- Химическая коррозия: виды, причины и методы защиты
- Газовая коррозия
- Характеристики оксидной пленки
- Скорость развития коррозии
- Коррозия в жидкостях-неэлектролитах
- Способы защиты от коррозии
- Органосиликатные покрытия
- Коррозия металлов. Виды коррозии металлов
- Виды коррозии металлов
- Химическая коррозия металлов
- Электрохимическая коррозия металлов
- Методы защиты от коррозии металла
- Газовая коррозия: определение, особенности и способы решения проблемы
- Определение газовой коррозии
- Защита от газовой коррозии легированием
- Применение антикоррозийных термостойких покрытий
- Заключение
- Газовая коррозия в технологических средах
- Водородная коррозия
- Обезуглероживание стали (декарбюризация)
- Сернистая коррозия (коррозия в среде серы)
- Карбонильная коррозия
- Коррозия в среде хлористого водорода и хлора
Химическая коррозия: виды, причины и методы защиты
Гуру красок➣Специальные материалы➣Коррозия➣
Химическая коррозия — это процесс, состоящий в разрушении металла при взаимодействии с агрессивной внешней средой. Химическая разновидность коррозийных процессов не имеет связи с воздействием электрического тока. При этом виде коррозии происходит окислительная реакция, где разрушаемый материал — одновременно восстановитель элементов среды.
Классификация разновидности агрессивной среды включает два вида разрушения металла:
- химическая коррозия в жидкостях-неэлектролитах;
- химическая газовая коррозия.
Газовая коррозия
Самая частая разновидность химической коррозии — газовая — представляет собой коррозийный процесс, происходящий в газах при повышенных температурах.
Указанная проблема характерна для работы многих типов технологического оборудования и деталей (арматуры печей, двигателей, турбин и т.д.).
Кроме того, сверхвысокие температуры используются при обработке металлов под высоким давлением (нагревание перед прокаткой, штамповкой, ковкой, термическими процессами и т.д.).
Особенности состояния металлов при повышенных температурах обуславливаются двумя их свойствами — жаропрочностью и жаростойкостью. Жаропрочность — это степень устойчивости механических свойств металла при сверхвысоких температурах.
Под устойчивостью механических свойств понимается сохранение прочности в течение продолжительного времени и сопротивляемость ползучести.
[attention type=yellow]Жаростойкость — это устойчивость металла к коррозионной активности газов в условиях повышенных температур.
[/attention]Скорость развития газовой коррозии обуславливается рядом показателей, в числе которых:
- температура атмосферы;
- компоненты, входящие в металл или сплав;
- параметры среды, где находятся газы;
- продолжительность контактирования с газовой средой;
- свойства коррозийных продуктов.
На коррозийный процесс больше влияние оказывают свойства и параметры оксидной пленки, появившейся на металлической поверхности. Образование окисла можно хронологически разделить на два этапа:
- адсорбция кислородных молекул на металлической поверхности, взаимодействующей с атмосферой;
- контактирование металлической поверхности с газом, в результате чего возникает химическое соединение.
Первый этап характеризуется появлением ионной связи, как следствие взаимодействия кислорода и поверхностных атомов, когда кислородный атом отбирает пару электроном у металла. Возникшая связь отличается исключительной силой — она больше, нежели связь кислорода с металлом в окисле.
Объяснение такой связи кроется в действии атомного поля на кислород.
Как только поверхность металла наполняется окислителем (а это происходит очень быстро), в условиях низких температур, благодаря силе Ван-дер-Ваальса, начинается адсорбция окислительных молекул.
Результат реакции — возникновение тончайшей мономолекулярной пленки, которая с течением времени становится толще, что усложняет доступ кислорода.
На втором этапе происходит химическая реакция, в ходе которой окислительный элемент среды отбирает у металла валентные электроны. Химическая коррозия — конечный результат реакции.
Характеристики оксидной пленки
Классификация оксидных пленок включает их три разновидности:
- тонкие (незаметны без специальных приборов);
- средние (цвета побежалости);
- толстые (видны невооруженным взглядом).
