Гидроксиды
Основные гидроксиды
основные гидроксиды википедия, основные гидроксиды группы
Осно́вные гидрокси́ды — это сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (—OH) и в водном растворе диссоциируют с образованием анионов ОН− и катионов.
Название основания обычно состоит из двух слов: слова «гидроксид» и названия металла в родительном падеже (или слова «аммония»). Хорошо растворимые в воде основания называются щелочами.
- 1 Получение
- 2 Классификация
- 3 Номенклатура
- 4 Химические свойства
- 5 См. также
- 6 Литература
Получение
Гранулы гидроксида натрия Гидроксид кальция Гидроксид алюминия Метагидроксид железа
- Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь. Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.
- Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.
- Также основание можно получить при взаимодействии щелочного или щелочноземельного металла с водой.
- Гидроксиды щелочных металлов в промышленности получают электролизом водных растворов солей:
- Некоторые основания можно получить реакциями обмена:
- Основания металлов встречаются в природе в виде минералов, например: гидраргиллита Al(OH)3, брусита Mg(OH)2.
Классификация
Основания классифицируются по ряду признаков.
- По растворимости в воде.
- Растворимые основания (щёлочи): гидроксид лития LiOH, гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH.
- Практически нерастворимые основания: Mg(OH)2, Ca(OH)2, Zn(OH)2, Cu(OH)2, Al(OH)3, Fe(OH)3, Be(OH)2.
- Другие основания: NH3·H2O
Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов. Исключение составляет гидроксид лития LiOH, хорошо растворимый в воде, но являющийся слабым основанием.
- По количеству гидроксильных групп в молекуле.
- Однокислотные (гидроксид натрия NaOH)
- Двукислотные (гидроксид меди(II) Cu(OH)2)
- Трехкислотные (гидроксид железа(III) Fe(OH)3)
- По летучести.
- Летучие: NH3, CH3-NH2
- Нелетучие: щёлочи, нерастворимые основания.
- По стабильности.
- Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
- Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
- По степени электролитической диссоциации.
- Сильные (α > 30 %): щёлочи.
- Слабые (α < 3 %): нерастворимые основания.
- По наличию кислорода.
- Кислородсодержащие: гидроксид калия KOH, гидроксид стронция Sr(OH)2
- Бескислородные: аммиак NH3, амины.
- По типу соединения:
- Неорганические основания: содержат одну или несколько групп -OH.
- Органические основания: органические соединения, являющиеся акцепторами протонов: амины, амидины и другие соединения.
Номенклатура
По номенклатуре IUPAC неорганические соединения, содержащие группы -OH, называются гидроксидами. Примеры систематических названий гидроксидов:
- NaOH — гидроксид натрия
- TlOH — гидроксид таллия(I)
- Fe(OH)2 — гидроксид железа(II)
Если в соединении есть оксидные и гидроксидные анионы одновременно, то в названиях используются числовые приставки:
- TiO(OH)2 — дигидроксид-оксид титана
- MoO(OH)3 — тригидроксид-оксид молибдена
Для соединений, содержащих группу O(OH), используют традиционные названия с приставкой мета-:
- AlO(OH) — метагидроксид алюминия
- CrO(OH) — метагидроксид хрома
Для оксидов, гидратированных неопределённым числом молекул воды, например Tl2O3•n H2O, недопустимо писать формулы типа Tl(OH)3. Называть такие соединениями гидроксидами также не рекомендуется. Примеры названий:
- Tl2O3•n H2O — полигидрат оксида таллия(III)
- MnO2•n H2O — полигидрат оксида марганца(IV)
Особо следует именовать соединение NH3•H2O, которое раньше записывали как NH4OH и которое в водных растворах проявляет свойства основания. Это и подобные соединения следует именовать как гидрат:
- NH3•H2O — гидрат аммиака
- N2H4•H2O — гидрат гидразина
Химические свойства
- В водных растворах основания диссоциируют, что изменяет ионное равновесие:
это изменение проявляется в цветах некоторых кислотно-основных индикаторов:
- лакмус становится синим,
- метилоранж — жёлтым,
- фенолфталеин приобретает цвет фуксии.
- При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:
Примечание: реакция не идёт, если и кислота и основание слабые.
- При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
- Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:
- Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
- Основания вступают в обменные реакции (реагируют с растворами солей):
- Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:
Некоторые основания (Cu(I), Ag, Au(I)) разлагаются уже при комнатной температуре.
- Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами.
См. также
- Кислота
- Соли
- Оксиды
- Гидроксиды
- Теории кислот и оснований
Литература
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1992. — Т. 3. — 639 с. — ISBN 5-82270-039-8.
Основания (гидроксиды). Свойства, получение, применение
Ещё со школы нам известно, что основаниями называют соединения, где атомы металла связаны с одной или несколькими гидроксогруппами — KOH, Ca(OH)2 и т. п. Однако понятие «основания» на самом деле шире, и существует две теории оснований — протонная (теория Брёнстеда — Лоури) и электронная (теория Льюиса).
Основания и кислоты Льюиса мы рассмотрим в отдельной статье, поэтому возьмём определение из теории Брёнстеда (далее в данной статье — только основания Брёнстеда): Основания (гидроксиды) — это вещества или частицы, способные принимать (отщеплять) протон от кислоты.
Согласно такому определению, свойства основания зависят от свойств кислоты — например, вода или уксусная кислота ведут себя как основания в присутствии более сильных кислот:
H2SO4 + H2O ⇄ HSO4— + H3O+(катион гидроксония)
H2SO4 + CH3COOH ⇄ HSO4— + CH3COOH2+
Номенклатура оснований
Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.
KOH — гидроксид калия
Ca(OH)2 — гидроксид кальция
Fe(OH)2 — гидроксид железа (II)
Fe(OH)3 — гидроксид железа (III)
Существует также основание NH4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH4+.
Классификация оснований
Основания можно классифицировать по следующим признакам:
- По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
- По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
- По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
- По силе (по степени диссоциации) различают:
а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
б) слабые (α < 100 %) – все нерастворимые основания Cu(OH)2, Fe(OH)3 и растворимое NH4OH.
Сила оснований
Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты.
Для этого используют константу основности Kb — константу равновесия для реакции между основанием и кислотой, причём в качестве кислоты выступает вода.
Чем выше значение константы основности, тем выше сила основания и тем сильнее его способность отщеплять протон. Также вместо самой константы часто используют показатель константы основности pKb. Например, для аммиака NH3 имеем:
Получение
2Na + 2H2O → 2NaOH + H2
Ca + 2H2O → Ca(OH)2 + H2
Mg + 2H2O Mg(OH)2 + H2
Na2O + H2O → 2NaOH,
CaO + H2O → Ca(OH)2.
2NaCI + 4H2O 2NaOH + 2H2 + CI2
Na2SO4 + Ba(OH)2 → 2NaOH + BaSO4
MgSO4 + 2NaOH → Mg(OH)2 + Na2SO4.
Физические свойства
Все основания являются твердыми веществами, имеющими различную окраску. В воде нерастворимы, кроме щелочей.
Внимание! Щёлочи являются очень едкими веществами. При попадании на кожу растворы щелочей вызывают сильные долгозаживающие ожоги, при попадании в глаза могут вызвать слепоту. При работе с ними следует соблюдать технику безопасности и пользоваться индивидуальными средствами защиты.
Внешний вид оснований. Слева направо: гидроксид натрия, гидроксид кальция, метагидроксид железа
2.5. Характерные химические свойства оснований и амфотерных гидроксидов
Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?
1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.
2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.
Химические свойства оснований
Все основания подразделяют на:
Напомним, что бериллий и магний к щелочноземельным металлам не относятся.
Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.
Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.
Взаимодействие оснований с кислотами
Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:
Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:
Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:
Взаимодействие с кислотными оксидами
Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:
Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних соле1:
Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:
Cu(OH)2 + CO2 = (CuOH)2CO3 + H2OС диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:
Взаимодействие оснований с амфотерными оксидами и гидроксидами
Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:
Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:
В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:
Взаимодействие оснований с солями
Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:
1) растворимость исходных соединений;
2) наличие осадка или газа среди продуктов реакции
Например:
Термическая устойчивость оснований
Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.
Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:
Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:
Взаимодействие амфотерных гидроксидов с кислотами
Амфотерные гидроксиды реагируют с сильными кислотами:
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:
Взаимодействие амфотерных гидроксидов с кислотными оксидами
Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):
Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.
Взаимодействие амфотерных гидроксидов с основаниями
Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:
А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:
Взаимодействие амфотерных гидроксидов с основными оксидами
Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:
Термическое разложение амфотерных гидроксидов
Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:
Натрия гидроксид
12.06.2014
Гидроксид натрия, известный также как каустическая сода, является одной из самых распространенных щелочей, которая представляет собой твердый белый или чуть желтоватый порошок. Это вещество активно используется в промышленном производстве и для бытовых нужд.
Свойства гидроксида натрия
В быту гидроксид натрия также называют едкой щелочью или едким натром. Это связано с тем, что данное вещество имеет свойство разъедать многие материалы и органические вещества: кожу, бумагу и даже некоторые металлы. Кроме того, каустическая сода обладает и такими характеристиками:
- Гигроскопичность – способность поглощать влагу из воздуха, этим объясняется тот факт, что гидроксид натрия расползается на открытом воздухе, вбирая в себя водяные пары. Такое вещество необходимо хранить в плотно закрытой упаковке в защищенном от влажности месте;
- Едкая щелочь растворяется в воде, при этом выделяя большое количество тепла. Раствор каустической соды напоминает жидкое мыло, он немного скользкий на ощупь;
- Гидроксид натрия хорошо растворяется в этаноле и метаноле, именно поэтому спиртовые растворы данного вещества также широко распространены;
- Температура плавления каустической соды – 318 градусов, а температура кипения – 1390;
- Едкий натр при контакте с некоторыми металлами (цинк, свинец, олово, алюминий) может образовывать взрывоопасный горючий газ (водород);
- Очень опасна каустическая сода в соединении с аммиаком.
С одной стороны, эти свойства гидроксида натрия делают его опасным при несоблюдении мер предосторожности при обращении со щелочью, но с другой – значительно расширяют область его применения.
Области применения гидроксида натрия
Как уже отмечалось выше, каустическая сода – самая распространенная щелочь, ежегодно производится порядка 56-58 миллионов тонн этого вещества. Чаще всего гидроксид натрия представлен в виде рассыпчатого порошка, но может встречаться и в форме различных растворов (химических, ртутных, диафрагменных).
Каким же целям служит гидроксид натрия?
- В целлюлозно-бумажной промышленности едкий натр активно используется в процессе изготовления картона, бумаги, древесно-волоконных плит;
- Производство необходимых каждому из нас мыла и шампуня не обходится без гидроксида натрия, который используется для омыления жиров;
- В химической промышленности едкий натр – незаменимый элемент, который позволяет нейтрализовать кислоты и служит отличным катализатором многих химических реакций;
- Нефтеперерабатывающая промышленность использует каустическую соду для производства масел;
- Гидроксид натрия применяется в качестве катализатора в процессе изготовления биодизельного топлива;
- Канализационные трубы имеют неприятную особенность время от времени засоряться, с этой проблемой отлично может справиться каустическая сода благодаря своей способности разъедать многие твердые вещества. Гидроксид натрия часто входит в состав гелей или сухих гранул, предназначенных для устранения засоров;
- Даже гражданская оборона использует едкий натр в своих целях: это вещество способно нейтрализовать действие отравляющих газов, поэтому его применяют в изолирующих дыхательных аппаратах для очистки воздуха от углекислого газа;
- Пищевая промышленность применяет гидроксид натрия для освобождения овощей и фруктов от корочки, в производстве шоколада и какао. Мало кто знает, что для размягчения маслин и придания им темного цвета также используется каустическая сода. Многие хлебобулочные изделия перед выпеканием обрабатываются раствором едкого натра, что позволяет добиться хрустящей и румяной корочки;
- Косметические процедуры по удалению нежелательных ороговевших участков кожи (бородавок, папиллом и т.д.) проводятся с применением гидроксида натрия.
Как обращаться с гидроксидом натрия
Каустическая сода при неправильном обращении может нанести серьезный ущерб здоровью, неслучайно ее называют едкой щелочью и относят ко второму классу опасности. Попадая на слизистые оболочки, гидроксид натрия вызывает сильнейшие химические ожоги. Очень опасно попадание каустической соды в глаза: чаще всего это способствуют атрофии зрительного нерва, приводящей к потере зрения.
Зачастую какие-либо бытовые ситуации сталкивают с необходимостью применения гидроксида натрия, при работе с ним нужно:
- Всегда работать в перчатках, химических брызгозащитных очках, а для защиты тела использовать химически стойкую одежду, пропитанную винилом, или прорезиненные костюмы;
- При попадании гидроксида натрия на слизистую оболочку необходимо срочно промыть поврежденный участок струей теплой проточной воды, а при попадании на кожу – слабым уксусным раствором.
Что такое гидроксиды? Свойства гидроксидов
Многие оксиды активных металлов, например, окислы калия, натрия или лития, могут взаимодействовать с водой. В этом случае в продуктах реакции обнаруживаются соединения, относящиеся к гидроксидам.
Свойства этих веществ, особенности протекания химических процессов, в которых участвуют основания, обусловлены присутствием в их молекулах гидроксильной группы. Так, в реакциях электролитической диссоциации основания расщепляются на ионы металла и анионы OH-.
Как основания взаимодействуют с оксидами неметаллов, кислотами и солями, мы и рассмотрим в нашей статье.
Номенклатура и строение молекулы
Чтобы правильно назвать основание, требуется к названию металлического элемента прибавить слово гидроксид. Приведем конкретные примеры. Основание алюминия относится к амфотерным гидроксидам, свойства которых мы рассмотрим в статье.
Обязательное присутствие в молекулах оснований гидроксильной группы, связанной с катионом металла ионным типом связи, можно определить с помощью индикаторов, например, фенолфталеина.
В водной среде избыток ионов OH-определяется по изменению цвета раствора индикатора: бесцветный фенолфталеин становится малиновым. Если металл проявляет несколько валентностей, он может образовывать несколько оснований. Например, железо имеет два основания, в которых валентность металла равна 2 или 3.
Первое соединение характеризуется признаками основных гидроксидов, второе — амфотерных. Поэтому свойства высших гидроксидов отличаются от соединений, в которых металл имеет низшую степень валентности.
Основания – это твердые вещества, устойчивые к нагреванию. По отношению к воде они делятся на растворимые (щелочи) и нерастворимые. Первая группа образована активными в химическом отношении металлами – элементами первой и второй групп. Нерастворимые в воде вещества состоят из атомов других металлов, чья активность уступает натрию, калию или кальцию.
Примерами таких соединений могут служить основания железа или меди. Свойства гидроксидов будут зависеть от того, к какой группе веществ они относятся. Так, щелочи являются термически прочными и не разлагаются при нагревании, тогда, как нерастворимые в воде основания под действием высокой температуры разрушаются, образуя оксид и воду.
Например, основание меди разлагается следующим образом:
Cu(OH)2 = CuO + H2O
Химические свойства гидроксидов
Взаимодействие между собой двух важнейших групп соединений – кислот и оснований – именуют в химии реакцией нейтрализации.
Такое название можно объяснить тем, что химически агрессивные гидроксиды и кислоты образуют нейтральные продукты – соли и воду.
Являясь, по сути, обменным процессом между двумя сложными веществами, нейтрализация характерна как для щелочей, так и для нерастворимых в воде оснований. Приведем уравнение реакции нейтрализации между едким калием и хлоридной кислотой:
KOH + HCl = KCl + H2O
Важное свойство оснований щелочных металлов является их способность реагировать с кислотными оксидами, в результате можно получить соль и воду. Например, пропуская через гидроксид натрия углекислый газ, можно получить его карбонат и воду:2NaOH + CO2 = Na2CO3 + H2O
К реакциям ионного обмена относится взаимодействие между щелочами и солями, идущее с образованием нерастворимых гидроксидов или солей. Так, приливая по каплям раствор едкого натра в раствор сернокислой меди, можно получить голубой желеобразный осадок. Это основание меди, нерастворимое в воде:
CuSO4 + 2NaOH = Cu(OH)2 + Na2 SO4
Химические свойства гидроксидов, нерастворимых в воде, отличаются от щелочей тем, что они при небольшом нагревании теряют воду – дегидратируются, переходя в форму соответствующего основного окисла.
Основания, проявляющие двойственные свойства
Если элемент или сложное вещество может реагировать и с кислотами, и с щелочами – его называют амфотерным. К таковым относятся, например, цинк, алюминий и их основания.
Свойства амфотерных гидроксидов позволяют записывать их молекулярные формулы как в виде оснований, выделяя при этом гидроксогруппу, так и в виде кислот. Представим несколько уравнений реакций основания алюминия с хлоридной кислотой и гидроксидом натрия.
Они иллюстрируют особые свойства гидроксидов, относящихся к амфотерным соединениям. Вторая реакция проходит с распадом щелочи:
2Al(OH)3 + 6HCl = 2AlCl3 + 3H2O
Al(OH)3 + NaOH = NaAlO2 + 2H2O
Продуктами процессов будут вода и соли: хлорид алюминия и алюминат натрия. Все амфотерные основания не растворяются в воде. Добывают их в результате взаимодействия соответствующих солей и щелочей.
Способы получения и применение
В промышленности, требующей больших объемов щелочей, их получают электролизом солей, содержащих катионы активных металлов первой и второй группы периодической системы. Сырьем для добычи, например, едкого натрия, служит раствор поваренной соли. Уравнение реакции будет таким:
2NaCl + 2H2O = 2NaOH + H2 + Cl2
Основания малоактивных металлов в лаборатории получают взаимодействием щелочей с их солями. Реакция относится к типу ионного обмена и заканчивается выпадением осадка основания. Простой способ получения щелочей – это реакция замещения, проходящая между активным металлом и водой. Она сопровождается разогреванием реагирующей смеси и относится к экзотермическому типу.
Свойства гидроксидов используют в промышленности. Особую роль здесь играют щелочи. Их применяют в качестве очистителей керосина и бензина, для получения мыла, обработки натуральной кожи, а также в технологиях производства искусственного шелка и бумаги.