Атмосферная коррозия

Атмосферная коррозия

Атмосферная коррозия

Виды атмосферной коррозии

Факторы атмосферной коррозии

Особенности протекания атмосферной коррозии металлов

Уравнение атмосферной коррозии

Защита металлов и сплавов (стали) от атмосферной коррозии

Атмосферная коррозия –  коррозионное разрушение конструкций, оборудования, сооружений, эксплуатируемых в приземной части атмосферы. Атмосферная коррозия носит менее разрушительный характер, чем почвенная и морская.

Скорость атмосферной коррозии зависит от некоторых факторов: природы металла, окружающей его атмосферы, влажности воздуха.

Виды атмосферной коррозии

Атмосферную коррозию по степени увлажненности поверхности принято разделять на сухую, влажную и мокрую. Влажная и мокрая  протекают по электрохимическому механизму, а сухая – химическому.

Сухая атмосферная коррозия наблюдается при отсутствии на поверхности металла пленки влаги.  Если относительная влажность воздуха составляет 60% и меньше – протекает сухая атмосферная коррозия. Механизм коррозионного разрушения – химический. На поверхности образуются защитные оксидные пленки, которые тормозят процесс коррозии.

Сначала процесс протекает быстро (образование тонкой окисной пленки), потом – сильно замедляется и устанавливается постоянная, очень маленькая скорость коррозии. Такое явление обусловлено невысокой температурой окружающей среды.

  На металле почти сразу (может пару часов) образуется тонкая окисная пленка, которая приводит к потускнению поверхности. Толщина окисной пленки на поверхности нержавеющей стали может составлять 10 – 20 Å, железе – 30 – 40 Å.  Предельная толщина слоя влаги при протекании сухой атмосферной коррозии может составлять 100 Å.

Если в атмосфере  присутствуют примеси агрессивных газов (например, сернистые газы) –  скорость коррозии значительно возрастает.

Влажная атмосферная коррозия наблюдается при наличии на поверхности тончайшей пленки влаги. Толщина такой пленки составляет от 100 Å до 1 мкм. Относительная влажность воздуха, при которой начинается образование   влажной  пленки,   составляет  около         60 – 70%.

Значение,  при  котором  начинается  конденсация  на   поверхности влаги, называется критической влажностью. Критическая влажность  зависит от загрязнения воздуха и состояния металла. Конденсация влаги  при  этом происходит по капиллярному, химическому либо адсорбционному  механизму.

Капиллярная конденсация влаги. Наблюдается в щелях, зазорах,  трещинах на поверхности металла, порах в пленке продуктов коррозии, под загрязнениями и т.п.

Адсорбционная конденсация влаги. Возникает в результате проявления на поверхности металла адсорбционных сил.

Химическая конденсация влаги проявляется во взаимодействии продуктов коррозии с атмосферной влагой. При этом образуется ржавчина, которая и удерживает эту влагу.

Мокрая атмосферная коррозия протекает при относительной влажности воздуха около 100%, когда на поверхности влага собирается в виде хорошо видных капель, либо при прямом воздействии на конструкцию дождя, тумана. Мокрая атмосферная коррозия также наблюдается на конструкциях, которые  обливаются водой либо полностью погружаются. При мокрой коррозии пленка влаги в толщину составляет более 1 мм.

Влажность воздуха при атмосферной коррозии

Наличие на поверхности металлоконструкции влаги усиливает атмосферную коррозию. Влага  чаще всего поступает в качестве атмосферных осадков (дождь, туман). С повышение температуры значение относительной влажности уменьшается.

Существует критическое значение атмосферной влажности. Для каждого сплава или металла это свое определенное число. Для никеля, цинка, стали, меди значение критической влажности составляет около 50 – 70%.

Если относительная влажность воздуха укладывается в рамки вышеназванных – то коррозионное разрушение перечисленных металлов незначительно. Если же выше – начинается усиленное разрушение.

При  сильно загрязненной атмосфере (например, технологическая среда) понятие критической влажности не всегда применяется и играет важную роль, т.к. коррозионный процесс значительно усиливается за счет вредных примесей в атмосфере.

Примеси в атмосфере (газы)

Загрязнение атмосферы газами резко увеличивает скорость коррозии.