Появившаяся оксидная пленка имеет защитные возможности — она замедляет или даже полностью угнетает развитие химической коррозии. Также наличие оксидной пленки повышает жаростойкость металла.
Однако, действительно эффективная пленка должна отвечать ряду характеристик:
- быть не пористой;
- иметь сплошную структуру;
- обладать хорошими адгезивными свойствами;
- отличаться химической инертностью в отношении с атмосферой;
- быть твердой и устойчивой к износу.
Одно из указанных выше условий — сплошная структура имеет особенно важное значение. Условие сплошности — превышение объема молекул оксидной пленки над объемом атомов металла. Сплошность — это возможность окисла накрыть сплошным слоем всю металлическую поверхность.
При несоблюдении этого условия, пленка не может считаться защитной. Однако, из этого правила имеются исключения: для некоторых металлов, например, для магния и элементов щелочно-земельной групп (исключая бериллий), сплошность не относится к критически важным показателям.
Чтобы установить толщину оксидной пленки, используются несколько методик. Защитные качества пленки можно выяснить в момент ее образования. Для этого изучаются скорость окисления металла, и параметры изменения скорости во времени.
Для уже сформированного окисла применяется другой метод, состоящий в исследовании толщины и защитных характеристик пленки. Для этого на поверхность накладывается реагент. Далее специалисты фиксируют время, которое понадобится на проникновение реагента, и на основании полученных данных делают вывод о толщине пленки.
Обратите внимание! Даже окончательно сформировавшаяся оксидная пленка продолжает взаимодействовать с окислительной средой и металлом.
Скорость развития коррозии
Интенсивность, с какой развивается химическая коррозия, зависит от температурного режима. При высокой температуре окислительные процессы развиваются стремительнее. Причем снижение роли термодинамического фактора протекания реакции не влияет на процесс.
Немалое значение имеет охлаждение и переменный нагрев. Из-за термических напряжений в оксидной пленке появляются трещины. Через прорехи окислительный элемент попадает на поверхность. В результате образуется новый слой оксидной пленки, а прежний — отслаивается.
Не последнюю роль играют и компоненты газовой среды. Этот фактор индивидуален для разных видов металлов и согласуется с температурными колебаниями.
К примеру, медь быстро поддается коррозии, если она контактирует с кислородом, но отличается устойчивостью к этому процессу в среде оксида серы.
[attention type=red]Для никеля же напротив, серный оксид губителен, а устойчивость наблюдается в кислороде, диоксиде углерода и водной среде. А вот хром проявляет стойкость ко всем перечисленным средам.
[/attention]Обратите внимание! Если уровень давления диссоциации окисла превышает давление окисляющего элемента, окислительный процесс останавливается и металл обретает термодинамическую устойчивость.
На скорость окислительной реакции влияют и компоненты сплава. Например, марганец, сера, никель и фосфор никак не способствуют окислению железа. А вот алюминий, кремний и хром делают процесс более медленным. Еще сильнее замедляют окисление железа кобальт, медь, бериллий и титан.
Сделать процесс более интенсивным помогут добавки ванадия, вольфрама и молибдена, что объясняется легкоплавкостью и летучестью данных металлов. Наиболее медленно окислительные реакции протекают при аустенитной структуре, поскольку она наиболее приспособлена к высоким температурам.
Еще один фактор, от которого зависит скорость коррозии, — характеристика обработанной поверхности. Гладкая поверхность окисляется медленнее, а неровная — быстрее.
Коррозия в жидкостях-неэлектролитах
К неэлектропроводным жидким средам (т.е. жидкостям-неэлектролитам) относят такие органические вещества, как:
- бензол;
- хлороформ;
- спирты;
- тетрахлорид углерода;
- фенол;
- нефть;
- бензин;
- керосин и т.д.
Кроме того, к жидкостям-неэлектролитам причисляют небольшое количество неорганических жидкостей, таких как жидкий бром и расплавленная сера.
