля посторонних компонентов.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Источник: https://melscience.com/RU-ru/articles/vodorod-ego-osobye-svojstva-i-reakcii/

в„–1 Р’РѕРґРѕСЂРѕРґ

Соединения водорода и их применение

Электрический разряд в водороде (Википедия)

Катастрофа “Гинденбурга”
Дирижабль “Гинденбург” Германия (200 Рј3 РІРѕРґРѕСЂРѕРґР°) потерпел катастрофу 5.05.1937, РІ РќСЊСЋ-Йорке.

Начиная с XV века, многие исследователи отмечали выделение горючего газа при взаимодействии кислот с металлами.

Первое РїРѕРґСЂРѕР±РЅРѕРµ описание РІРѕРґРѕСЂРѕРґР°, РїРѕРґ названием “горючий РІРѕР·РґСѓС…” Рё “дефлогистированный РІРѕР·РґСѓС…” дал английский С…РёРјРёРє Генри Кавендиш РІ 1766 РіРѕРґСѓ.

В 1783 году Антуан Лавуазье доказал что водород входит в состав воды и включил его в свою таблицу химических элементов под названием hydrogеne (рождающий воду).

Р СѓСЃСЃРєРѕРµ название “РІРѕРґРѕСЂРѕРґ” предложил С…РёРјРёРє Рњ. Р¤. Соловьев РІ 1824 РіРѕРґСѓ – РїРѕ аналогии СЃ “кислородом” Рњ.Р’. Ломоносова.

Нахождение в природе и получение:

На долю водорода приходится около 92% всех атомов Вселенной. Он основная составная часть вещества звезд и межзвездного газа, в виде соединений образует атмосферу многих планет.

РќР° Земле доля атомов РІРѕРґРѕСЂРѕРґР° 17%, РѕРЅ РІС…РѕРґРёС‚ РІ состав самого распространенного вещества – РІРѕРґС‹, РІ состав соединений образующих живые организмы, РіРґРµ доля его атомов около 50%.

В то же время массовая доля водорода на Земле (земная кора + гидросфера) около 1,5% Основным методом получения водорода в лаборатории являются взаимодействие металлов (Zn, Fe) с разбавленными кислотами, а также электролиз растворов щелочей. В промышленности водород получают при электролизе растворов солей (NaCl), конверсией или каталитическим окислением метана, при крекинге или риформинге углеводородов (нефтепереработка).

Конверсия метана: CH4 + H2O CO + 3H2

Физические свойства:

Р’РѕРґРѕСЂРѕРґ встречается РІ РІРёРґРµ трёх изотопов, которые имеют индивидуальные названия Рё символы: 1H – протий (Рќ), 2Рќ – дейтерий (D), 3Рќ – тритий (T).

Природный РІРѕРґРѕСЂРѕРґ содержит 99,99% протия Рё 0,01% – дейтерия. Тритий содержится РІ РїСЂРёСЂРѕРґРµ РІ очень малых количествах, РѕРЅ радиоактивен СЃ периодом полураспада 12,32 лет.

Простое вещество H2, самый лёгкий газ, без цвета, запаха Рё РІРєСѓСЃР°, температура плавления -259,1, кипения -252,8В°C, малорастворим РІ РІРѕРґРµ – 18,8 РјР»/Р».

Водород хорошо растворим во многих металлах (850 объёмов на 1 объём Pd), способен легко диффундировать через металические мембраны.

Тяжелый водород D2 имеет вдвое большую плотность и несколько более высокие температуры плавления и кипения (-254,5°C и -249,5°C)

Химические свойства:

При обычных температурах водород реагирует только с очень активными металлами (напр. с кальцием) и неметаллами: фтором (без освещения, со взрывом), хлором (на свету, со взрывом).

РЎ большинством неметаллов реагирует РїСЂРё нагревании (СЃ кислородом реакция протекает РїСЂРё поджигании мгновенно). Смесь кислорода СЃ РІРѕРґРѕСЂРѕРґРѕРј 1:2 называется “гремучим газом”.

Обладает ярко выраженными восстановительными свойствами, восстанавливая оксиды металлов: железа, меди, свинца, вольфрама и т.д.

В присутствии катализаторов (Pt, Ni) присоединяется по кратным связям органических соединений (реакция гидрирования).

Важнейшие соединения:

РћРєСЃРёРґ РІРѕРґРѕСЂРѕРґР°, H2O – РІРѕРґР° – бесцветная жидкость, без цвета, без запаха, без РІРєСѓСЃР°.

Аномальные физические свойства воды (Тпл = 0°С, Ткип = 100°С) обусловлены образованием межмолекулярных водородных связей.

Является амфолитом, диссоциируя с образованием ионов гидроксония и гидроксид-ионов, однако степень диссоциации 1,8*10-16, поэтому чистая вода почти не проводит электрический ток.

Р’РѕРґР° – весьма реакционноспособное вещество.

Основные реакции:- реакции соединения СЃ оксидами активных металлов Рё неметаллов, СЃ образованием соответствующих РіРёРґСЂРѕРєСЃРёРґРѕРІ РѕСЃРЅРѕРІРЅРѕРіРѕ или кислотного характера; – реакции гидролиза (обратимого Рё необратимого) РјРЅРѕРіРёС… неорганических Рё органических веществ;

– реакции гидратации – присоединение РІРѕРґС‹ РїРѕ кратным СЃРІСЏР·СЏРј органических соединений.

Пероксид РІРѕРґРѕСЂРѕРґР° – H2O2 – бесцветная сиропообразная жидкость, без цвета, без запаха, СЃ неприятным металлическим РІРєСѓСЃРѕРј. Р’ максимальной концентрации – жидкость (СЃ плотностью около 1,5 Рі/СЃРј3), РўРїР» -0,43В°C, РўРєРёРї 150В°C.

В воде, этиловом спирте, этиловом эфире растворяется в любых соотношениях. В концентрированных растворах пероксид водорода неустойчив, разлагается на воду и кислород со взрывом. Вызывает сильные ожоги.

Обычно применяется в виде разбавленных (3%-30%) растворов. Окислитель? на чем использовано его применение как отбеливателя, дезинфицирующего средства и т.д.

В природе встречается в нижних слоях атмосферы, в атмосферных осадках.

Гидриды ионные – MHx – соединения РІРѕРґРѕСЂРѕРґР° СЃ щелочными Рё щелочноземельными металлами, РіРґРµ РІРѕРґРѕСЂРѕРґ имеет степень окисления -1. Солеподобные твердые вещества. Восстановители. Р’РѕРґРѕР№ Рё кислотами разлагаются СЃ выделением РІРѕРґРѕСЂРѕРґР°: NaH + H2O в†’ NaOH + H2↑

Гидриды ковалентные – HxX – соединения РІРѕРґРѕСЂРѕРґР° СЃ неметаллами, РіРґРµ РІРѕРґРѕСЂРѕРґ имеет степень окисления +1. Газы, РјРЅРѕРіРёРµ ядовиты. Восстановители Р·Р° счет неметалла.

Свойства меняются от инертных (метан) до кислотных (галогенводороды). Аммиак NH3 и, слабее, фосфин PH3 проявляют основные свойства.

За исключением галогенводородов горючи с образованием соответствующих оксидов.

Применение:

РћРґРЅРѕ РёР· первых применений РІРѕРґРѕСЂРѕРґР° – летательные аппараты легче РІРѕР·РґСѓС…Р°: воздушные шары Рё дирижабли. Р�Р·-Р·Р° высокой пожароопасности РІРѕРґРѕСЂРѕРґР° это применение было прекращено, Р·Р° исключением метеозондов.

Атомарный РІРѕРґРѕСЂРѕРґ используется для атомно-РІРѕРґРѕСЂРѕРґРЅРѕР№ сварки. Р–РёРґРєРёР№ РІРѕРґРѕСЂРѕРґ – РѕРґРёРЅ РёР· РІРёРґРѕРІ ракетного топлива.

В водородно-кислородных топливных элементах водород используется для непосредственного преобразования энергии химической реакции в электрическую.

Как восстановитель РїСЂРё получении некоторых металлов, для получения твердых жиров гидрированием растительных масел.Р’ химической промышленности – получение аммиака, хлороводорода Рё РґСЂ.

Пероксид водорода: 3%-ный раствор применяют в медицине, косметологии, в промышленности для отбеливания соломы, перьев, клея, мехов, кожи и т.д.

, 60%-ный раствор применяют для отбеливания жиров и масел.

Сильно концентрированные растворы (85-90%) в смеси с некоторыми горючими веществами применяются для получения взрывчатых смесей, как окислитель в ракетных и торпедных двигателях.

Дейтерид лития-6: как источник дейтерия и трития в термоядерном оружии (водородная бомба). См. Ядерные реакции дейтерида лития. (анимированные модели).

Новикова О., Пасюк Е.
ТюмГУ, 502 группа, 2013 г.

Источник: http://www.kontren.narod.ru/x_el/info01.htm

Водород. Физические и химические свойства, получение

Соединения водорода и их применение

Водород H — самый распространённый элемент во Вселенной (около 75 % по массе), на Земле — девятый по распространенности. Наиболее важным природным соединением водорода является вода.Водород занимает первое место в периодической системе (Z = 1).

Он имеет простейшее строение атома: ядро атома – 1 протон, окружено электронным облаком, состоящим из 1 электрона.В одних условиях водород проявляет металлические свойства (отдает электрон), в других — неметаллические (принимает электрон).

В природе встречаются изотопы водорода:  1Н — протий (ядро состоит из одного протона), 2Н — дейтерий (D — ядро состоит из одного протона и одного нейтрона), 3Н — тритий (Т — ядро состоит из одного протона и двух нейтронов).

Простое вещество водород

Молекула водорода состоит из двух атомов, связанных  между собой ковалентной неполярной связью.
Физические свойства. Водород — бесцветный нетоксичный газ без запаха и вкуса. Молекула водорода не полярна. Поэтому силы межмолекулярного взаимодействия в газообразном водороде малы.

Это проявляется в низких температурах кипения (-252,6 0С) и плавления (-259,2 0С).
Водород легче воздуха, D (по воздуху) = 0,069;  незначительно растворяется в воде (в 100 объемах H2O растворяется 2 объема  H2).

  Поэтому водород при его получении в лаборатории можно собирать методами вытеснения воздуха или воды.

Получение водорода

В лаборатории:

1.Действие разбавленных кислот на металлы:
Zn +2HCl → ZnCl2 +H2↑

2.Взаимодействие щелочных и щ-з металлов с водой:
Ca +2H2O → Ca(OH)2 +H2↑

3.Гидролиз гидридов: гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:
NaH +H2O → NaOH +H2↑
СаH2 + 2Н2О = Са(ОН)2 + 2Н2↑

4.Действие щелочей на цинк  или алюминий или кремний:
2Al +2NaOH +6H2O → 2Na[Al(OH)4] +3H2↑
Zn +2KOH +2H2O → K2[Zn(OH)4] +H2↑
Si + 2NaOH + H2O → Na2SiO3 + 2H2

5. Электролиз воды. Для увеличения электрической проводимости воды к ней добавляют электролит, например NаОН, Н2SO4 или Na2SO4. На катоде образуется 2 объема водорода, на аноде — 1 объем кислорода.
2H2O → 2H2+О2

Промышленное получение водорода

1. Конверсия метана с водяным паром, Ni 800 °С (самый дешевый):
CH4 + H2O → CO + 3 H2   
CO + H2O → CO2 + H2

В сумме:
CH4 + 2 H2O → 4 H2 + CO2

2. Пары воды через раскаленный кокс при 1000оС:
С + H2O → CO + H2
CO +H2O → CO2 + H2

Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.

3. Нагреванием метана до 350°С в присутствии железного или нике­левого катализатора:
СH4 → С + 2Н2↑

4. Электролизом водных растворов KCl или NaCl, как побочный продукт:
2Н2О + 2NaCl→ Cl2↑ + H2↑ + 2NaOH

Химические свойства водорода

  • В соединениях водород всегда одновалентен. Для него характерна степень окисления +1, но в гидридах металлов она равна -1.
  • Молекула водорода состоит из двух атомов. Возникновение связи между ними объясняется образованием обобщен­ной пары электронов Н:Н или Н2
  • Благодаря этому обобщению электронов молекула Н2 более энергети­чески устойчива, чем его отдельные атомы. Чтобы разорвать в 1 моль водорода молекулы на атомы, необходимо затратить энергию 436 кДж: Н2 = 2Н, ∆H° = 436 кДж/моль
  • Этим объясняется сравнительно небольшая активность молекулярного водорода при обычной температуре.
  • Со многими неметаллами водород образует газообразные соедине­ния типа RН4, RН3, RН2, RН.

1) С галогенами  образует галогеноводороды:
Н2 + Cl2 → 2НСl.
При этом с фтором — взрывается, с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

2) С кислородом:
2Н2 + О2 → 2Н2О
с выделением тепла. При обычных температурах реакция протекает медленно, выше 550°С — со взрывом. Смесь 2 объемов Н2 и 1 объема О2 называется гремучим газом.

3) При нагревании энергично реагирует с серойь(значительно труднее с селеном и теллуром):
Н2 + S → H2S (сероводород),

4) С азотом  с образованием аммиака лишь на катализаторе и при повышенных температурах и давлениях:
ЗН2 + N2 → 2NН3

5) С углеродом при высоких температурах:
2Н2 + С → СН4 (метан)

6) С  щелочными и щелочноземельными металлами  образует гидриды (водород – окислитель):
Н2 + 2Li → 2LiH
в гидридах металлов ион водорода заряжен отрицательно (степень окисления -1), то есть гидрид Na+H— построен подобно хлориду Na+Cl—

Со сложными веществами:

7) С оксидами металлов (используется для восстановления металлов):
CuO + H2 → Cu + H2O
Fe3O4 + 4H2 → 3Fe + 4Н2О

8) с оксидом углерода (II):
CO + 2H2 → CH3OH
Синтез — газ (смесь водорода и угарного газа) имеет важное практическое значение, тк в зависимости от температуры, давления и катализатора образуются различные органические соединения, например НСНО, СН3ОН и другие.

9)Ненасыщенные углеводороды реагируют с водородом, переходя в насыщенные:
СnН2n + Н2 → СnН2n+2.

Источник: http://himege.ru/vodorod-fizicheskie-i-ximicheskie-svojstva-poluchenie/

Физические свойства водорода. Свойства и применение водорода

Соединения водорода и их применение

Гидроген Н – химический элемент, один из самых распространённых в нашей Вселенной. Масса водорода как элемента в составе веществ составляет 75 % от общего содержания атомов другого типа.

Он входит в наиважнейшее и жизненно необходимое соединение на планете – воду. Отличительной особенностью водорода также является то, что он первый элемент в периодический системе химических элементов Д. И.

Менделеева.

Открытие и исследование

Первые упоминания о водороде в трудах Парацельса датируются шестнадцатым веком. Но его выделение из газовой смеси воздуха и исследование горючих свойств были произведены уже в семнадцатом веке учёным Лемери.

Досконально изучил гидроген английский химик, физик и естествоиспытатель Генри Кавендиш, который опытным путём доказал, что масса водорода наименьшая в сравнении с другими газами.

В последующих этапах развития науки многие учёные работали с ним, в частности Лавуазье, назвавший его «рождающим воду».

Характеристика по положению в ПСХЭ

Элемент, открывающий периодическую таблицу Д. И. Менделеева, – это водород.

Физические и химические свойства атома проявляют некую двойственность, так как гидроген одновременно относят к первой группе, главной подгруппе, если он ведёт себя как металл и отдаёт единственный электрон в процессе химической реакции, и к седьмой – в случае полного заполнения валентной оболочки, то есть приёме отрицательной частицы, что характеризует его как подобный галогенам.

Свойства атома водорода, сложных веществ, в состав которых он входит, и самого простого вещества Н2 в первую очередь определяются электронной конфигурацией гидрогена.

Частица имеет один электрон с Z= (-1), который вращается по своей орбите вокруг ядра, содержащего один протон с единичной массой и положительным зарядом (+1).

Его электронная конфигурация записывается как 1s1, что означает наличие одной отрицательной частицы на самой первой и единственной для гидрогена s-орбитали.

При отрыве или отдаче электрона, а атом этого элемента имеет такое свойство, что роднит его с металлами, получается катион. По сути ион водорода – это положительная элементарная частица. Поэтому лишенный электрона гидроген называют попросту протоном.

Физические свойства

Если описывать физические свойства водорода кратко, то это бесцветный, малорастворимый газ с относительной атомной массой равной 2, в 14,5 раза легче, чем воздух, с температурой сжижения, составляющей -252,8 градуса Цельсия.

На опыте можно легко убедиться в том, что Н2 самый легкий. Для этого достаточно наполнить три шара различными веществами – водородом, углекислым газом, обычным воздухом – и одновременно выпустить их из руки. Быстрее всех достигнет земли тот, который наполнен СО2, после него опустится надутый воздушной смесью, а содержащий Н2 вовсе поднимется к потолку.

