Константы диссоциации алифатических аминов

Галогенирование аминов

Константы диссоциации алифатических аминов

Водород в аминогруппах алифатических первичных и вторичных аминах может быть замещен на галоген под действием различных галогенизирующих агентов, таких как гипогалогенит натрия:

Рисунок 1.

В препаративном отношении более удобным реагентом для введения хлора является трет-бутилгипохлорит.

Рисунок 2.

Следует заметить, что так как в настоящее время хлорирование воды является наиболее широко используемым методом для дезинфекции воды и при этом водный хлор легко вступает в реакцию с различными азотосодержащими соединениями. По этому, исходя из того что реакции галогенирования алифатических аминов могут протекать самопроизвольно в водопроводной воде, они представляют большой практический интерес.

Кинетика галогенирования аминов

Реакции галогенирования аминов являются реакциями второго порядка — первого порядка относительно амина и первого порядка относительно агента хлорирования:

Рисунок 3.

Зависимость наблюдаемой константы скорости от $pH$ проходит через максимум, как показано на графике 1.

Рисунок 4.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Данные зависимости были получены эксперементально при хлорировании $NaOCl$ соответствующих вторичных аминов.

Данные реакции состоят из двух равновесных стадий:

Рисунок 5.

И принимая во внимание четыре возможных вида взаимодействия:

Рисунок 6.

Уравнение скорости таких реакций примет вид:

Рисунок 7.

где $k$ — постоянная бимолекулярный скорость, $K$ может быть либо константой ионизации амина или $HOC1$, $Ka$ и $Kc$ — константы протонирования амина и $HOC1$ соответственно.

Особенности галогенирования аминов

Исходя из кинетических исследований не представляется возможным решить, протекает данный процесс через «молекулярную» или «ионную» элементарную стадию. Тем не менее, этот вопрос может быть решен на основании некоторых разумных утверждений:

  1. протонированные амины не могут выступать в качестве нуклеофилов. С другой стороны, электрофильное поведение $ClO-$ было бы весьма неблагоприятным, и приводило бы к маловероятному образованию $O_2$-аниона. Таким образом,» ионный «процесс должен быть отклонен.
  2. константы скорости хлорирования аминов при использовании водного $Cl_2$ в качестве хлорирующего агента выше, чем при использовании $HOC1$. А скорость хлорирования $HOC1$ для подобных соединений возрастает с увеличением основности аминогруппы. Это предполагает, что реакция происходит между молекулярными частицами.
  3. существует вероятность того, что перенос протона от амина к $ClO-$ происходит в реакции между ионными частицами до проведения нуклеофильной атаки амина $HOC1$

Принимая во внимание такие утверждения, может быть отвергнут путь реакции с участием заряженных частиц, и единственным оставшимся возможным процессом является межмолекулярное взаимодействие.

В таблице ниже приведены значения констант скоростей хлорирования вторичных алифатических аминов

Рисунок 8.

Хотя величины констант скорости ниже общепринятого предела для диффузионно-контролируемых реакций, их постоянство для более основных аминов предполагает, что контроль диффузии играет определенную роль.

Механизм галогенирования аминов

Высокие постоянные скорости, полученные для первичных и вторичных аминов указывают на низкий свободный энергетический барьер в хлорировании более основных аминов. Это согласуется с очень близкими энергиями диссоциации связей $O-Cl$ и $N-Cl$:

Рисунок 9.

Тот факт, что энергия связей $O-Cl$ ниже, чем энергия связей $N-Cl$ позволяет предположить, что этот процесс может начинаться с разрыва связи $Cl-O$.

Одним из возможных вариантов для объяснения наблюдаемого значений и постоянства констант скорости для первичных и вторичных аминов является процесс, показанный на схеме ниже описывающий общий механизм данной реакции:

Рисунок 10.

Для того, чтобы понять, что происходит при хлорировании первичных и вторичных аминов следует совместно рассматривать три утверждения:

  1. высокая и почти постоянная константа скорости характерна для более основных аминов (что и показано в таблице 1)
  2. таком взаимодействию характерна низкая энтальпия активации
  3. исходя из этого, вероятно образование весьма упорядоченного переходного состояния, в котором, подразумевается наличие молекулы воды.

На схеме ниже показан пример такого переходного состояния для случая, в котором участвуют три молекулы воды.

Рисунок 11.

3.7. Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

Константы диссоциации алифатических аминов

Амины – производные аммиака, в молекуле которого один, два или все три атома водорода замещены на углеводородные радикалы.
По количеству замещенных атомов водорода амины делят на:

первичные вторичные третичные
R-NH2

По характеру углеводородных заместителей амины делят на

Общие особенности строения аминов

Также как и в молекуле аммиака, в молекуле любого амина атом азота имеет неподеленную электронную пару, направленную в одну из вершин искаженного тетраэдра:

По этой причине у аминов как и у аммиака существенно выражены основные свойства.

Так, амины аналогично аммиаку обратимо реагируют с водой, образуя слабые основания:

Связь катиона водорода с атомом азота в молекуле амина реализуется с помощью донорно-акцепторного механизма за счет неподеленной электронной пары атома азота.

Предельные амины являются более сильными основаниями по сравнению с аммиаком, т.к. в таких аминах углеводородные заместители обладают положительным индуктивным (+I) эффектом.

В связи с этим на атоме азота увеличивается электронная плотность, что облегчает его взаимодействие с катионом Н+.

Ароматические амины, в случае если аминогруппа непосредственно соединена с ароматическим ядром, проявляют более слабые основные свойства по сравнению с аммиаком.

Связано это с тем, что неподеленная электронная пара атома азота смещается в сторону ароматической π-системы бензольного кольца в следствие чего, электронная плотность на атоме азота снижается.

В свою очередь это приводит к снижению основных свойств, в частности способности взаимодействовать с водой. Так, например, анилин реагирует только с сильными кислотами, а с водой практически не реагирует.

Химические свойства предельных аминов

Как уже было сказано, амины обратимо реагируют с водой:

Водные растворы аминов имеют щелочную реакцию среды, вследствие диссоциации образующихся оснований:

Предельные амины реагируют с водой лучше, чем аммиак, ввиду более сильных основных свойств.

Основные свойства предельных аминов увеличиваются в ряду.

Вторичные предельные амины являются более сильными основаниями, чем первичные предельные, которые являются в свою очередь более сильными основаниями, чем аммиак.

Что касается основных свойств третичных аминов, то то если речь идет о реакциях в водных растворах, то основные свойства третичных аминов выражены намного хуже, чем у вторичных аминов, и даже чуть хуже чем у первичных.

Связано это со стерическими затруднениями, существенно влияющими на скорость протонирования амина. Другими словами три заместителя «загораживают» атом азота и мешают его взаимодействию с катионами H+.

Взаимодействие с кислотами

Как свободные предельные амины, так и их водные растворы вступают во взаимодействие с кислотами. При этом образуются соли:

Так как основные свойства предельных аминов сильнее выражены, чем у аммиака, такие амины реагируют даже со слабыми кислотами, например угольной:

Соли аминов представляют собой твердые вещества, хорошо растворимые в воде и плохо в неполярных органических растворителях. Взаимодействие солей аминов с щелочами приводит к высвобождению свободных аминов, аналогично тому как происходит вытеснение аммиака при действии щелочей на соли аммония:

2. Первичные предельные амины реагируют с азотистой кислотой с образованием соответствующих спиртов, азота N2 и воды. Например:

Характерным признаком данной реакции является образование газообразного азота, в связи с чем она является качественной на первичные амины и используется для их различения от вторичных и третичных.

Следует отметить, что чаще всего данную реакцию проводят, смешивая амин не с раствором самой азотистой кислоты, а с раствором соли азотистой кислоты (нитрита) и последующим добавлением к этой смеси сильной минеральной кислоты.

При взаимодействии нитритов с сильными минеральными кислотами образуется азотистая кислота, которая уже затем реагирует с амином:

Вторичные амины дают в аналогичных условиях маслянистые жидкости, так называемые N-нитрозаминами, но данная реакция в реальных заданиях ЕГЭ по химии не встречается. Третичные амины с азотистой кислотой не взаимодействуют.

Полное сгорание любых аминов приводит к образованию углекислого газа, воды и азота:

Взаимодействие с галогеналканами

Примечательно, что абсолютно такая же соль получается при действии хлороводорода на более замещенный амин. В нашем случае, при взаимодействии хлороводорода с диметиламином:

Получение аминов:

1) Алкилирование аммиака галогеналканами:

В случае недостатка аммиака вместо амина получается его соль:

2) Восстановление металлами (до водорода в ряду активности) в кислой среде:

с последующей обработкой раствора щелочью для высвобождения свободного амина:

3) Реакция аммиака со спиртами при пропускании их смеси через нагретый оксид алюминия. В зависимости от пропорций спирт/амин образуются первичные, вторичные или третичные амины:

Химические свойства анилина

Анилин – тривиальное название аминобензола, имеющего формулу:

Как можно видеть из иллюстрации, в молекуле анилина аминогруппа непосредственно соединена с ароматическим кольцом. У таких аминов, как уже было сказано, основные свойства выражены намного слабее, чем у аммиака. Так, в частности, анилин практически не реагирует с водой и слабыми кислотами типа угольной.

Взаимодействие анилина с кислотами

Анилин реагирует с сильными и средней силы неорганическими кислотами. При этом образуются соли фениламмония:

Взаимодействие анилина с галогенами

Как уже было сказано в самом начале данной главы, аминогруппа в ароматических аминах , втянута в ароматическое кольцо, что в свою очередь снижает электронную плотность на атоме азота, и как следствие увеличивает ее в ароматическом ядре.

Увеличение электронной плотности в ароматическом ядре приводит к тому, что реакции электрофильного замещения, в частности, реакции с галогенами протекают значительно легче, особенно в орто- и пара- положениях относительно аминогруппы.

Так, анилин с легкостью вступает во взаимодействие с бромной водой, образуя белый осадок 2,4,6-триброманилина:

Данная реакция является качественной на анилин и часто позволяет определить его среди прочих органических соединений.

Взаимодействие анилина с азотистой кислотой

Анилин реагирует с азотистой кислотой, но в виду специфичности и сложности данной реакции в реальном ЕГЭ по химии она не встречается.

Реакции алкилирования анилина

С помощью последовательного алкилирования анилина по атому азота галогенпроизводными углеводородов можно получать вторичные и третичные амины:

1. Восстановление маталлами нитробензола в присутствии сильных кислот-неокислителей:

C6H5-NO2 + 3Fe + 7HCl = [C6H5-NH3]+Cl- + 3FeCl2 + 2H2O

2. Далее полученную соль обрабатывают щелочью для высвобождения анилина:

[C6H5-NH3]+Cl— + NaOH = C6H5-NH2 + NaCl + H2O

В качестве металлов могут быть использованы любые металлы, находящиеся до водорода в ряду активности.

Реакция хлорбензола с аммиаком:

С6H5−Cl + 2NH3 → C6H5NH2 + NH4Cl

Химические свойства аминокислот

Аминокислотами называют соединения в молекулах которых присутствуют два типа функциональных групп – амино (-NH2) и карбокси- (-COOH) группы.

Другими словами, аминокислоты можно рассматривать как производные карбоновых кислот, в молекулах которых один или несколько атомов водорода замещены на аминогруппы.

Таким образом, общую формулу аминокислот можно записать как (NH2)xR(COOH)y, где x и y чаще всего равны единице или двум.

Поскольку в молекулах аминокислот есть и аминогруппа и карбоксильная группа, они проявляют химические свойства схожие как аминов, так и карбоновых кислот.

Этерификация аминокислот

Аминокислоты могут вступать в реакцию этерификации со спиртами:

NH2CH2COOH + CH3OH → NH2CH2COOCH3+ H2O

Основные свойства аминокислот

1. Oбразование солей при взаимодействии с кислотами

NH2CH2COOH + HCl → [NH3CH2COOH]+Cl—

2. Взаимодействие с азотистой кислотой

NH2-CH2-COOH + HNO2 → НО-CH2-COOH + N2↑ + H2O

Примечание: взаимодействие с азотистой кислотой протекает так же, как и с первичными аминами

3. Алкилирование

NH2CH2COOH + CH3I → [CH3NH2CHCOOH]+I—

4. Взаимодействие аминокислот друг с другом

Аминокислоты могут реагировать друг с другом образуя пептиды – соединения, содержащие в своих молекулах пептидную связь –C(O)-NH-

При этом, следует отметить, что в случае проведения реакции между двумя разными аминокислотами, без соблюдения некоторых специфических условий синтеза, одновременно протекает образование разных дипептидов. Так, например, вместо реакции глицина с аланином выше, приводящей к глицилананину, может произойти реакция приводящая к аланилглицину:

Кроме того, молекула глицина не обязательно реагирует с молекулой аланина. Протекают также и реакции пептизации между молекулами глицина:

И аланина:

Помимо этого, поскольку молекулы образующихся пептидов как и исходные молекулы аминокислот содержат аминогруппы и карбоксильные группы, сами пептиды могут реагировать с аминокислотами и другими пептидами, благодаря образованию новых пептидных связей.

Отдельные аминокислоты используются для производства синтетических полипептидов или так называемых полиамидных волокон. Так, в частности с помощью поликонденсации 6-аминогексановой (ε-аминокапроновой) кислоты в промышленности синтезируют капрон:

Получаемая в результате этой реакции капроновая смола используется для производства текстильных волокон и пластмасс.

Образование внутренних солей аминокислот в водном растворе

В водных растворах аминокислоты существуют преимущественно в виде внутренних солей — биполярных ионов (цвиттер-ионов):

1) Реакция хлорпроизводных карбоновых кислот с аммиаком:

Cl-CH2-COOH + 2NH3 = NH2-CH2-COOH + NH4Cl

2) Расщепление (гидролиз) белков под действием растворов сильных минеральных кислот и щелочей.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.