При этом нужно заметить, что органические растворители сами по себе не вступают в реакцию с металлами, однако, при наличии небольшого объема примесей возникает интенсивный процесс взаимодействия.
Увеличивают скорость коррозии находящиеся в нефти серосодержащие элементы. Также, усиливают коррозийные процессы высокие температуры и присутствие в жидкости кислорода. Влага интенсифицирует развитие коррозии в соответствии с электромеханическим принципом.
Еще один фактор быстрого развития коррозии — жидкий бром. При нормальных температурах он особенно разрушительно воздействует на высокоуглеродистые стали, алюминий и титан. Менее существенно влияние брома на железо и никель. Самую большую устойчивость к жидкому брому показывают свинец, серебро, тантал и платина.
[attention type=green]Расплавленная сера вступает в агрессивную реакцию почти со всеми металлами, в первую очередь со свинцом, оловом и медью. На углеродистые марки стали и титан сера влияет меньше и почти совсем разрушает алюминий.
[/attention]Защитные мероприятия для металлоконструкций, находящихся в неэлектропроводных жидких средах, проводят добавлением устойчивым к конкретной среде металлов (например, сталей с высоким содержанием хрома). Также, применяются особые защитные покрытия (например, в среде, где содержится много серы, используют алюминиевые покрытия).
Способы защиты от коррозии
Методы борьбы с коррозией включают:
- обработку основного металла защитным слоем (например, нанесение краски);
- использование ингибиторов (например, хроматов или арсенитов);
- внедрение материалов, устойчивых к коррозийным процессам.
Выбор конкретного материала зависит от потенциальной эффективности (в том числе технологической и финансовой) его использования.
Современные принципы защиты металла основываются на таких методиках:
- Улучшение химической сопротивляемости материалов. Успешно зарекомендовали себя химически стойкие материалы (высокополимерные пластики, стекло, керамика).
- Изолирование материала от агрессивной среды.
- Уменьшение агрессивности технологической среды. В качестве примеров таких действий можно привести нейтрализацию и удаление кислотности в коррозийных средах, а также использование всевозможных ингибиторов.
- Электрохимическая защита (наложение внешнего тока).
Указанные выше методики подразделяются на две группы:
- Повышение химической сопротивляемости и изолирование применяются до того, как металлоконструкция запускается в эксплуатацию.
- Уменьшение агрессивности среды и электрохимическая защита используются уже в процессе применения изделия из металла. Применение этих двух методик дает возможность внедрять новые способы защиты, в результате которых защита обеспечивается изменением эксплуатационных условий.
Один из самых часто применяемых способов защиты металла — гальваническое антикоррозийное покрытие — экономически нерентабелен при значительных площадях поверхностей. Причина в высоких затратах на подготовительный процесс.
Ведущее место среди способов защиты занимает покрытие металлов лакокрасочными материалами. Популярность такого метода борьбы с коррозией обусловлена совокупностью нескольких факторов:
- высокие защитные свойства (гидрофобность, отталкивание жидкостей, невысокие газопроницаемость и паропроницаемость);
- технологичность;
- широкие возможности для декоративных решений;
- ремонтопригодность;
- экономическая оправданность.
В то же время, использование широкодоступных материалов не лишено недостатков:
- неполное увлажнение металлической поверхности;
- нарушенное сцепление покрытия с основным металлом, что ведет к скапливанию электролита под антикоррозийным покрытием и, таким образом, способствует коррозии;
- пористость, приводящая к повышенной влагопроницаемости.
И все же, окрашенная поверхность защищает металл от коррозийных процессов даже при фрагментарном повреждении пленки, тогда как несовершенные гальванические покрытия способны даже ускорять коррозию.
Органосиликатные покрытия
Для качественной защиты от коррозии рекомендуется применение металлов с высоким уровнем гидрофобности, непроницаемости в водных, газовых и паровых средах. К числу таких материалов относятся органосиликаты.
Химическая коррозия практически не распространяется на органосиликатные материалы. Причины этого кроются в повышенной химической устойчивости таких композиций, их стойкости к свету, гидрофобных качествах и невысоком водопоглощении. Также органосиликаты устойчивы к низким температурам, обладают хорошими адгезивными свойствами и износостойкостью.