Очень агрессивной средой является технологическая, вблизи больших промышленных предприятий, которые ежеминутно выбрасывают в воздух вредные примеси. Присутствие SO2, SO3, HCl, H2S, Cl2, NH3 и других соединений значительно увеличивает скорость атмосферной коррозии.

Интересное и самое сильное  влияние оказывает SO2 (диоксид серы). Малая его концентрация (15 – 35 мкг/м3) очень сильно увеличивает скорость коррозии (десятки и сотни раз). В больших  же  концентрациях  скорость атмосферной  коррозии  увеличивается не так сильно (всего в 5 – 7 раз). Этот компонент образуется при сгорании угля, газолина, нефти.

Газы, попадая на пленку влаги на поверхности металлоконструкции, увеличивают электропроводность этой пленки. SO2 и Cl2 воздействуют как катодные деполяризаторы, SO3 и HCl  увеличивают  поглощательную способность продуктов коррозии, NH3 действует как комплексообразователь, SO2 и HCl – депассиваторы.

Очень сильно увеличивает скорость коррозии содержание в атмосфере серной кислоты. Особенно это относится к неустойчивым в ней металлам – железо, никель, цинк, кадмий. Медь в таких случаях  белее устойчива, т.к. на ее поверхности образуется защитная пленка из ее основного сульфата зеленого цвета (патина).

Твердые частицы в атмосфере

Из атмосферы на поверхность попадают твердые активные либо пассивные частицы. Они могут действовать как депассиваторы, комплексообразователи, увеличивать электропроводность пленки влаги и поглощательную способность (гигроскопичность) продуктов коррозии, облегчать капиллярную конденсацию влаги (такой инертный материал как песок).

В атмосфере встречаются такие твердые частицы, как Na2SO4, NaCl, (NH4)2SO4, частицы угля, различные соединения углерода, оксиды металлов и другие. Эти вещества в виде твердых частиц или пыли контактируют с влажной поверхностью металлоконструкции, образуют гальванические элементы,  интенсифицируя процесс коррозии.

Поэтому незапыленный воздух гораздо менее активен, чем загрязненная различными частицами атмосфера.

Катодные включения в атмосфере

Включения меди, палладия, платины, а также некоторых других металлов несколько повышают сопротивляемость железоуглеродистых сплавов коррозионному разрушению. Медь, которая может входить в состав таких сплавов замедляет коррозию, т.к. способствует пассивированию поверхности железа.  При атмосферной коррозии палладий воздействует аналогично даже при очень маленьких его добавках в сплав.

Географический фактор

В различных географических местностях влажность, загрязнение атмосферы, температура различаются. Наибольшее влияние на атмосферную коррозию оказывает влажность воздуха. Установлено, что в регионах с постоянно повышенной влажностью коррозионные процессы протекают интенсивнее. Основное влияние оказывает не количество дождливых дней, а время нахождения на поверхности металла пленки влаги.

В пустынях, где влажность воздуха очень маленькая, на поверхности стальных изделий оксидная пленка появляется через достаточно большой промежуток времени, изделия долго остаются блестящими.

Температура окружающей среды

С повышением температуры окружающей среды процесс атмосферной коррозии замедляется. Влага, покрывающая поверхность металлоизделия, испаряется, уменьшается абсолютная влажность воздуха. С понижением температуры  все происходит наоборот. Повышается относительная влажность среды, что способствует конденсации влаги. Скорость атмосферной коррозии увеличивается.

Особенности протекания атмосферной коррозии металлов

Поверхность металла покрыта тонкой пленкой электролита. В качестве электролита может выступать как сама влага, так и продукты коррозии, впитавшие влагу.

Особенностью атмосферной коррозии является возможность свободного подхода кислорода к корродирующей поверхности. Это обусловлено малой толщиной пленки и за счет конвекции перемешивания электролита.  Именно поэтому даже в подкисленных электролитах атмосферная коррозия протекает с кислородной деполяризацией.

Также из-за тонкого слоя влаги на поверхности корродирующего металла анодный процесс идет с затруднением, а протекание катодного, наоборот, облегчается.

При работе гальванопар небольшая толщина пленки влаги тоже играет свою роль —   увеличивается омическое сопротивление электролита.

Атмосферная коррозия сплавов, в основу которых входит железо (например, сталь),   протекает с анодно-такодно-омическим контролем. Но в зависимости от некоторых условий (толщина, электропроводность пленки влаги, ее состав, природа металла) анодно-такодно-омический контроль может переходить в преимущественно анодный, преимущественно катодный или омический.

Уравнение атмосферной коррозии:

Анод: ионы металла переходят в раствор:

Мe→ Мen+ + ne

Катод: проходит реакция восстановления:

O2 + 2H2O + 4e → 4OH- (щелочные,  нейтральные среды)

O2 + 4H+ + 4e → 2H2O (подкисленная среда)

Во многом стойкость металлов и сплавов,  в условиях атмосферной коррозии, зависит от природы металла и состояния его поверхности.

Защита металлов и сплавов (стали) от атмосферной коррозии

Для защиты от атмосферной коррозии применяют множество различных методов.

Нанесение металлических или неметаллических покрытий. Неметаллическими защитными покрытиями могут выступать различные смазки, пасты, лакокрасочные материалы.

Часто в их состав дополнительно вводят ингибиторы, пигменты, пассивирующие поверхность (например, цинк-хроматный пигмент для стали). Иногда поверхность превращают в труднорастворимый  оксид или фосфат, обладающий защитными свойствами.

  Металлическими покрытиями служат цинковые, никелевые, многослойные.

Снижение относительной влажности воздуха. Очень эффективный способ защиты металла от коррозии. Удаление влаги  осуществляют подогревом помещения (отопление) либо  осушкой воздуха. Очень часто достаточно поддерживать влажность атмосферы до 50 %. Если воздух содержит пиль, другие примеси, то 50% влажность очень велика.

При осушке воздуха или повышении температуры затрудняется конденсация влаги на металле, что приводит к значительному уменьшению скорости коррозии.

Применение контактных и летучих (парофазных) ингибиторов. Контактные замедлители коррозии наносятся на поверхность изделия в виде водных растворов. Примером контактного ингибитора атмосферной коррозии может служить NaNO2.

Летучие ингибиторы обладают высокой упругостью паров, применяются при длительном хранении стальных либо других металлических изделий, транспортировке.

Летучими ингибиторами коррозии заполняют герметичное пространство (защита внутренней части трубы, на концах которой стоят специальные заглушки) либо ими пропитывают оберточные материалы (бумага).

Летучими ингибиторами могут пропитываться специальные гранулы, которыми заполняют объем упаковки защищаемого изделия. Примеры летучих ингибиторов: карбонаты, нитриты, бензоаты моноэтаноламина и дициклогексиламина.

Легирование металлов. Добавление в сталь  небольшого количества никеля, хрома, алюминия, титана (переводят поверхность стали в пассивное состояние), меди (катодная добавка), фосфора тормозят анодную реакцию.

Основные закономерности протекания атмосферной коррозии — электронный каталог продукции,разработка мобильных приложений,АОС,автоматизированные обучающие системы,семинары по нефтегазовой тематике,разработка СТУ,СТУ

Атмосферная коррозия

Атмосферная коррозия — наиболее распространенный вид коррозии металлов, протекающей во влажной воздушной среде: примерно 80% металлических конструкций, зданий, сооружений, мостов, машин и т.п.

эксплуатируются в атмосферных условиях. Отличительной особенностью атмосферной коррозии является то, что она протекает не в объеме электролита, а в тонких пленках.

При этом коррозионный процесс протекает по законам электрохимической кинетики, но имеет свои специфические особенности.

Основными факторами, влияющими на скорость протекания атмосферной коррозии, являются:

  • влажность атмосферы;
  • химический состав атмосферы;
  • длительность периодов увлажнения и высыхания пленок влаги.

Рис. 1. Основные коррозионно опасные примеси в атмосфере

Рассмотрим подробнее механизм влияния вышеуказанных факторов на интенсивность коррозионного разрушения.

Влажность атмосферы

В воздухе всегда содержится некоторое количество водяного пара. Влажность воздуха обычно численно описывается следующими факторами:

  • абсолютная влажность (количество пара), г/м3;
  • давление водяного пара, атм (Па);
  • относительная влажность, (φ), рассчитываемая, как (Р/Рнас)·100%, где Р — давление водяного пара, находящегося в воздухе; Рнас — давление насыщенного водяного пара, находящегося при данной температуре.

В соответствии с показателями влажности воздуха, атмосферная коррозия может быть классифицирована следующим образом:

  • сухая атмосферная коррозия;
  • влажная атмосферная коррозия;
  • мокрая атмосферная коррозия.

Сухая атмосферная коррозия протекает в очень тонких пленках (до 10 нм) при влажности воздуха 30-50% и характеризуется поверхностным окислением металла по химическому механизму с образованием соответствующих оксидов (явление «потускнения» металла). Как правило, не приводит к серьезным коррозионным разрушениям.

Влажная атмосферная коррозия начинается обычно при относительной влажности воздуха выше 70%. При этой влажности, называемой критической, происходит капиллярная конденсация влаги и вода начинает проявлять свойства электролита.

Капиллярную конденсацию могут стимулировать шероховатость поверхности, различные неровности, загрязнения металла твердыми частицами (пыль) и т.п.

Толщина формирующихся на металле пленок влаги составляет от 0,01 до 1 мкм и в этих условиях к поверхности металла происходит очень интенсивное поступление кислорода, что приводит к ускорению коррозионного процесса по сравнению с объемом электролита. Механизм протекания процесса влажной атмосферной коррозии показан на рис. 2.

Рис. 2. Влажная атмосферная коррозия

Критическая влажность может снижаться из-за присутствия на поверхности металла загрязнений (естественных или антропогенных), которые притягивают влагу из воздуха.

Например, частицы солей аммония, адсорбированные стальной поверхностью, существенно уменьшают критическую влажность с 70-80% до 50% (см. рис. 3).

Также критическую влажность понижают образующиеся на поверхности металла продукты коррозии (особенно продукты коррозии стали), что, в конечном счете, приводит к ускорению коррозионных процессов.

Рис. 3. Влияние загрязнений на капиллярную конденсацию влаги на поверхности металла

Мокрая атмосферная коррозия протекает при толщинах пленки влаги на металлической поверхности от 1 до 1000 мкм. Процесс коррозии несколько замедляется по сравнению с влажной атмосферной коррозией вследствие затрудненности диффузии кислорода к поверхности металла и более сходен с обычной электрохимической коррозией.

Химический состав атмосферы

Коррозионная агрессивность атмосферы определяется не только влажностью, но и различными химическими веществами: твердыми и газообразными. В воздухе содержатся различные газы биогенного, природного и антропогенного происхождения (SO2, SO3, NO2, N2O3, N2O5, H2S, Cl2 и др.), а также частицы твердых веществ (хлориды, сульфаты, силикаты, частицы пыли и др.) (рис. 1).

Все эти вещества, могут растворяться в пленках конденсированной влаги, увеличивая ее коррозионную агрессивность. Наиболее опасными в коррозионном отношении газами являются SO2 и SO3, образующие с парами воды в атмосфере аэрозоли сернистой и серной кислот.

В общем виде классификация коррозионной агрессивности атмосферных сред приводится в следующих стандартах:

  • ISO 9223: «Коррозия металлов и сплавов. Коррозионная активность атмосферы. Классификация»;
  • ISO 12944: «Лаки и краски. Защита стальных конструкций от коррозии защитными окрасочными системами».

Длительность периодов увлажнения и высыхания пленок влаги

Конструкции в открытой атмосфере подвержены воздействию осадков, агрессивных газов, аэрозолей и других факторов.

Общую продолжительность нахождения пленки влаги на поверхности металла определяют как суммарную продолжительность выпадения дождя и росы, воздействия тумана и оттепелей в зимний период, а также длительность высыхания поверхности.

При толщине пленок влаги более 30 мкм (мокрая коррозия), скорость коррозионного процесса определяется скоростью испарения влаги, времени и частотой повторного смачивания. Скорость испарения зависит, в свою очередь, от относительной влажности φ, температуры, интенсивности воздухообмена.

Следует отметить, что процессы смачивания металла могут уменьшать общую скорость атмосферной коррозии металла за счет смывания коррозионно-активных адсорбционных пленок и отчистки поверхности металла от пыли и твердых солей.

Скачайте наше специализированное учебно-справочное приложение «Защита от коррозии»

1. Классификация и механизм атмосферной коррозии металлов

Атмосферная коррозия

Особенности влажной атмосферной коррозии металлов связаны с малой толщиной слоя электролита на поверхности корродирующего металла. Электролитом при этом является как сама влага, так и увлажненный слой продуктов коррозии металла…

1.3 Факторы влажной атмосферной коррозии металлов

На скорость влажной атмосферной коррозии металлов оказывает влияние целый ряд факторов. Влажность воздуха является одним из главных факторов, способствующих образованию на поверхности металла пленки влаги…

Борьба с осложнениями при эксплуатации скважин – коррозия глубинно-насосного оборудования

f2. Методы защиты металлов от коррозии

На нефтедобывающих предприятиях остро стоит проблема внутренней коррозии наземного оборудования и трубопроводов, а проблема коррозии подземного оборудования скважин не является актуальной, хотя как подземное…

Борьба с осложнениями при эксплуатации скважин – коррозия глубинно-насосного оборудования

f2.2 Покрытия, как метод защиты металлов от коррозии. Пассивная защита

Защита металлов, основанная на изменение их свойств, осуществляется или специальной обработкой их поверхности, или легированием…

Выбор конструкционного материала и способа защиты для изготовления и хранения раствора серной кислоты (60%)

1.1 Механизм коррозии металлов в кислотах

Механизм электрохимической коррозии. Коррозия металла в средах, имеющих ионную проводимость, протекает через анодное окисление металла: и катодное восстановление окислителя (Ох) Окислителями при коррозии служат ионы…

Защита МНГП от коррозионного разрушения

Механизм почвенной коррозии

Почвенная коррозия — разрушение металла под воздействием агрессивной почвенной среды. Этому виду коррозионного разрушения подвергаются металлы и конструкции, находящиеся в почве, то есть различные подземные резервуары, трубопроводы, сваи…

Защита нефтепромысловых трубопроводов от коррозии

f2. Причины и механизм коррозии трубопроводов

Основной причиной коррозии металла трубопроводов и резервуаров является термодинамическая неустойчивость металлов. Именно поэтому подавляющее большинство металлов в земной коре находится в связанном состоянии в виде окислов…

f2. Классификация металлов

Каждый металл отличается строением и свойствами от другого, тем не менее, по некоторым признакам их можно объединить в группы. Данная классификация разработана русским ученым Гуляевым А.П. и может не совпадать с общепринятой…

Конструкционные углеродистые стали и сплавы

fКлассификация металлов

По объему и частоте использования металлов в технике их можно разделить на металлы технические и редкие. Технические металлы — это наиболее часто применяемые; к ним относятся железо Fе. медь Сu, алюминий А1, магний Мg, никель Ni, титан Тi, свинец Рb…

Коррозиестойкие конструкционные материалы

3) методы защиты металлов используемых в энергетике от коррозии, их эффективность

f1. Основные компоненты современного ядерного реактора Для выработки электроэнергии в настоящее время в большинстве стран применяют легководные реакторы (LWR)…

Коррозиестойкие конструкционные материалы

f3. Методы защиты металлов используемых в энергетике от коррозии, их эффективность

Существуют многочисленные способы защиты металлов от коррозии. Выбор того или иного способа определяется конкретными условиями работы и хранения металлических изделий. Применяются следующие способы защиты: легирование сталей…

Коррозионная потеря металла на участках пересечения нефтепроводов с другими коммуникациями (ЛЭР, ГП, ВВ)

1.2 Причины и механизм коррозии трубопроводов с другими коммуникациями (ЛЭП, Г.П, В.В.)

Блуждающий ток — это электрический ток, появляющийся в некоторых грунтах от дисперсии электрифицированных, например, железнодорожных (трамвайных) путей, где рельсы выполняют роль возвратных проводников питающих подстанций…

Разновидности правки металлов

f1. Классификация металлов

В жизни нашей страны, в развитии ее хозяйства огромную роль играют производство и обработка металлов. В машиностроении широко применяются сплавы железа с углеродом — сталь и чугун (черные металлы), которые наиболее доступны и дешевы…

Технологические аспекты промышленного внедрения волочения стальной проволоки в гидродинамическом режиме трения

1.1 Механизм и роль контактного трения при обработке металлов давлением

Наряду с общностью большинства явлений, происходящих при трении, контактное трение в процессах ОМД имеет ряд существенных особенностей по сравнению с трением недеформируемых тел…

Усовершенствование технологического процесса сварки емкости пробкоуловителя

1.3 Классификация межкристаллитной коррозии

Коррозия сварных соединений может быть равномерной и сосредоточенной. К сосредоточенной относятся: межкристаллитная, структурно-избирательная, ножевая, точечная. Межкристаллитная коррозия -наиболее опасный вид коррозионного разрушения…

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть