Гидроксиды

Основные гидроксиды

Гидроксиды

основные гидроксиды википедия, основные гидроксиды группы
Осно́вные гидрокси́ды — это сложные вещества, которые состоят из атомов металла или иона аммония и гидроксогруппы (—OH) и в водном растворе диссоциируют с образованием анионов ОН− и катионов.

Название основания обычно состоит из двух слов: слова «гидроксид» и названия металла в родительном падеже (или слова «аммония»). Хорошо растворимые в воде основания называются щелочами.

  • 1 Получение
  • 2 Классификация
  • 3 Номенклатура
  • 4 Химические свойства
  • 5 См. также
  • 6 Литература

Получение

Гранулы гидроксида натрия Гидроксид кальция Гидроксид алюминия Метагидроксид железа

  • Взаимодействие сильноосновного оксида с водой позволяет получить сильное основание или щёлочь. Слабоосновные и амфотерные оксиды с водой не реагируют, поэтому соответствующие им гидроксиды таким способом получить нельзя.
  • Гидроксиды малоактивных металлов получают при добавлении щелочи к растворам соответствующих солей. Так как растворимость слабоосновных гидроксидов в воде очень мала, гидроксид выпадает из раствора в виде студнеобразной массы.
  • Также основание можно получить при взаимодействии щелочного или щелочноземельного металла с водой.
  • Гидроксиды щелочных металлов в промышленности получают электролизом водных растворов солей:
  • Некоторые основания можно получить реакциями обмена:
  • Основания металлов встречаются в природе в виде минералов, например: гидраргиллита Al(OH)3, брусита Mg(OH)2.

Классификация

Основания классифицируются по ряду признаков.

  • По растворимости в воде.
    • Растворимые основания (щёлочи): гидроксид лития LiOH, гидроксид натрия NaOH, гидроксид калия KOH, гидроксид бария Ba(OH)2, гидроксид стронция Sr(OH)2, гидроксид цезия CsOH, гидроксид рубидия RbOH.
    • Практически нерастворимые основания: Mg(OH)2, Ca(OH)2, Zn(OH)2, Cu(OH)2, Al(OH)3, Fe(OH)3, Be(OH)2.
    • Другие основания: NH3·H2O

Деление на растворимые и нерастворимые основания практически полностью совпадает с делением на сильные и слабые основания, или гидроксиды металлов и переходных элементов. Исключение составляет гидроксид лития LiOH, хорошо растворимый в воде, но являющийся слабым основанием.

  • По количеству гидроксильных групп в молекуле.
    • Однокислотные (гидроксид натрия NaOH)
    • Двукислотные (гидроксид меди(II) Cu(OH)2)
    • Трехкислотные (гидроксид железа(III) Fe(OH)3)
  • По летучести.
    • Летучие: NH3, CH3-NH2
    • Нелетучие: щёлочи, нерастворимые основания.
  • По стабильности.
    • Стабильные: гидроксид натрия NaOH, гидроксид бария Ba(OH)2
    • Нестабильные: гидроксид аммония NH3·H2O (гидрат аммиака).
  • По степени электролитической диссоциации.
    • Сильные (α > 30 %): щёлочи.
    • Слабые (α < 3 %): нерастворимые основания.
  • По наличию кислорода.
    • Кислородсодержащие: гидроксид калия KOH, гидроксид стронция Sr(OH)2
    • Бескислородные: аммиак NH3, амины.
  • По типу соединения:
    • Неорганические основания: содержат одну или несколько групп -OH.
    • Органические основания: органические соединения, являющиеся акцепторами протонов: амины, амидины и другие соединения.

Номенклатура

По номенклатуре IUPAC неорганические соединения, содержащие группы -OH, называются гидроксидами. Примеры систематических названий гидроксидов:

  • NaOH — гидроксид натрия
  • TlOH — гидроксид таллия(I)
  • Fe(OH)2 — гидроксид железа(II)

Если в соединении есть оксидные и гидроксидные анионы одновременно, то в названиях используются числовые приставки:

  • TiO(OH)2 — дигидроксид-оксид титана
  • MoO(OH)3 — тригидроксид-оксид молибдена

Для соединений, содержащих группу O(OH), используют традиционные названия с приставкой мета-:

  • AlO(OH) — метагидроксид алюминия
  • CrO(OH) — метагидроксид хрома

Для оксидов, гидратированных неопределённым числом молекул воды, например Tl2O3•n H2O, недопустимо писать формулы типа Tl(OH)3. Называть такие соединениями гидроксидами также не рекомендуется. Примеры названий:

  • Tl2O3•n H2O — полигидрат оксида таллия(III)
  • MnO2•n H2O — полигидрат оксида марганца(IV)

Особо следует именовать соединение NH3•H2O, которое раньше записывали как NH4OH и которое в водных растворах проявляет свойства основания. Это и подобные соединения следует именовать как гидрат:

  • NH3•H2O — гидрат аммиака
  • N2H4•H2O — гидрат гидразина

Химические свойства

  • В водных растворах основания диссоциируют, что изменяет ионное равновесие:

это изменение проявляется в цветах некоторых кислотно-основных индикаторов:

  • лакмус становится синим,
  • метилоранж — жёлтым,
  • фенолфталеин приобретает цвет фуксии.
  • При взаимодействии с кислотой происходит реакция нейтрализации и образуется соль и вода:

Примечание: реакция не идёт, если и кислота и основание слабые.

  • При избытке кислоты или основания реакция нейтрализации идёт не до конца и образуются кислые или осно́вные соли, соответственно:
  • Амфотерные основания могут реагировать с щелочами с образованием гидроксокомплексов:
  • Основания реагируют с кислотными или амфотерными оксидами с образованием солей:
  • Основания вступают в обменные реакции (реагируют с растворами солей):
  • Слабые и нерастворимые основания при нагреве разлагаются на оксид и воду:

Некоторые основания (Cu(I), Ag, Au(I)) разлагаются уже при комнатной температуре.

  • Основания щелочных металлов (кроме лития) при нагревании плавятся, расплавы являются электролитами.

См. также

  • Кислота
  • Соли
  • Оксиды
  • Гидроксиды
  • Теории кислот и оснований

Литература

  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1. — 623 с.
  • Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1992. — Т. 3. — 639 с. — ISBN 5-82270-039-8.

Основания (гидроксиды). Свойства, получение, применение

Гидроксиды

Ещё со школы нам известно, что основаниями называют соединения, где атомы металла связаны с одной или несколькими гидроксогруппами — KOH, Ca(OH)2 и т. п. Однако понятие «основания» на самом деле шире, и существует две теории оснований — протонная (теория Брёнстеда — Лоури) и электронная (теория Льюиса).

Основания и кислоты Льюиса мы рассмотрим в отдельной статье, поэтому возьмём определение из теории Брёнстеда (далее в данной статье — только основания Брёнстеда): Основания (гидроксиды) — это вещества или частицы, способные принимать (отщеплять) протон от кислоты.

 Согласно такому определению, свойства основания зависят от свойств кислоты — например, вода или уксусная кислота ведут себя как основания в присутствии более сильных кислот:

H2SO4 + H2O ⇄ HSO4— + H3O+(катион гидроксония)

H2SO4 + CH3COOH ⇄ HSO4— + CH3COOH2+

Номенклатура оснований

Названия оснований образуются весьма просто — сначала идёт слово «гидроксид», а затем название металла, который входит в данное основание. Если металл имеет переменную валентность, это отражают в названии.

KOH — гидроксид калия
Ca(OH)2 — гидроксид кальция
Fe(OH)2 — гидроксид железа (II)
Fe(OH)3 — гидроксид железа (III)

Существует также основание NH4OH (гидроксид аммония), где гидроксогруппа связана не с металлом, а катионом аммония NH4+.

Классификация оснований

Основания можно классифицировать по следующим признакам:

  1. По растворимости основания делят на растворимые — щёлочи (NaOH, KOH) и нерастворимые основания (Ca(OH)2, Al(OH)3).
  2. По кислотности (количеству гидроксогрупп) основания делят на однокислотные (KOH, LiOH) и многокислотные (Mg(OH2), Al(OH)3).
  3. По химическим свойствам их делят на оснóвные (Ca(OH)2, NaOH) и амфотерные, то есть проявляющие как основные свойства, так и кислотные (Al(OH)3, Zn(OH)2).
  4. По силе (по степени диссоциации) различают:
    а) сильные (α = 100 %) – все растворимые основания NaOH, LiOH, Ba(OH)2, малорастворимый Ca(OH)2.
    б) слабые (α < 100 %) – все нерастворимые основания Cu(OH)2, Fe(OH)3 и растворимое NH4OH.

Сила оснований

Для оснований можно количественно выразить их силу, то есть способность отщеплять протон от кислоты.

Для этого используют константу основности Kb — константу равновесия для реакции между основанием и кислотой, причём в качестве кислоты выступает вода.

Чем выше значение константы основности, тем выше сила основания и тем сильнее его способность отщеплять протон. Также вместо самой константы часто используют показатель константы основности pKb. Например, для аммиака NH3 имеем:

Получение

2Na + 2H2O → 2NaOH + H2

Ca + 2H2O → Ca(OH)2 + H2

Mg + 2H2O  Mg(OH)2 + H2

Na2O + H2O → 2NaOH,

CaO + H2O → Ca(OH)2.

2NaCI + 4H2O 2NaOH + 2H2 + CI2

Na2SO4 + Ba(OH)2 → 2NaOH + BaSO4

MgSO4 + 2NaOH → Mg(OH)2 + Na2SO4.

Физические свойства

Все основания являются твердыми веществами, имеющими различную окраску. В воде нерастворимы, кроме щелочей.

Внимание! Щёлочи являются очень едкими веществами. При попадании на кожу растворы щелочей вызывают сильные долгозаживающие ожоги, при попадании в глаза могут вызвать слепоту. При работе с ними следует соблюдать технику безопасности и пользоваться индивидуальными средствами защиты.

Внешний вид оснований. Слева направо: гидроксид натрия, гидроксид кальция, метагидроксид железа

2.5. Характерные химические свойства оснований и амфотерных гидроксидов

Гидроксиды

Прежде чем рассуждать о химических свойствах оснований и амфотерных гидроксидов, давайте четко определим, что же это такое?

1) К основаниями или основным гидроксидам относят гидроксиды металлов в степени окисления +1 либо +2, т.е. формулы которых записываются либо как MeOH , либо как Me(OH)2. Однако существуют исключения. Так, гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2 к основаниям не относятся.

2) К амфотерным гидроксидам относят гидроксиды металлов в степени окисления +3,+4, а также в качестве исключений гидроксиды Zn(OH)2, Be(OH)2, Pb(OH)2, Sn(OH)2. Гидроксиды металлов в степени окисления +4, в заданиях ЕГЭ не встречаются, поэтому рассмотрены не будут.

Химические свойства оснований

Все основания подразделяют на:

Напомним, что бериллий и магний к щелочноземельным металлам не относятся.

Помимо того, что щелочи растворимы в воде, они также очень хорошо диссоциируют в водных растворах, в то время как нерастворимые основания имеют низкую степень диссоциации.

Такое отличие в растворимости и способности к диссоциации у щелочей и нерастворимых гидроксидов приводит, в свою очередь, к заметным отличиям в их химических свойствах. Так, в частности, щелочи являются более химически активными соединениями и нередко способны вступать в те реакции, в которые не вступают нерастворимые основания.

Взаимодействие оснований с кислотами

Щелочи реагируют абсолютно со всеми кислотами, даже очень слабыми и нерастворимыми. Например:

Нерастворимые основания реагируют практически со всеми растворимыми кислотами, не реагируют с нерастворимой кремниевой кислотой:

Следует отметить, что как сильные, так и слабые основания с общей формулой вида Me(OH)2 могут образовывать основные соли при недостатке кислоты, например:

Взаимодействие с кислотными оксидами

Щелочи реагируют со всеми кислотными оксидами, при этом образуются соли и часто вода:

Нерастворимые основания способны реагировать со всеми высшими кислотными оксидами, соответствующими устойчивым кислотам, например, P2O5, SO3, N2O5, с образованием средних соле1:

Нерастворимые основания вида Me(OH)2 реагируют в присутствии воды с углекислым газом исключительно с образованием основных солей. Например:

Cu(OH)2 + CO2 = (CuOH)2CO3 + H2O

С диоксидом кремния, ввиду его исключительной инертности, реагируют только самые сильные основания — щелочи. При этом образуются нормальные соли. С нерастворимыми основаниями реакция не идет. Например:

Взаимодействие оснований с амфотерными оксидами и гидроксидами

Все щелочи реагируют с амфотерными оксидами и гидроксидами. Если реакцию проводят, сплавляя амфотерный оксид либо гидроксид с твердой щелочью, такая реакция приводит к образованию безводородных солей:

Если же используют водные растворы щелочей, то образуются гидроксокомплексные соли:

В случае алюминия при действии избытка концентрированной щелочи вместо соли Na[Al(OH)4] образуется соль Na3[Al(OH)6]:

Взаимодействие оснований с солями

Какое-либо основание реагирует с какой-либо солью только при соблюдении одновременно двух условий:

1) растворимость исходных соединений;

2) наличие осадка или газа среди продуктов реакции

Например:

Термическая устойчивость оснований

Все щелочи, кроме Ca(OH)2, устойчивы к нагреванию и плавятся без разложения.

Все нерастворимые основания, а также малорастворимый Ca(OH)2 при нагревании разлагаются. Наиболее высокая температура разложения у гидроксида кальция – около 1000oC:

Нерастворимые гидроксиды имеют намного более низкие температуры разложения. Так, например, гидроксид меди (II) разлагается уже при температуре выше 70 oC:

Взаимодействие амфотерных гидроксидов с кислотами

Амфотерные гидроксиды реагируют с сильными кислотами:

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с такими кислотами, как H2S, H2SO3 и H2СO3 ввиду того, что соли, которые могли бы образоваться в результате таких реакций, подвержены необратимому гидролизу до исходного амфотерного гидроксида и соответствующей кислоты:

Взаимодействие амфотерных гидроксидов с кислотными оксидами

Амфотерные гидроксиды реагируют с высшими оксидами, которым соответствуют устойчивые кислоты (SO3, P2O5, N2O5):

Амфотерные гидроксиды металлов в степени окисления +3, т.е. вида Me(OH)3, не реагируют с кислотными оксидами SO2 и СO2.

Взаимодействие амфотерных гидроксидов с основаниями

Из оснований амфотерные гидроксиды реагируют только с щелочами. При этом, если используется водный раствор щелочи, то образуются гидроксокомплексные соли:

А при сплавлении амфотерных гидроксидов с твердыми щелочами получаются их безводные аналоги:

Взаимодействие амфотерных гидроксидов с основными оксидами

Амфотерные гидроксиды реагируют при сплавлении с оксидами щелочных и щелочноземельных металлов:

Термическое разложение амфотерных гидроксидов

Все амфотерные гидроксиды не растворимы в воде и, как любые нерастворимые гидроксиды, разлагаются при нагревании на соответствующий оксид и воду:

Натрия гидроксид

Гидроксиды

12.06.2014

Гидроксид натрия, известный также как каустическая сода, является одной из самых распространенных щелочей, которая представляет собой твердый белый или чуть желтоватый порошок. Это вещество активно используется в промышленном производстве и для бытовых нужд.

Свойства гидроксида натрия

В быту гидроксид натрия также называют едкой щелочью или едким натром. Это связано с тем, что данное вещество имеет свойство разъедать многие материалы и органические вещества: кожу, бумагу и даже некоторые металлы. Кроме того, каустическая сода обладает и такими характеристиками:

  • Гигроскопичность – способность поглощать влагу из воздуха, этим объясняется тот факт, что гидроксид натрия расползается на открытом воздухе, вбирая в себя водяные пары. Такое вещество необходимо хранить в плотно закрытой упаковке в защищенном от влажности месте;
  • Едкая щелочь растворяется в воде, при этом выделяя большое количество тепла. Раствор каустической соды напоминает жидкое мыло, он немного скользкий на ощупь;
  • Гидроксид натрия хорошо растворяется в этаноле и метаноле, именно поэтому спиртовые растворы данного вещества также широко распространены;
  • Температура плавления каустической соды – 318 градусов, а температура кипения – 1390;
  • Едкий натр при контакте с некоторыми металлами (цинк, свинец, олово, алюминий) может образовывать взрывоопасный горючий газ (водород);
  • Очень опасна каустическая сода в соединении с аммиаком.

С одной стороны, эти свойства гидроксида натрия делают его опасным при несоблюдении мер предосторожности при обращении со щелочью, но с другой – значительно расширяют область его применения.

Области применения гидроксида натрия

Как уже отмечалось выше, каустическая сода – самая распространенная щелочь, ежегодно производится порядка 56-58 миллионов тонн этого вещества. Чаще всего гидроксид натрия представлен в виде рассыпчатого порошка, но может встречаться и в форме различных растворов (химических, ртутных, диафрагменных).

Каким же целям служит гидроксид натрия?

  • В целлюлозно-бумажной промышленности едкий натр активно используется в процессе изготовления картона, бумаги, древесно-волоконных плит;
  • Производство необходимых каждому из нас мыла и шампуня не обходится без гидроксида натрия, который используется для омыления жиров;
  • В химической промышленности едкий натр – незаменимый элемент, который позволяет нейтрализовать кислоты и служит отличным катализатором многих химических реакций;
  • Нефтеперерабатывающая промышленность использует каустическую соду для производства масел;
  • Гидроксид натрия применяется в качестве катализатора в процессе изготовления биодизельного топлива;
  • Канализационные трубы имеют неприятную особенность время от времени засоряться, с этой проблемой отлично может справиться каустическая сода благодаря своей способности разъедать многие твердые вещества. Гидроксид натрия часто входит в состав гелей или сухих гранул, предназначенных для устранения засоров;
  • Даже гражданская оборона использует едкий натр в своих целях: это вещество способно нейтрализовать действие отравляющих газов, поэтому его применяют в изолирующих дыхательных аппаратах для очистки воздуха от углекислого газа;
  • Пищевая промышленность применяет гидроксид натрия для освобождения овощей и фруктов от корочки, в производстве шоколада и какао. Мало кто знает, что для размягчения маслин и придания им темного цвета также используется каустическая сода. Многие хлебобулочные изделия перед выпеканием обрабатываются раствором едкого натра, что позволяет добиться хрустящей и румяной корочки;
  • Косметические процедуры по удалению нежелательных ороговевших участков кожи (бородавок, папиллом и т.д.) проводятся с применением гидроксида натрия.

Как обращаться с гидроксидом натрия

Каустическая сода при неправильном обращении может нанести серьезный ущерб здоровью, неслучайно ее называют едкой щелочью и относят ко второму классу опасности. Попадая на слизистые оболочки, гидроксид натрия вызывает сильнейшие химические ожоги. Очень опасно попадание каустической соды в глаза: чаще всего это способствуют атрофии зрительного нерва, приводящей к потере зрения.

Зачастую какие-либо бытовые ситуации сталкивают с необходимостью применения гидроксида натрия, при работе с ним нужно:

  • Всегда работать в перчатках, химических брызгозащитных очках, а для защиты тела использовать химически стойкую одежду, пропитанную винилом, или прорезиненные костюмы;
  • При попадании гидроксида натрия на слизистую оболочку необходимо срочно промыть поврежденный участок струей теплой проточной воды, а при попадании на кожу – слабым уксусным раствором.

Что такое гидроксиды? Свойства гидроксидов

Гидроксиды

Многие оксиды активных металлов, например, окислы калия, натрия или лития, могут взаимодействовать с водой. В этом случае в продуктах реакции обнаруживаются соединения, относящиеся к гидроксидам.

Свойства этих веществ, особенности протекания химических процессов, в которых участвуют основания, обусловлены присутствием в их молекулах гидроксильной группы. Так, в реакциях электролитической диссоциации основания расщепляются на ионы металла и анионы OH-.

Как основания взаимодействуют с оксидами неметаллов, кислотами и солями, мы и рассмотрим в нашей статье.

Номенклатура и строение молекулы

Чтобы правильно назвать основание, требуется к названию металлического элемента прибавить слово гидроксид. Приведем конкретные примеры. Основание алюминия относится к амфотерным гидроксидам, свойства которых мы рассмотрим в статье.

Обязательное присутствие в молекулах оснований гидроксильной группы, связанной с катионом металла ионным типом связи, можно определить с помощью индикаторов, например, фенолфталеина.

В водной среде избыток ионов OH-определяется по изменению цвета раствора индикатора: бесцветный фенолфталеин становится малиновым. Если металл проявляет несколько валентностей, он может образовывать несколько оснований. Например, железо имеет два основания, в которых валентность металла равна 2 или 3.

