Температура кипения водных растворов серной кислоты
Серная кислота и реакции с ней
[Deposit Photos]
Серная кислота (H₂SO₄) – это одна из сильнейших двухосновных кислот.
Если говорить о физических свойствах, то серная кислота выглядит как густоватая прозрачная маслянистая жидкость без запаха. В зависимости от концентрации, серная кислота имеет множество различных свойств и сфер применений:
- обработка металлов;
- обработка руд;
- производство минеральных удобрений;
- химический синтез.
История открытия серной кислоты
Серная кислота известна людям еще с далеких времен. В основном ее находили в вулканических озерах.
[Deposit Photos]
В XIX веке алхимик из Персии Мухаммад Ар-Рази методом прокаливания медного и железного купороса получил раствор серной кислоты .
Cпустя четыре века европейский ученый Альберт Магнус усовершенствовал метод персидского алхимика.
Современный промышленный (контактный) метод получения серной кислоты заключается в окислении диоксида серы — газа, который образуется при горении серы или серного колчедана. Далее образующийся триоксид серы взаимодействует с водой.via GIPHY
Контактная серная кислота имеет концентрацию от 92 до 94 процентов:
2SO₂ + O₂ = 2SO₂;
H₂O + SO₃ = H₂SO₄.
Физические и физико-химические свойства серной кислоты
H₂SO₄ смешивается с водой и SO₃ во всех соотношениях.
В водных растворах Н₂SO₄ образует гидраты типа Н₂SO₄·nH₂O
Температура кипения серной кислоты зависит от степени концентрации раствора и достигает максимума при концентрации больше 98 процентов.
Едкое соединение олеум представляет собой раствор SO₃ в серной кислоте.
При повышении концентрации триоксида серы в олеуме температура кипения понижается.
Химические свойства серной кислоты
[Deposit Photos]
При нагревании концентрированная серная кислота является сильнейшим окислителем, который способен окислять многие металлы. Исключение составляют лишь некоторые металлы:
- золото (Au);
- платина (Pt);
- иридий (Ir);
- родий (Rh);
- тантал (Та).
Окисляя металлы, концентрированная серная кислота может восстанавливаться до H₂S, S и SO₂.
Активный металл:
8Al + 15H₂SO₄(конц.) → 4Al₂(SO₄)₃ + 12H₂O + 3H₂S
Металл средней активности:
2Cr + 4 H₂SO₄(конц.)→ Cr₂(SO₄)₃ + 4 H₂O + S
Малоактивный металл:
2Bi + 6H₂SO₄(конц.) → Bi₂(SO₄)₃ + 6H₂O + 3SO₂
С холодной концентрированной серной кислотой железо и алюминий не реагируют, поскольку покрываются оксидной пленкой. Этот процесс называется пассивация.
Реакция серной кислоты и H₂O
При смешении H₂SO₄ с водой происходит экзотермический процесс: выделяется такое большое количество тепла, что раствор может даже закипеть. Проводя химические опыты, нужно всегда понемногу добавлять серную кислоту в воду, а не наоборот.
Серная кислота является сильным дегидрирующим веществом. Концентрированная серная кислота вытесняет воду из различных соединений. Ее часто используют в качестве осушителя.
Реакция серной кислоты и сахара
Жадность серной кислоты к воде можно продемонстрировать в классическом опыте — смешении концентрированной H₂SO₄ и сахара, который является органическим соединением (углеводом). Чтобы извлекать воду из вещества, серная кислота разрушает молекулы.
Для проведения опыта в сахар добавляют несколько капель воды и перемешивают. Затем осторожно вливают серную кислоту. Через короткий промежуток времени можно наблюдать бурную реакцию с образованием угля и выделением сернистого и углекислого газов.
Серная кислота и кубик сахара:
via GIPHY
Помните, что работать с серной кислотой очень опасно. Серная кислота — едкое вещество, которое моментально оставляет сильные ожоги на коже.
Здесь вы найдете безопасные эксперименты с сахаром, которые можно проводить дома.
Реакция серной кислоты и цинка
Эта реакция достаточно популярна и является одним из самых распространенных лабораторных методов получения водорода. Если в разбавленную серную кислоту добавить гранулы цинка, металл будет растворяться с выделением газа:
Zn + H₂SO₄ → ZnSO₄ + H₂.
Разбавленная серная кислота реагирует с металлами, которые в ряду активности стоят левее водорода:
Ме + H₂SO₄(разб.) → соль + H₂↑
Реакция серной кислоты с ионами бария
Качественной реакцией на серную кислоту и ее соли является реакция с ионами бария. Она широко распространена в количественном анализе, в частности гравиметрии:
H₂SO₄ + BaCl₂ → BaSO₄ + 2HCl
ZnSO₄ + BaCl₂ → BaSO₄ + ZnCl₂
Внимание! Не пытайтесь повторить эти опыты самостоятельно!
Серная кислота
- Введение
- 1 Физические и физико-химические свойства
- 2 Химические свойства
- 3 Применение
- 4 Токсическое действие
- 5 Исторические сведения
- 6 Дополнительные сведения
- 7 Получение серной кислоты
- 8 Стандарты
Примечания Литература
Се́рная кислота́ H2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3:H2O < 1, то это водный раствор серной кислоты, если > 1, — раствор SO3 в серной кислоте (олеум).
1. Физические и физико-химические свойства
Очень сильная кислота, при 18оС pKa (1) = −2,8, pKa (2) = 1,92 (К₂ 1,2 102); длины связей в молекуле S=O 0,143 нм, S—OH 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % H2О с температурой кипения 338,8оС).
Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4− — 0,18, H3SO4+ — 0,14, H3O+ — 0,09, H2S2O7, — 0,04, HS2O7⁻ — 0,05. Смешивается с водой и SO3, во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на H+, HSO4−, и SO₄2−.
Образует гидраты H2SO4·nH2O, где n = 1, 2, 3, 4 и 6,5.
1.1. Олеум
Растворы серного ангидрида SO3 в серной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3. Олеум содержит также пиросерные кислоты, получающиеся по реакциям:
Температура кипения водных растворов серной кислоты повышается с ростом ее концентрации и достигает максимума при содержании 98,3 % H2SO4.
10 | — | 1,0661 | −5,5 | 102,0 |
20 | — | 1,1394 | −19,0 | 104,4 |
40 | — | 1,3028 | −65,2 | 113,9 |
60 | — | 1,4983 | −25,8 | 141,8 |
80 | — | 1,7272 | −3,0 | 210,2 |
98 | — | 1,8365 | 0,1 | 332,4 |
100 | — | 1,8305 | 10,4 | 296,2 |
104,5 | 20 | 1,8968 | −11,0 | 166,6 |
109 | 40 | 1,9611 | 33,3 | 100,6 |
113,5 | 60 | 2,0012 | 7,1 | 69,8 |
118,0 | 80 | 1,9947 | 16,9 | 55,0 |
122,5 | 100 | 1,9203 | 16,8 | 44,7 |
Температура кипения олеума с увеличением содержания SO3 понижается.
При увеличении концентрации водных растворов серной кислоты общее давление пара над растворами понижается и при содержании 98,3 % H2SO4 достигает минимума.
С увеличением концентрации SO3 в олеуме, общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:
величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, H2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях серной кислоты, кроме соответствующей азеотропной смеси.
С повышением температуры усиливается диссоциация:
Уравнение температурной зависимости константы равновесия:
При нормальном давлении степень диссоциации: 10⁻⁵ (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К).
Плотность 100%-ной серной кислоты можно определить по уравнению:
С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO³ увеличивается.
При повышении концентрации и понижении температуры теплопроводность λ уменьшается:
где С — концентрация серной кислоты, в %.
Максимальную вязкость имеет олеум H₂SO₄·SO₃, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации 30 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H₂SO₄. Для олеума минимальное ρ при концентрации 10 % SO₃.
С повышением температуры ρ серной кислоты увеличивается.
Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10⁻⁵T3/2 см²/с.
2. Химические свойства
Серная кислота — довольно сильный окислитель, особенно при нагревании и в концентрированном виде; окисляет HI и частично HBr до свободных галогенов, углерод до CO2, S — до SO2, окисляет многие металлы (Cu, Hg и др.).
При этом серная кислота восстанавливается до SO2, а наиболее сильными восстановителями — до S и H2S. Концентрированная H2SO4 частично восстанавливается водородом, из-за чего не может применяться для его сушки.
Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением. Окислительные свойства для разбавленной H2SO4 нехарактерны.Серная кислота образует два ряда солей: средние — сульфаты и кислые — гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.
3. Применение
Серную кислоту применяют:
- в производстве минеральных удобрений;
- как электролит в свинцовых аккумуляторах;
- для получения различных минеральных кислот и солей;
- в производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ;
- в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности;
- в пищевой промышленности — зарегистрирована в качестве пищевой добавки E513(эмульгатор);
- в промышленном органическом синтезе в реакциях:
- дегидратации (получение диэтилового эфира, сложных эфиров);
- гидратации (этанол из этилена);
- сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
- алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
Мировое производство серной кислоты ок. 160 млн тонн в год. Самый крупный потребитель серной кислоты — производство минеральных удобрений. На 1 т P₂O₅ фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH₄)₂SO₄ — 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.
4. Токсическое действие
Серная кислота и олеум — очень едкие вещества. Они поражают кожу, слизистые оболочки, дыхательные пути (вызывают химические ожоги). При вдыхании паров этих веществ они вызывают затруднение дыхания, кашель, нередко — ларингит, трахеит, бронхит и т. д.
Предельно допустимая концентрация аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности II.
Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.
5. Исторические сведения
молекула серной кислоты по Дальтону
Серная кислота известна с древности. Возможно, первое упоминание о кислых газах, получаемых при прокаливании квасцов или железного купороса «зеленого камня», встречается в сочинениях, приписываемых арабскому алхимику Джабир ибн Хайяну.
В IX веке персидский алхимик Ар-Рази, прокаливая смесь железного и медного купороса (FeSO4•7H2O и CuSO4•5H2O), также получил раствор серной кислоты. Этот способ усовершенствовал европейский алхимик Альберт Магнус, живший в XIII веке.
В XV веке алхимики обнаружили, что серную кислоту можно получить, сжигая смесь серы и селитры, или из пирита — серного колчедана, более дешевого и распространенного сырья, чем сера.
Таким способом получали серную кислоту на протяжении 300 лет, небольшими количествами в стеклянных ретортах.
И только в середине 18 столетия, когда было установлено, что свинец не растворяется в серной кислоте, от стеклянной лабораторной посуды перешли к большим промышленным свинцовым камерам.
6. Дополнительные сведения
Мельчайшие капельки серной кислоты могут образовываться в средних и верхних слоях атмосферы в результате реакции водяного пара и вулканического пепла, содержащего большие количества серы. Получившаяся взвесь, из-за высокого альбедо облаков серной кислоты, затрудняет доступ солнечных лучей к поверхности планеты.
Поэтому (а также в результате большого количества мельчайших частиц вулканического пепла в верхних слоях атмосферы, также затрудняющих доступ солнечному свету к планете) после особо сильных вулканических извержений могут произойти значительные изменения климата.
Например, в результате извержения вулкана Ксудач (п-ов Камчатка, 1907 г.) повышенная концентрация пыли в атмосфере держалась около 2 лет, а характерные серебристые облака серной кислоты наблюдались даже в Париже[1].Взрыв вулкана Пинатубо в 1991 году, отправивший в атмосферу 3×107 тонн серы, привёл к тому, что 1992 и 1993 года были значительно холоднее, чем 1991 и 1994 [2].
8. Стандарты
- Кислота серная техническая ГОСТ 2184—77
- Кислота серная аккумуляторная. Технические условия ГОСТ 667—73
- Кислота серная особой чистоты. Технические условия ГОСТ 14262—78
- Реактивы. Кислота серная. Технические условия ГОСТ 4204—77
Примечания
- см. статью «Вулканы и климат» — www.space.com.ua/gateway/news.nsf/NewsAnalitR/B2C4B63702CCBF7BC2257245003996D8!open
- Русский архипелаг — Виновато ли человечество в глобальном изменении климата? — www.archipelag.ru/agenda/geoklimat/influence/guilty/
скачать
Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 10.07.
11 23:24:31
Похожие рефераты: Производство серной кислоты, Кислоты, Тейхоевые кислоты, Фталевые кислоты, Кислоты и ангидриды, Жировые кислоты, Неорганические кислоты, Фосфоновые кислоты, Валериановые кислоты.
Категории: Пищевые добавки, Высокоопасные вещества, Соединения серы, Прекурсоры оборот которых ограничен в РФ (Список IV), Окислители, Сульфаты, Неорганические кислородсодержащие кислоты.
Текст доступен по лицензии Creative Commons Attribution-ShareA.
Применение серной кислоты в промышленности
Пищевая промышленность знакома с серной кислотой в виде пищевой добавки Е513. Кислота выступает в качестве эмульгатора. Данная пищевая добавка используется для изготовления напитков. С её помощью регулируется кислотность. Помимо пищи, Е513 входит в состав минеральных удобрений.
Применение серной кислоты в промышленности имеет широкое распространение. Промышленный органический синтез использует серную кислоту для проведения следующих реакций: алкилирование, дегидратация, гидратация.
С помощью данной кислоты восстанавливается необходимое количество смол на фильтрах, что используются на производстве дистилированной воды.
Применение серной кислоты в быту
Серная кислота в домашних условиях пользуется спросом среди автолюбителей. Процесс приготовления раствора электролита для автомобильного аккумулятора сопровождается добавление серной кислоты. Работая с данной кислотой следует помнить о правилах безопасности.
В случае попадания кислоты на одежду или открытые участки кожи, стоит немедленно промыть их проточной водой. Серная кислота, которая разлилась на металл, может нейтрализоваться с помощью извести или мела.
Заправляя автомобильный аккумулятор необходимо придерживаться некой последовательности: постепенно добавлять кислоту к воде, а не наоборот. Когда вода вступает в реакцию с серной кислотой происходит сильное нагревание жидкости, что может приводить к её разбрызгиванию.
Поэтому стоит быть особо внимательным, чтобы жидкость не попала на лицо, или в глаза. Кислота должна храниться в плотно закрытой емкости. Важно, чтобы химическое вещество сохранялось в недоступном для детей месте.
Применение серной кислоты в медицине
В медицине нашлось широкое применение солей серной кислоты. К примеру, магний сульфат назначается людям с целью достичь слабительного эффекта. Еще одним производным серной кислоты есть натрий тиосульфат.
Лекарственное средство используется в роли противоядия в случае отправления следующими веществами: ртуть, свинец, галогены, цианид. Тиосульфат натрий вместе с соляной кислотой используется для лечения дерматологических заболеваний. Профессор Демьянович предложил союз этих двух препаратов для лечения чесотки.
В виде водного раствора, натрий тиосульфат вводят людям, которые страдают аллергическими недугами.
Магния сульфат обладает широким спектром возможностей. Поэтому применяется врачами различных специальностей. В качестве спазмолитика магний сульфат вводят больным при гипертонической болезни. Если у человека присутствуют заболевания желчного пузыря, вещество вводится внутрь для улучшение желчеотделения.
Применение серной кислоты в медицине в виде магния сульфата в гинекологической практике встречается часто. Гинекологи помогают роженицам посредством введения магния сульфата внутримышечно, таким способом они обезболивают роды. Помимо всех выше указанных свойств, магний сульфат обладает антисудорожным эффектом.
Применение серной кислоты в производстве
Серная кислота, области применение которой разнообразны, используется так же при производстве минеральных удобрений. Для более удобного сотрудничества, заводы,что занимаются производством серной кислоты и минеральных удобрений, в основном, расположены поблизости друг от друга. Этот момент создает непрерывное производство.
Применение серной кислоты в изготовлении красителей и синтетических волокон занимает второе место по распространенности после производства минеральных удобрений. Многие отрасли промышленности используют серную кислоту в некоторых процессах на производстве. Применение серной кислоты нашло спрос и в быту. Люди пользуются химическим веществом для обслуживания своих автомобилей.
Приобрести серную кислоту возможно в магазинах, что имеют специализацию по продаже химических веществ, в том числе у нас по ссылке. Серная кислота транспортируется соответственно правилам перевозки подобного груза. Железнодорожный или автомобильный транспорт перевозит кислоту в соответствующих емкостях.В первом случае в качестве емкости выступает цистерна, во втором – бочка или контейнер.
Особенности применения и биологическая опасность
Серная кислота и близкие к ней продукты — чрезвычайно токсичные вещества, которым присвоен класс опасностиII. Их пары поражают дыхательные пути, кожу, слизистые оболочки, вызывают затруднение дыхания, кашель, нередко – ларингит, трахеит, бронхит.
Предельно допустимая концентрация паров серной кислоты в воздухе рабочей зоны производственных помещений — 1 мг/м3 . Люди, работающие с токсичными кислотами, снабжаются спецодеждой и средствами личной защиты.
Концентрированная серная кислота при неаккуратном обращении с ней может вызвать химический ожог.
При попадании серной кислоты внутрь немедленно после приема появляются резкие боли в области рта и всего пищеварительного тракта, сильная рвота с примесью сначала алой крови, а затем бурыми массами. Одновременно с рвотой начинается сильный кашель.
Развивается резкий отек гортани и ых связок, вызывающий резкие затруднения дыхания. Зрачки расширяются, а кожа лица принимает темно-синий цвет. Отмечается падение и ослабление сердечной деятельности. Смерть наступает при дозе в 5 миллиграммов.
При отравлении серной кислотой необходимо срочное промывание желудка и прием магнезии.
Физические и физико-химические свойства
Молекулярная масса 98,082 г/моль; бесцветная маслянистая жидкость без запаха. Очень сильная двухосновная кислота, при 18°C pKa1 −2,8, К2 1,2 10², рKa2 1,92; длины связей в молекуле S=O 0,143 нм, S—ОН 0,154 нм, угол HOSOH 104°, OSO 119°; кипит, образуя азеотропную смесь (98,3 % H2SO4 и 1,7 % Н2О с температурой кипения 338,8 °C).
Серная кислота, отвечающая 100%-ному содержанию H2SO4, имеет состав (%): H2SO4 99,5, HSO4- 0,18, H3SO4+ 0,14, Н3О+ 0,09, Н2S2О7, 0,04, HS2O7- 0,05. Смешивается с водой и SO3, во всех соотношениях. В водных растворах серная кислота практически полностью диссоциирует на Н+, HSO4-, и SO42-.
Образует гидраты Н2SO4·nН2О, где n = 1, 2, 3, 4 и 6,5.
Олеум
Растворы SO3 в cерной кислоте называются олеумом, они образуют два соединения H2SO4·SO3 и H2SO4·2SO3. Олеум содержит также пиросерную кислоту, получающуюся по реакции:
Н2SO4 + SO3 → H2S2O7.
Температура кипения водных растворов cерной кислоты повышается с ростом ее концентрации и достигает максимума при содержании 98,3 % H2SO4.
10 | — | 1,0661 | −5,5 | 102,0 |
20 | — | 1,1394 | −19,0 | 104,4 |
40 | — | 1,3028 | −65,2 | 113,9 |
60 | — | 1,4983 | −25,8 | 141,8 |
80 | — | 1,7272 | −3,0 | 210,2 |
98 | — | 1,8365 | 0,1 | 332,4 |
100 | — | 1,8305 | 10,4 | 296,2 |
104,5 | 20 | 1,8968 | −11,0 | 166,6 |
109 | 40 | 1,9611 | 33,3 | 100,6 |
113,5 | 60 | 2,0012 | 7,1 | 69,8 |
118,0 | 80 | 1,9947 | 16,9 | 55,0 |
122,5 | 100 | 1,9203 | 16,8 | 44,7 |
Температура кипения олеума с увеличением содержания SO3 понижается.
При увеличении концентрации водных растворов cерной кислоты общее давление пара над растворами понижается и при содержании 98,3 % Н2SO4 достигает минимума.
С увеличением концентрации SO3, в олеуме общее давление пара над ним повышается. Давление пара над водными растворами серной кислоты и олеума можно вычислить по уравнению:
lgp(Па) = A — B/T + 2,126,
величины коэффициентов А и В зависят от концентрации серной кислоты. Пар над водными растворами серной кислоты состоит из смеси паров воды, Н2SO4 и SO3, при этом состав пара отличается от состава жидкости при всех концентрациях cерной кислоты, кроме соответствующей азеотропной смеси.
С повышением температуры усиливается диссоциация Н2SO4 ↔ H2O + SO3 — Q, уравнение температурной зависимости константы равновесия lnKp = 14,74965 − 6,71464ln(298/T) — 8,10161·104T² — 9643,04/T — 9,4577·10-3T + 2,19062·10-6T².
При нормальном давлении степень диссоциации: 10-5 (373 К), 2,5 (473 К), 27,1 (573 К), 69,1 (673 К). Плотность 100%-ной cерной кислоты можно определить по уравнению: d = 1,8517 − 1,1·10-3t + 2·10-6t² г/см³.
С повышением концентрации растворов серной кислоты их теплоемкость уменьшается и достигает минимума для 100%-ной серной кислоты, теплоемкость олеума с повышением содержания SO³ увеличивается.
При повышении концентрации и понижении температуры теплопроводность λ уменьшается: λ = 0,518 + 0,0016t — (0,25 + t/1293)·С/100, где С-концентрация серной кислоты, в %.Максимальнаую вязкость имеет олеум Н2SO4·SO3, с повышением температуры η снижается. Электрическое сопротивление серной кислоты минимально при концентрации 30 и 92 % H2SO4 и максимально при концентрации 84 и 99,8 % H2SO4. Для олеума минимальное ρ при концентрации 10 % SO3.
С повышением температуры ρ серной кислоты увеличивается.
Диэлектрическая проницаемость 100%-ной серной кислоты 101 (298,15 К), 122 (281,15 К); криоскопическая постоянная 6,12, эбулиоскопическая постоянная 5,33; коэффициент диффузии пара серной кислоты в воздухе изменяется в зависимости от температуры; D = 1,67·10-5T3/2 см²/с.
Химические свойства
Серная кислота — довольно сильный окислитель, особенно при нагревании; окисляет HI и частично НВr до свободных галогенов, углерод до СО2, S — до SO2, окисляет многие металлы (Cu, Hg и др.). При этом серная кислота восстанавливается до SO2, а наиболее сильными восстановителями — до S и H2S. Концентрированная H2SO4 частично восстанавливается Н2.
Из-за чего не может применяться для его сушки. Разбавленная H2SO4 взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода, с выделением Н2. Окислительные свойства для разбавленной H2SO4 нехарактерны. Серная кислота дает два ряда солей: средние — сульфаты и кислые — гидросульфаты, а также эфиры.
Известны пероксомоносерная (или кислота Каро) Н2SО5; и пероксодисерная H2S2O8 кислоты.
Применение
Серную кислоту применяют:
- В производстве минеральных удобрений;
- Как электролит в свинцовых аккумуляторах;
- Для получения различных минеральных кислот и солей,
- В производстве химических волокон, красителей, дымообразующих веществ и взрывчатых веществ,
- В нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности.
- В пищевой промышленности используется в качестве эмульгатора (пищевая добавка E513).
- В промышленном органическом синтезе в реакциях:
- дегидратации (получение диэтилового эфира, сложных эфиров);
- гидратации (этанол из этилена);
- сульфирования (синтетические моющие средства и промежуточные продукты в производстве красителей);
- алкилирования (получение изооктана, полиэтиленгликоля, капролактама) и др.
Самый крупный потребитель серной кислоты — производство минеральных удобрений. На 1 т Р2О5 фосфорных удобрений расходуется 2,2-3,4 т серной кислоты, а на 1 т (NH4)2SO4 — 0,75 т серной кислоты. Поэтому сернокислотные заводы стремятся строить в комплексе с заводами по производству минеральных удобрений.
Токсическое действие
Серная кислота и олеум — чрезвычайно агрессивные вещества, поражают дыхательные пути, кожу, слизистые оболочки, вызывают затруднение дыхания, кашель, нередко — ларингит, трахеит, бронхит и т. д.
ПДК аэрозоля серной кислоты в воздухе рабочей зоны 1,0 мг/м³, в атмосферном воздухе 0,3 мг/м³ (максимальная разовая) и 0,1 мг/м³ (среднесуточная). Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности 2.
Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды S, и выпадать в виде кислотных дождей.
Получение серной кислоты
Полная статья: производство серной кислоты.
Литература
- Справочник сернокислотчика, под ред. К. М. Малина, 2 изд., М., 1971;