Маленькая масса и размер частиц водорода обосновывают его способность проникать через различные вещества. На примере того же шара в этом легко убедиться, через пару дней он сам сдуется, так как газ просто пройдёт через резину. Также водород может накапливаться в структуре некоторых металлов (палладий или платина), а при повышении температуры испаряться из неё.

Свойство малорастворимости водорода используют в лабораторной практике для его выделения способом вытеснения воды. Физические свойства водорода (таблица, изображенная ниже, содержит основные параметры) определяют сферы его применения и методы получения.

Параметр атома или молекулы простого веществаЗначение
Атомная масса (молярная масса)1,008 г/моль
Электронная конфигурация1s1
Кристаллическая решёткаГексагональная
Теплопроводность(300 K) 0,1815 Вт/(м·К)
Плотность при н. у.0,08987 г/л
Температура кипения-252,76 °C
Удельная теплота сгорания120,9·106 Дж/кг
Температура плавления-259,2 °C
Растворимость в воде18,8 мл/л

Изотопный состав

Как и многие другие представители периодической системы химических элементов, гидроген имеет несколько природных изотопов, то есть атомов с одинаковым числом протонов в ядре, но различным числом нейтронов – частиц с нулевым зарядом и единичной массой. Примеры атомов, обладающих подобным свойством – кислород, углерод, хлор, бром и прочие, в том числе радиоактивные.

Физические свойства водорода 1Н, самого распространённого из представителей данной группы, значительно отличаются от таких же характеристик его собратьев. В частности, разнятся особенности веществ, в состав которых они входят.

Так, существует обычная и дейтерированная вода, содержащая в своём составе вместо атома водорода с одним-единственным протоном дейтерий 2Н – его изотоп с двумя элементарными частицами: положительной и незаряженной. Этот изотоп в два раза тяжелее обычного гидрогена, что и объясняет кардинальное различие в свойствах соединений, которые они составляют.

В природе дейтерий встречается в 3200 раз реже, чем водород. Третий представитель – тритий 3Н, в ядре он имеет два нейтрона и один протон.

Способы получения и выделения

Лабораторные и промышленные методы получения водорода весьма отличаются. Так, в малых количествах газ получают в основном с помощью реакций, в которых участвуют минеральные вещества, а крупномасштабные производства в большей степени используют органический синтез.

В лаборатории применяют следующие химические взаимодействия:

  1. Реакция щелочных и щелочноземельных металлов с водой с образованием щёлочи и искомого газа.
  2. Электролиз водного раствора электролита, на аноде выделяется Н2↑, а на катоде – кислород.
  3. Разложение гидридов щелочных металлов водой, продуктами являются щёлочь и, соответственно, газ Н2↑.
  4. Взаимодействие разбавленных кислот с металлами с образованием солей и Н2↑.
  5. Действие щелочей на кремний, алюминий и цинк также способствует выделению водорода параллельно с образованием комплексных солей.

В промышленных интересах газ получают такими методами, как:

  1. Термическое разложение метана в присутствии катализатора до составляющих его простых веществ (350 градусов достигает значение такого показателя, как температура) – водорода Н2↑ и углерода С.
  2. Пропускание парообразной воды через кокс при 1000 градусов Цельсия с образованием углекислого газа СО2 и Н2↑ (самый распространённый метод).
  3. Конверсия газообразного метана на никелевом катализаторе при температуре, достигающей 800 градусов.
  4. Водород является побочным продуктом при электролизе водных растворов хлоридов калия или натрия.

Химические взаимодействия: общие положения

Физические свойства водорода во многом объясняют его поведение в процессах реагирования с тем или иным соединением. Валентность гидрогена равняется 1, так как он в таблице Менделеева расположен в первой группе, а степень окисления проявляет различную. Во всех соединениях, кроме гидридов, водород в с.о.= (1+), в молекулах типа ХН, ХН2, ХН3 – (1-).

Молекула газа водорода, образованная посредством создания обобщенной электронной пары, состоит из двух атомов и довольно устойчива энергетически, именно поэтому при нормальных условиях несколько инертна и в реакции вступает при изменении нормальных условий. В зависимости от степени окисления водорода в составе прочих веществ, он может выступать как в качестве окислителя, так и восстановителя.

Вещества, с которыми реагирует и которые образует водород

Элементные взаимодействия с образованием сложных веществ (часто при повышенных температурах):

  1. Щелочной и щелочноземельный металл + водород = гидрид.
  2. Галоген + Н2 = галогеноводород.
  3. Сера + водород = сероводород.
  4. Кислород + Н2 = вода.
  5. Углерод + водород = метан.
  6. Азот + Н2 = аммиак.

Взаимодействие со сложными веществами:

  1. Получение синтез-газа из монооксида углерода и водорода.
  2. Восстановление металлов из их оксидов с помощью Н2.
  3. Насыщение водородом непредельных алифатических углеводородов.

Водородная связь

Физические свойства водорода таковы, что позволяют ему, находясь в соединении с электроотрицательным элементом, образовывать особый тип связи с таким же атомом из соседних молекул, имеющих неподелённые электронные пары (например, кислородом, азотом и фтором).

Ярчайший пример, на котором лучше рассмотреть подобное явление, – это вода. Она, можно сказать, прошита водородными связями, которые слабее ковалентных или ионных, но за счёт того, что их много, оказывают значительное влияние на свойства вещества.

По сути, водородная связь – это электростатическое взаимодействие, которое связывает молекулы воды в димеры и полимеры, обосновывая её высокую температуру кипения.

В состав всех неорганических кислот входит протон – катион такого атома, как водород. Вещество, кислотный остаток которого имеет степень окисления больше (-1), называется многоосновным соединением.

В нём присутствует несколько атомов водорода, что делает диссоциацию в водных растворах многоступенчатой. Каждый последующий протон отрывается от остатка кислоты всё труднее.

По количественному содержанию водородов в среде определяется его кислотность.

Водород содержат и гидроксильные группы оснований. В них водород соединён с атомом кислорода, в результате степень окисления этого остатка щёлочи всегда равна (-1). По содержанию гидроксилов в среде определяется её основность.

Применение в деятельности человека

Баллоны с веществом, так же как и емкости с другими сжиженными газами, например кислородом, имеют специфический внешний вид. Они выкрашены в темновато-зелёный цвет с ярко-красной надписью «Водород».

Газ закачивают в баллон под давлением порядка 150 атмосфер.

Физические свойства водорода, в частности легкость газообразного агрегатного состояния, используют для наполнения им в смеси с гелием аэростатов, шаров-зондов и т.д.

Водород, физические и химические свойства которого люди научились использовать много лет назад, на сегодняшний момент задействован во многих отраслях промышленности. Основная его масса идёт на производство аммиака.

Также водород участвует в получении металлов (гафния, германия, галлия, кремния, молибдена, вольфрама, циркония и прочих) из окислов, выступая в реакции в качестве восстановителя, синильной и соляной кислот, метилового спирта, а также искусственного жидкого топлива.

Пищевая промышленность использует его для превращения растительных масел в твёрдые жиры.

Определили химические свойства и применение водорода в различных процессах гидрогенизации и гидрирования жиров, углей, углеводородов, масел и мазута. С помощью него производят драгоценные камни, лампы накаливания, проводят ковку и сварку металлических изделий под воздействием кислородно-водородного пламени.

Источник: http://fb.ru/article/193697/fizicheskie-svoystva-vodoroda-svoystva-i-primenenie-vodoroda

Урок 26. Получение водорода и его применение – HIMI4KA

Соединения водорода и их применение
Архив уроков › Химия 8 класс

В уроке 26 «Получение водорода и его применение» из курса «Химия для чайников» узнаем о получении водорода в лабораториях и в промышленности, а также выясним в каких отраслях промышленности его применяют.

Водород находит широкое применение в технике и лабораторных исследованиях. Мировое промышленное производство водорода из меряется десятками миллионов тонн в год.

Выбор промышленного способа получения простых веществ зависит от того, в какой форме соответствующий элемент находится в природе. Водород находится в природе преимущественно в соединениях с атомами других элементов. Поэтому для его получения необходимо использовать химические методы. Эти же методы применяют для получения водорода и в лабораторной практике.

Получение водорода в лаборатории

В лабораториях водород получают уже известным вам способом, действуя кислотами на металлы: железо, цинк и др. Поместим на дно пробирки три гранулы цинка и прильем небольшой объем соляной кислоты. Там, где кислота соприкасается с цинком (на поверхности гранул), появляются пузырьки бесцветного газа, которые быстро поднимаются к поверхности раствора:

Атомы цинка замещают атомы водорода в молекулах кислоты, в результате чего образуется простое вещество водород Н2, пузырьки которого выделяются из раствора. Для получения водорода таким способом можно использовать не только хлороводородную кислоту и цинк, но и некоторые другие кислоты и металлы.

Соберем водород методом вытеснения воздуха, располагая пробирку вверх дном (объясните почему), или методом вытеснения воды и проверим его на чистоту. Пробирку с собранным водородом наклоняем к пламени спиртовки. Глухой хлопок свидетельствует о том, что водород чистый; «лающий» громкий звук взрыва говорит о загрязненности его примесью воздуха.

В химических лабораториях для получения относительно небольших объемов водорода обычно применяют способ разложения воды с помощью электрического тока:

Из уравнения процесса разложения следует, что из 2 моль воды образуются 2 моль водорода и 1 моль кислорода. Следовательно, и соотношение объемов этих газов также равно:

Получение водорода в промышленности

Очевидно, что при огромных объемах промышленного производства сырьем для получения водорода должны быть легкодоступные и дешевые вещества. Такими веществами являются природный газ (метан СН4) и вода. Запасы природного газа очень велики, а воды — практически неограниченны.

Самый дешевый способ получения водорода — разложение метана при нагревании:

Эту реакцию проводят при температуре около 1000 °С.

В промышленности водород также получают, пропуская водяные пары над раскаленным углем:

Существуют и другие промышленные способы получения водорода.

Применение водорода

Водород находит широкое практическое применение. Основные области его промышленного использования показаны на рисунке 103.

Значительная часть водорода идет на переработку нефти. Около 25 % производимого водорода расходуется на синтез аммиака NH3. Это один из важнейших продуктов химической промышленности. Производство аммиака и азотных удобрений на его основе осуществляется в нашей стране на ОАО «Гродно Азот». Республика Беларусь поставляет азотные удобрения во многие страны мира.

В большом количестве водород расходуется на получение хлороводородной кислоты. Реакция горения водорода в

кислороде используется в ракетных двигателях, выводящих в космос летательные аппараты. Водород применяют и для получения металлов из оксидов. Таким способом получают тугоплавкие металлы молибден и вольфрам.

В пищевой промышленности водород используют в производстве маргарина из растительных масел. Реакцию горения водорода в кислороде применяют для сварочных работ. Если использовать специальные горелки, то можно повысить температуру пламени до 4000 оС. При такой температуре проводят сварочные работы с самыми тугоплавкими материалами.

В настоящее время в ряде стран, в том числе и в Беларуси, начаты исследования по замене невозобновляемых источников энергии (нефти, газа, угля) на водород. При сгорании водорода в кислороде образуется экологически чистый продукт — вода. А углекислый газ, вызывающий парниковый эффект (потепление окружающей среды), не выделяется.

Предполагают, что с середины XXI в. должно быть начато серийное производство автомобилей на водороде. Широкое применение найдут домашние топливные элементы, работа которых также основана на окислении водорода кислородом.

Краткие выводы урока:

  1. В лаборатории водород получают действием кислот на металлы.
  2. В промышленности для получения водорода используют доступное и дешевое сырье — природный газ, воду.
  3. Водород — это перспективный источник энергии XXI в.

Надеюсь урок 26 «Получение водорода и его применение» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии. Если вопросов нет, то переходите к следующему уроку.

Источник: https://himi4ka.ru/arhiv-urokov/urok-26-poluchenie-vodoroda-i-ego-primenenie.html

Водород

Соединения водорода и их применение

Водород – самый распространенный элемент Вселенной.

1H 1s1

Изотопы:

11Н – протий – 99.985 %

12Н – дейтерий (Д) – 0.015 %,

13Н – тритий (Т) – радиоакт.

Аr 1,008

ЭО 2,1

На Земле атомы Н находятся в составе молекул Н2O, углеводородов СХНУ и других органических веществ.

Из каждых 100 атомов, распространенных на Земле, 16 – атомы водорода. В ПСЭ водород занимает уникальное положение – его располагают в двух главных подгруппах (I и VII групп).

По электронной конфигурации он формально относится к семейству s-элементов и имеет сходство со щел. Me:

– степень окисления +1 (в большинстве соединений);

– восстановительные свойства (Н° -1e- → Н+).

В соединениях с металлами (гидридах МеНх) водород имеет степень окисления -1 и проявляет свойства солеобразующего аниона Н1 (подобно галогенам). Кроме того, в свободном состоянии водород представляет собой газ, состоящий из двухатомных молекул Н2, что коренным образом отличает его от щел. Me и сближает с Hal2.

Физические свойства молекулярного

При об. Т Н2 – очень легкий бесцв. газ, без запаха, плохо растворимый в воде. Хорошо растворяется в твердых и расплавленных металлах, особенно Pt, Pd, Ni.

Способы получения

Промышленное производство

Основными видами сырья для промышленного производства Н2 являются газообразные, жидкие и твердые горючие ископаемые, а также вода.

а) Конверсия метана с водяным паром:

CH4 + H2O = СО + ЗН2

б) Газификация твердого топлива:

C + H2O = СО + Н2

(уголь) «водяной газ»

в) Электролитическое разложение воды в присутствии щелочей:

2Н2O = 2Н2 + O2

Лабораторные способы получения

а) Взаимодействие активных металлов с разбавленными растворами HCl или H2SO4, например:

Zn + 2HCl = ZnCl2 + H2

б) Взаимодействие щел. и щел.-зем. металлов с водой, например:

Са + 2Н2O = Са(ОН)2 + Н2

в) Взаимодействие Al, Zn, Si с водными растворами щелочей:

2Al + 2NaOH + 6Н2O = 2Na [Al(OH)4] + ЗН2

Si + 2NaOH + Н2O = Na2SiO3 + 2Н2

г) Электролиз разбавленных растворов хлоридов щел. металлов, например:

2NaCl + 2Н2O = Н2 + Cl2 + 2NaOH

д) Действие воды на гидриды металлов:

СаН2 + 2Н2O = 2H2 + Са(ОН)2

Химические свойства

Взаимодействие с кислородом

Исключительно высокая прочность связи в молекуле водорода обусловливает высокие энергии активации химических реакций с его участием, поэтому при обычных условиях молекулярный водород малоактивен.

Для инициирования реакций требуется значительное нагревание или другие способы активации, например, катализ.

При этих условиях водород реагирует, в большинстве случаев проявляя восстановительные свойства:

Н2 – 2e- = 2Н+

2Н2 + O2 = 2Н2O

При об. Т скорость реакции близка к нулю, но если поджечь водород, то он взаимодействует с кислородом воздуха в режиме горения.
Водород – горючий газ; смесь двух объемов Н2 с 1 объемом O2 – «гремучий газ».

Реакции с другими неметаллами (кроме Р, Si). Образуются гидриды НеМе – летучие водородные соединения.

Взаимодействие:

а) с фтором (при об. Т) Н2 + F2 = 2HF

б) с хлором (при УФ-облучении, при освещении) Н2 + Cl2 = 2HCl

в) с серой (при t > 600°С, реакция обратима) Н2 + S = H2S

г) с азотом и углеродом водород реагирует в жестких условиях; реакции сильно обратимы, для их смещения вправо необходимо высокое давление.

ЗН2+ N2 = 2NH3

Восстановление некоторых Me и НеМе из их оксидов

Н2 + CuO = Сu + Н2O

2Н2 + SO2 = S + 2Н2O

3Н2 + WO3 = W + 3Н2O

Восстановление альдегидов и нитро- соединений

Гидрирование органических непредельных соединений

Водород – окислитель

Н2 + 2e- → 2Н

При взаимодействии Н2 с расплавленными металлами под давлением образуются гидриды металлов, например:

Н2 + 2Na = 2Na+H-

Н2 + Ca = Ca+2H-2

Характеристика гидридов металлов МеНх

Гидриды щел. и щел.-зем. Me – кристаллические ионные соединения, в расплавленном состоянии проводят электрический ток. Обладают высокой химической активностью, сильные восстановители. Взаимодействуют бурно с 02 воздуха, разлагают воду, восстанавливают металлы из оксидов, реагируют даже с азотом.
Примеры реакций:

CaH2 + O2 = CaO + H2O

NaH + H2O = NaOH + H2↑

3CaH2 + N2 = Ca3N2 + 3H2↑

При электролизе расплавов гидридов МеНх водород выделяется на аноде!

Источник: http://examchemistry.com/content/lesson/neorgveshestva/vodorod.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.