Проблемы разрушения металлов из-за воздействия коррозии не исчезают, несмотря на развитие технологий борьбы с ними. Причина в постоянном возрастании объемов производства металлов и все более сложных условий эксплуатации изделий из них. Окончательно решить проблему на данном этапе нельзя, поэтому усилия ученых сосредоточены на поисках возможностей по замедлению коррозионных процессов.
Коррозия металлов. Виды коррозии металлов
Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией. Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.
Можно выделить 3 признака, характеризующих коррозию:
- Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
- Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
- Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.
Виды коррозии металлов
Наиболее часто встречаются следующие виды коррозии металлов:
- Равномерная – охватывает всю поверхность равномерно
- Неравномерная
- Избирательная
- Местная пятнами – корродируют отдельные участки поверхности
- Язвенная (или питтинг)
- Точечная
- Межкристаллитная – распространяется вдоль границ кристалла металла
- Растрескивающая
- Подповерхностная
Основные виды коррозии
С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.
Химическая коррозия металлов
Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь. Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.
Химическая коррозия металлов бывает газовой и жидкостной.
Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла.
Это, например, кислород, диоксид серы, сероводород, пары воды, галогены.
Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).
Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.
При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.
Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса:(α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла
α = Vок/VМе = Мок·ρМе/(n·AMe·ρок),
где Vок — объем образовавшегося оксида
VМе — объем металла, израсходованный на образование оксида
Мок – молярная масса образовавшегося оксида
ρМе – плотность металла
n – число атомов металла
AMe — атомная масса металла
ρок — плотность образовавшегося оксида
Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).
Оксидные пленки, у которых 1 < α < 2,5являются сплошными и способны защитить металл от коррозии.
При значениях α > 2,5условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.
Ниже представлены значения α для некоторых оксидов металлов
металл | оксид | α | металл | оксид | α |
K | K2O | 0,45 | Zn | ZnO | 1,55 |
Na | Na2O | 0,55 | Ag | Ag2O | 1,58 |
Li | Li2O | 0,59 | Zr | ZrO2 | 1.60 |
Ca | CaO | 0,63 | Ni | NiO | 1,65 |
Sr | SrO | 0,66 | Be | BeO | 1,67 |
Ba | BaO | 0,73 | Cu | Cu2O | 1,67 |
Mg | MgO | 0,79 | Cu | CuO | 1,74 |
Pb | PbO | 1,15 | Ti | Ti2O3 | 1,76 |
Cd | CdO | 1,21 | Cr | Cr2O3 | 2,07 |
Al | Al2O2 | 1,28 | Fe | Fe2O3 | 2,14 |
Sn | SnO2 | 1,33 | W | WO3 | 3,35 |
Ni | NiO | 1,52 |
Электрохимическая коррозия металлов
Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.
При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:
- Анодного – металл в виде ионов переходит в раствор.
- Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).
Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.
Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.
Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде
2H++2e— = H2 разряд водородных ионов
2H3O++2e— = H2 + 2H2O
Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде
O2 + 4H++4e— = H2O восстановление растворенного кислорода
O2 + 2H2O + 4e— = 4OH—
Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:
- Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
- Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
- Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
- Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.
Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:
- Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
- Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.
Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:
А: Fe – 2e— = Fe2+
K: O2 + 4H+ + 4e— = 2H2O
Катодом является та поверхность, где больше приток кислорода.
- Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
- Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
- Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
- Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
- Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.
Методы защиты от коррозии металла
Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.
Металлические покрытия.
Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях.
Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием.
Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.
[attention type=yellow]Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.
[/attention]Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.
Неметаллические покрытия.
Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).
Химические покрытия.
В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:
оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);
фосфатирование – получение защитной пленки фосфатов (Fe3(PO4)2, Mn3(PO4)2);
азотирование – поверхность металла (стали) насыщают азотом;
воронение стали – поверхность металла взаимодействует с органическими веществами;
цементация – получение на поверхности металла его соединения с углеродом.
Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.
Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.
Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.
Протекторная защита – один из видов электрохимической защиты – заключается в следующем.
К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.
Газовая коррозия: определение, особенности и способы решения проблемы
Во многих отраслях промышленности и в строительстве применяются технологические методы, задействующие газовые смеси. Это может быть, к примеру, обработка деталей под пропановыми горелками или формирование защитных сред при сварке для изоляции заготовки от кислорода.
В определенных условиях такие процессы могут провоцировать газовую коррозию – в частности, при повышенной температуре или давлении. Химическая активность возрастает, что негативно сказывается на структуре металлов и сплавов.
Поэтому разрабатываются специальные средства предотвращения подобных явлений и борьбы с образовавшимися следами коррозии такого рода.
Определение газовой коррозии
Данная разновидность коррозийного поражения представляет собой химическую деформацию поверхности металлов при высокой температуре. Обычно такие явления встречаются в металлургической, нефтехимической и химической отраслях промышленности.
К примеру, коррозия может возникать в ходе получения серной кислоты, при синтезе аммиака и образовании хлористого водорода. Также и газовая коррозия металлов – это процесс окислительной реакции, который протекает в условиях с определенным коэффициентом влажности в окружающей воздушной среде.
При этом и не каждый газ может провоцировать коррозию. К наиболее активным в этом отношении смесям относятся оксиды азота, диоксиды серы, кислород, водород и галогены.
Что касается объектов поражения, то в этом качестве чаще выступают арматурные стержни печей и котлов, трубопроводные сети, поверхности газовых турбин, элементы двигателей внутреннего сгорания и сплавы, которые в металлургии подвергаются термической обработке.
На первом этапе протекания реакции происходит хемосорбция кислородных атомов на металлической поверхности. Именно в специфике взаимодействия кислорода с металлом заключается главная особенность данной коррозии.
Дело в том, что реакция носит характер ионного взаимодействия и это отличает ее от типовых химических процессов в диоксиде. Связка получается прочнее, поскольку на атомы кислорода действует поле нижележащих атомов металла.
[attention type=red]Далее происходят процессы адсорбции кислорода, а в условиях термодинамической стабильности слой хемосорбции быстро преобразуется в оксидную пленку. В конечном счете газовая коррозия может формировать на поверхности металла соли, сульфиды и оксиды.
[/attention]На интенсивность протекания процессов коррозийного поражения влияют свойства окислителя (газовой среды), микроклиматические параметры (температура, давление и влажность), а также текущее состояние непосредственно объекта химической реакции.
Защита от газовой коррозии легированием
Один из самых распространенных методов защиты металла от разного рода коррозийных процессов. Основывается этот способ на изменении свойств структуры корродирующего металла. Само по себе легирование предполагает модификацию сплава путем ввода компонентов, вызывающих пассивирование его структуры.
В частности, может использоваться вольфрам, никель, хром и др. Специально для газовой противокоррозийной защиты используют элементы, повышающие жаростойкость и жаропрочность металла.
Процесс легирования может выполняться и посредством нанесения специальных покрытий, и путем погружения заготовки в газовую фазу модифицирующих компонентов. В обоих случаях повышается стойкость металла перед окислительными процессами.
Например, чтобы в два раза сократить скорость окисления железной детали при 900 °С, необходимо ее легировать сплавом марки А1 3,5%, а для четырехкратного сокращения – модификатором А1 5,5%.
Еще одна методика предохранения металлических заготовок и сплавов от поражения коррозии в результате газового окисления. Защитные атмосферы могут формироваться средами аргона, азота и углерода. Для каждого металла применяются конкретные газовые смеси.
Например, чугун защищается аргоном или углекислотными составами, а сталь хорошо взаимодействует с водородом и азотом. В обслуживании магистральных трубопроводов такого рода защита применяется в основном при выполнении монтажных сварочных мероприятий.
[attention type=green]В постоянном режиме эксплуатации чаще используют электротехническую защиту газовых сетей от коррозии, которая технически выполняется полупроводниками с кабельными контурами.
[/attention]Это разновидность электрохимической противокоррозийной оболочки, включающая в структуру элементы анодо-протектной гальванической защиты.
Применение антикоррозийных термостойких покрытий
Данный способ также заключается в уменьшении скорости коррозийного процесса, но за счет специальных термостойких покрытий. Обычно используется техника нанесения железоалюминиевых термодиффузионных слоев, которая известна как термохромирование.
Эффективную защиту обеспечивает и металлокерамическая обработка металлических деталей и конструкций. К преимуществам такой защиты от газовой коррозии можно отнести не только надежное термо- и механическое покрытие, но и возможность гибкой модификации физико-химических свойств оболочки.
В составе функционального слоя могут задействоваться и тугоплавкие окислы, и металлические компоненты наподобие молибдена и вольфрама.
Заключение
Организацией контроля средств противокоррозийной защиты занимаются специалисты, разрабатывая и утверждая проекты для конкретных объектов. В России одним из крупнейших управлений по защите газовых сетей от коррозии является АО «Мосгаз». Сотрудники данной структуры занимаются обслуживанием газовых хозяйств, поддерживая оптимальное состояние рабочей инфраструктуры.
В частности, организация выполняет такие работы, как монтаж установок электрохимической защиты, оценка опасности подземных газопроводов, анализ интенсивности коррозионной агрессивности материалов и т. д.
Для большинства работ используется современное метрологическое оборудование, позволяющее точно и всестороннее исследовать целевые объекты на предмет поражения коррозией и защиты от нее.
Газовая коррозия в технологических средах
В металлургии, химической промышленности множество процессов или их определенных стадий протекает в условиях повышенных температур и давлений.
При низких температурах (100 – 200 °С) большинство газов и их смесей не представляет опасности.
При повышенных температурах (выше 200 – 300 °С) и давлениях химическая активность газов сильно возрастает, и они начинают оказывать вредное влияние на металлы и сплавы.
При температуре выше 200 °С вредное воздействие оказывает хлор, а выше 300 °С – хлористый водород (HCl). С повышением температуры до 500 °С пары серы, диоксид серы (оксид серы (IV), сернистый ангидрид, сернистый газ, SO2) и диоксид азота (оксид азота (IV), бурый газ, NO2) также становятся химически активными.
Поведение газов и их смесей необходимо хорошо изучить, т.к. в условиях металлургического либо химического производства вышеописанные ситуации встречаются достаточно часто.
В технологических средах часто встречаются следующие случаи газовой коррозии: водородная коррозия, обезуглероживание стали, сернистая коррозия, карбонильная коррозия, разрушение в среде хлора и хлористого водорода.
Водородная коррозия
Водородная коррозия – вид коррозионного разрушения, который наблюдается, в основном, в технологических средах, содержащих водород, при воздействии повышенных температур и давлений. Очень часто водородная коррозия наблюдается при гидрировании нефти и угля, синтезе метанола и аммиака и т.п.
При воздействии водорода металл может подвергаться двум видам разрушения: водородная коррозия и водородная хрупкость. Зачастую эти два вида протекают одновременно.
Водородная коррозия происходит вследствии химического взаимодействия водорода среды и карбидной составляющей стали.
При повышенных температурах и давлениях водород, попадая на поверхность стального изделия, диссоциирует. Образовавшиеся атомы H2 очень подвижны, их диаметр составляет 0,1 нм.
Атомы водорода диффундируют вглубь металла, растворяясь в нем. Некоторая часть вступает в реакцию с углеродом:
C + 4H = CH4
При остывании металла, водород переходит в газообразное состояние, создавая достаточно высокое внутреннее давление. Это охрупчивает металл. На поверхности появляются трещины, вздутия. Прочность стали сильно уменьшается.
Обычно водородная коррозия появляется из-за нескольких причин:
— повышение внутреннего давления при образовании в порах CH4 и в результате – растрескивание по границам зерен;
— обезуглероживание стали, которое происходит из-за восстановления водородом цементита (Fe3C входит в состав сталей):
Fe3C + 2H2 = 3Fe + CH4;
— водород проникает вглубь стали, образуя хрупкий твердый раствор водорода в Fe.
У водородной коррозии есть, так называемый, инкубационный период, при котором какие-либо внешние признаки разрушения отсутствуют. В среднем этот период может составлять около 1000 часов (зависит от условий).
Расчеты по термодинамике показывают, что при повышенном давлении и температуре около 350 – 600 °С цементит почти полностью разрушается.
[attention type=yellow]Реакция, при которой образуется СН4 (метан) может протекать в сторону уменьшения объема, т.е. она обратимая. При повышении температуры равновесие реакции сдвигается вправо. Поэтому на нефтехимических производствах температуру поддерживают до 200 °С, при давлении около 50 МПа.
[/attention]Скорость протекания водородной коррозии зависит не только от рабочих давлений и температур, но и от глубины обезуглероживания стали.
Обезуглероживание стали (декарбюризация)
Обезуглероживание стали (декарбюризация) — процесс обеднения поверхностного слоя металла углеродом. Наблюдается при температурах свыше 650 °С.
Чаще всего процесс обезуглероживания стали протекает в окислительных атмосферах (O2, H2O, CO), но может происходить и в атмосфере водорода. Кислород окисляет сначала углерод, а потом только железо.
Обезуглероживание стали проходит интенсивнее с увеличением в газовой среде количества углекислого газа, влаги и кислорода.
Если газовая среда содержит больше угарного газа и метана – скорость декарбюризации уменьшается.
Процесс восстановления цементита Fe3C является основой процесса обезуглероживания стали:
Fe3C + ½O2 = 3Fe + CO
Fe3C + CO2 = 3Fe + 2CO
Fe3C + H2O = 3Fe + CO + H2
При температуре выше 650 °С атомы углерода более подвижны, чем атомы основного металла (железа), коэффициент диффузии атомов углерода также превышает коэффициент диффузии атомов Fe. Обезуглероживание стали протекает тогда, когда углерод диффундирует быстрее, чем окисляется железо.
Обезуглероживание сопутствует очень многим технологическим процессам, таким, как разнообразные реакции горения, окислительного крекинга и др. Сталь, подвергшаяся декарбюризации, теряет свою прочность и твердость, тем самым ухудшается ее качество, сокращается срок службы готовых изделий.
https://www.youtube.com/watch?v=0fc3GJi7hJQ
Декарбюризация (обезуглероживание стали) наблюдается после образования пленки оксидов на поверхности металла. С утолщением пленки окалина образуется медленнее, при этом обезуглероженный слой утолщается (может уходить на несколько миллиметров вглубь основного металла).
Для уменьшения степени обезуглероживания в сталь вводятся добавки вольфрама и алюминия. Незначительное влияние оказывают хром, марганец и кобальт.
Сернистая коррозия (коррозия в среде серы)
Различные соединения серы оказывают большое влияние на высокотемпературную газовою коррозию. Самым вредным и опасным среди таких соединений является сероводород (даже более чем сернистый ангидрид).
Сернистый ангидрид (SO2) выделяется в результате многих технологических процессов. Под воздействием этого соединения при температуре свыше 300 °С образуется на поверхности черных металлов слоистая окалина, которая состоит из FeS, FeO и Fe3O4.
Очень негативное влияние оказывает сернистый газ на чугун. При температурах выше 400 °С детали из чугуна окисляются изнутри, идет увеличение объема до 10%.
[attention type=red]Сильно уменьшается прочность чугунных изделий, наблюдается коробление, появляются поверхностные трещины и деталь разрушается. Это явление получило название «рост чугуна».
[/attention]Максимальное повреждение наблюдается при температуре около 700 °С.
Карбонильная коррозия
Карбонильная коррозия часто наблюдается в технологических средах, а именно, в случаях, когда при повышенном давлении и температуре протекают процессы с участием углерода (II). Карбонильная коррозия наблюдается при конверсии окиси углерода и метана, получении бутилового и метилового спиртов и т.д.
Оксид углерода при нормальном давлении и температуре по отношению к металлам инертен. Но при повышенных значениях температуры и давления CO реагирует с большинством металлов. В результате такого взаимодействия образуются карбонилы. Например, процесс образования карбонила железа описывается реакцией:
Fe + nCO = Fe(CO)n
С оксидом углерода железо может образовать три вида карбонилов: Fe(CO)5 (пентакарбонил), Fe(CO)4 (тетракарбонил) и Fe(CO)9 (нонакарбонил). При повышении температуры все эти соединения разлагаются, т.к. не обладают достаточной устойчивостью.
Наибольшей стойкостью, среди вышеперечисленных карбонилов железа, обладает пентакарбонил, который почти полностью диссоциирует на CO и Fe уже при температуре выше 140°С. Оксид углерода может образовывать подобные соединения со многими металлами.
Карбонильная коррозия протекает только в верхних слоях. Разрыхление и разрушение поверхностного слоя металла в глубину может достигать до 5 мм. Глубже структура не меняется.
При высоких температурах (до 700°С) и давлениях (до 35 МПа) для защиты от карбонильной коррозии металлов можно применять хромоникелевые стали, в состав которых входит около 20% Ni и 23% Cr, хромистые с содержание хрома 30%, а также марганцевые бронзы. Менее легированные стали (например, Х18Н9) можно использовать в случаях, когда давление и температура несколько ниже 700°С.
Карбонильная коррозия наблюдается также при синтезе мочевины. В качестве исходного сырья для получения CO(NH2)2 используется углекислый газ и NH3. Сам процесс протекает при давлении в 20 МПа и температуре 175 — 190°С. Для изготовления аппаратов, в которых протекают основные процессы синтеза, нержавеющие хромистые стали абсолютно не подходят.
[attention type=green]Самой высокой стойкостью к карбонильной коррозии в данных условиях обладает хромоникелевая сталь, в состав которой входит медь и молибден, а также некоторые молибденовые стали.
[/attention]Для повышения коррозионной устойчивости основных агрегатов, в которых проходит синтез мочевины, необходима очистка газов от сероводорода, а также обязательное введение в систему O2 в количестве 0,5-1 об.% от содержания углекислого газа.
Коррозия в среде хлористого водорода и хлора
В среде газообразного хлора и хлористого водорода металлы ведут себя не так, как в других агрессивных средах. Дело в том, что при воздействии хлористого водорода и газообразного хлора на поверхности металла образуются хлористые соли.
Эти соединения обладают низкой температурой плавления, а в некоторых случаях, при сильном повышении температуры, они возгоняются (Т возгонки AlCl3 — 192°С). Почти все аналогичные процессы проходят с выделением тепла (положительный тепловой эффект).
В результате нагрева хлориды, которые образовались на поверхности металла, плавятся и разлагаются (нарушается их структура).
Хлоридные пленки не обладают высокими защитными свойствами.
В атмосфере сухого хлора при низких температурах очень многие металлы обладают хорошей устойчивостью. Но при нагревании металл начинает реагировать с хлором и происходит воспламенение (протекает экзотермическая реакция). Температура, при которой происходит воспламенение, во многом определяется природой металла и зависит от величины теплового эффекта.
Температуры воспламенения некоторых металлов в среде сухого хлора:
— свинец – 90 – 100°С;
— железо и сталь – около 150°С;
— титан – около 20°С;
— никель – около 500°С;
— медь — 200°С.
Многие сплавы и металлы при комнатной температуре обладают удовлетворительной стойкостью и в среде хлористого водорода. Но с повышением температуры постепенно идет снижение стойкости. У каждого металла существует своя максимальная температура, при которой он еще относительно стойкий.
Если не считать благородных металлов, то в среде сухого хлора наибольшей стойкостью обладает никель и сплавы на его основе. Платина в среде хлористого водорода и хлора устойчива до температуры 1200°С.
На хромоникелевых сплавах (сталях) и самом никеле образуются поверхностные пленки, которые обладают нормальными защитными свойствами и малой летучестью.