Первое соединение характеризуется признаками основных гидроксидов, второе — амфотерных. Поэтому свойства высших гидроксидов отличаются от соединений, в которых металл имеет низшую степень валентности.

Основания – это твердые вещества, устойчивые к нагреванию. По отношению к воде они делятся на растворимые (щелочи) и нерастворимые. Первая группа образована активными в химическом отношении металлами – элементами первой и второй групп. Нерастворимые в воде вещества состоят из атомов других металлов, чья активность уступает натрию, калию или кальцию.

Примерами таких соединений могут служить основания железа или меди. Свойства гидроксидов будут зависеть от того, к какой группе веществ они относятся. Так, щелочи являются термически прочными и не разлагаются при нагревании, тогда, как нерастворимые в воде основания под действием высокой температуры разрушаются, образуя оксид и воду.

Например, основание меди разлагается следующим образом:

Cu(OH)2 = CuO + H2O

Химические свойства гидроксидов

Взаимодействие между собой двух важнейших групп соединений – кислот и оснований – именуют в химии реакцией нейтрализации.

Такое название можно объяснить тем, что химически агрессивные гидроксиды и кислоты образуют нейтральные продукты – соли и воду.

Являясь, по сути, обменным процессом между двумя сложными веществами, нейтрализация характерна как для щелочей, так и для нерастворимых в воде оснований. Приведем уравнение реакции нейтрализации между едким калием и хлоридной кислотой:

KOH + HCl = KCl + H2O

Важное свойство оснований щелочных металлов является их способность реагировать с кислотными оксидами, в результате можно получить соль и воду. Например, пропуская через гидроксид натрия углекислый газ, можно получить его карбонат и воду:

2NaOH + CO2 = Na2CO3 + H2O

К реакциям ионного обмена относится взаимодействие между щелочами и солями, идущее с образованием нерастворимых гидроксидов или солей. Так, приливая по каплям раствор едкого натра в раствор сернокислой меди, можно получить голубой желеобразный осадок. Это основание меди, нерастворимое в воде:

CuSO4 + 2NaOH = Cu(OH)2 + Na2 SO4

Химические свойства гидроксидов, нерастворимых в воде, отличаются от щелочей тем, что они при небольшом нагревании теряют воду – дегидратируются, переходя в форму соответствующего основного окисла.

Основания, проявляющие двойственные свойства

Если элемент или сложное вещество может реагировать и с кислотами, и с щелочами – его называют амфотерным. К таковым относятся, например, цинк, алюминий и их основания.

Свойства амфотерных гидроксидов позволяют записывать их молекулярные формулы как в виде оснований, выделяя при этом гидроксогруппу, так и в виде кислот. Представим несколько уравнений реакций основания алюминия с хлоридной кислотой и гидроксидом натрия.

Они иллюстрируют особые свойства гидроксидов, относящихся к амфотерным соединениям. Вторая реакция проходит с распадом щелочи:

2Al(OH)3 + 6HCl = 2AlCl3 + 3H2O

Al(OH)3 + NaOH = NaAlO2 + 2H2O

Продуктами процессов будут вода и соли: хлорид алюминия и алюминат натрия. Все амфотерные основания не растворяются в воде. Добывают их в результате взаимодействия соответствующих солей и щелочей.

Способы получения и применение

В промышленности, требующей больших объемов щелочей, их получают электролизом солей, содержащих катионы активных металлов первой и второй группы периодической системы. Сырьем для добычи, например, едкого натрия, служит раствор поваренной соли. Уравнение реакции будет таким:

2NaCl + 2H2O = 2NaOH + H2 + Cl2

Основания малоактивных металлов в лаборатории получают взаимодействием щелочей с их солями. Реакция относится к типу ионного обмена и заканчивается выпадением осадка основания. Простой способ получения щелочей – это реакция замещения, проходящая между активным металлом и водой. Она сопровождается разогреванием реагирующей смеси и относится к экзотермическому типу.

Свойства гидроксидов используют в промышленности. Особую роль здесь играют щелочи. Их применяют в качестве очистителей керосина и бензина, для получения мыла, обработки натуральной кожи, а также в технологиях производства искусственного шелка и бумаги.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть