КСЕНОНА ФТОРИДЫ
№54 Ксенон
После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом.Но найти их удалось не сразу. Это и не удивительно: в 1 м3 воздуха всего лишь 0,08 мл ксенона.
Рамзай совместно с Траверсом переработали около 100 т жидкого воздуха и получили 0,2 мл газа, который голубовато светился в электрическом разряде и давал своеобразный спектр с характерные спектральными линиями от оранжевой до фиолетовой области. Так был открыт новый инертный газ.
Его назвали, ксеноном, что в переводе с греческого значит «чужой».
Получение:
Получают ректификацией жидкого воздуха.Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу.
Физические свойства:
Ксенон представляет собой тяжелый, редкий и пассивный газ, который при значительном охлаждении может быть переведен в жидкое и твердое состояние. Как и все инертные газы он не имеет цвета и запаха. При высоком давлении способен образовывать кристаллические гидраты. Растворяется в воде и органических растворителях. Ксенон обладает сравнительно хорошей электропроводностью.
Химические свойства:
С точки зрения химика ксенон на самом деле оказался «чужим» среди инертных газов. Он первым вступил в химическую реакцию, первым образовал устойчивое соединение. И потому сделал неуместным сам термин «инертные газы».
Мысль о том, что ксенон может образовывать устойчивые соединения с галогенами, приходила в голову многим ученым. Так, еще в 1924 г. высказывалась идея, что фториды и хлориды ксенона термодинамически вполне стабильны и могут существовать при обычных условиях.
Через девять лет эту идею поддержали и развили известные теоретики — Полинг и Оддо.Изучение электронной структуры ксенона с позиций квантовой механики привело к заключению что он должен образовывать устойчивые соединения с фтором.
Однако лишь в 1961 г.
Бартлетт из газообразного гексафторида платины и газообразного ксенона получает первое химическое соединение ксенона — гексафторплатинат ксенона XePtF6.Заставить ксенон вступить в реакцию без участия фтора (или некоторых его соединений) пока не удалось. Все известные ныне соединения ксенона получены из его фторидов.
Советские химики внесли большой вклад в синтез и изучение соединений ксенона (В. А. Легасов).В соединениях проявляет степени окисления +2, +4, +6, +7.
Важнейшие соединения:
Дифторид ксенона XeF2, летучие кристаллы, имеет резкий специфический запах. Он образуется при действии электрического разряда на смесь ксенона и четырехфтористого углерода. Очень чистый XeF2 получается, если смесь ксенона и фтора облучить ультрафиолетом.
Растворимость дифторида в воде невелика, однако раствор его — сильнейший окислитель. Постепенно окисляет воду, образуя ксенон, кислород и фтористый водород; особенно быстро реакция идет в щелочной среде.
Тетрафторид ксенона XeF4, вполне устойчивое соединение, молекула его имеет форму квадрата с ионами фтора по углам и ксеноном в центре. Кристаллическое вещество, во влажном воздухе взрывоопасен. Гидролизуется в воде с образованием оксида ксенона ХеО3.
Тетрафторид ксенона фторирует ртуть:
XeF4 + 2Hg = Хе + 2HgF2.Платина тоже фторируется этим веществом, но только растворенным во фтористом водороде.
Гексафторид ксенона XeF6, крист. вещество, чрезвычайно активен и разлагается со взрывом.
Гидролизуется с образованием оксофторидов и оксида ксенона(VI), с растворами щелочей диспропорционирует, образуя перксенаты. Он легко реагирует с фторидами щелочных металлов (кроме LiF), образуя соединения типа CsF*XeF6
Гексафторплатинат ксенона XePtF6 твердое оранжево-желтое вещество. При нагревании в вакууме XePtF6 возгоняется без разложения, в воде гидролизуется, выделяя ксенон:
2XеPtF6+6H2O = 2Xe+РtO3 + 12HF
Существует также соединение Xе[PtF6]2. Аналогичные соединения ксенон образует с гексафторидами рутения, родия и плутония.
Оксид ксенона(VI), бесцветные, расплывающиеся на воздухе кристаллы. Молекула ХеО3 имеет структуру приплюснутой треугольной пирамиды с атомом ксенона в вершине. Это соединение крайне неустойчиво; при его разложении мощность взрыва приближается к мощности взрыва тротила. Растворим, сильный окислитель.
Ксенаты соли ксеноновой кислоты — H2ХеO4, растворимы, в щелочной среде разлагаются на ксенон и перксенаты. Окислители, взрывоопасны.
Оксид ксенона(VIII) Молекула ХеО4 построена в виде тетраэдра с атомом ксенона в центре. Вещество это нестойко, при температуре выше 0°С разлагается на кислород и ксенон. Иногда разложение носит характер взрыва.
Перксенаты соли перксеноновой кислоты — H4ХеO6, кристаллич., устойчивы до 300°С, нерастворимы. Самые сильные из известных окислителей.
Применение:
В светотехнике признание получили ксеноновые лампы высокого давления. В таких лампах светит дуговой разряд в ксеноне, находящемся под давлением в несколько десятков атмосфер. Свет в ксеноновых лампах появляется сразу после включения, он ярок и имеет непрерывный спектр — от ультрафиолетового до ближней области инфракрасного.
Ксеноновые лампы применяются во всех случаях, когда правильная цветопередача имеет решающее значение: при киносъемках и кинопроекции, при освещении сцены и телевизионных студий, в текстильной и лакокрасочной промышленности.Ксеноном пользуются и медики — при рентгеноскопических обследованиях головного мозга.
Как и баритовая каша, применяющаяся при просвечивании кишечника, ксенон сильно поглощает рентгеновское излучение и помогает найти места поражения. При этом он совершенно безвреден. Радиоактивный изотоп элемента № 54, ксенон-133, используют при исследовании функциональной деятельности легких и сердца.
В виде фторидов ксенона удобно хранить и транспортировать и дефицитный ксенон, и всеразрушающий фтор. Соединения ксенона используются также как сильные окислители и фторирующие агенты.
Самоволова О.
См. также:Белов Д.В. Неинертный благородный ксенон. Химия в школе, 2008, №6, стр.10
Трифонов Д.Н., Столетие нулевой группы. Химия (прил. к газ. «1-е Сентября»), №5, 2000 г.
Ксенон № 54 химический элемент
Химия Ксенон
Инертные газы обнаружены в атмосфере в 1894 г. После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу.
Это и не удивительно: в 1 м3 воздуха 9,3 л аргона и всего лишь 0,08 мл ксенона.
Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород.
Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее трудно-летучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал Сырой (то есть неочищенный) криптон. Однако после откачки его в сосуде неизменно оставался пузырек газа.
Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой.Характерные спектральные линии — визитная карточка элемента. У Рамзая и Траверса были все основания считать, что открыт новый инертный газ.
Его назвали ксеноном, что в переводе с греческого значит «чужой»: в криптоновой фракции воздуха он действительно выглядел чужаком.
В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около 100 т жидкого воздуха; индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см3 этого газа. Необычайная для того времени тонкость эксперимента!
Хотя содержание ксенона в атмосфере крайне мало, именно воздух — практически единственный и неисчерпаемый источник ксенона. Неисчерпаемый — потому, что почти весь ксенон возвращается в атмосферу.
Процесс выделения благородных газов из воздуха описан многократно. Воздух, очищенный предварительно от углекислоты и влаги, сжижают, а затем начинают испарять. Сначала «летят» более легкие газы. После испарения основной массы воздуха рассортировывают оставшиеся тяжелые инертные газы.
Любопытно, что с точки зрения химика ксенон на самом деле оказался «чужим» среди инертных газов. Он первым вступил в химическую реакцию, первым образовал устойчивое соединение. И потому сделал неуместным сам термин «инертные газы».
Ксенон вступает в реакции
Когда-то сочетание слов «химия ксенона» казалось абсурдным. И все же дерзкая мысль о том, что ксенон может образовывать устойчивые соединения с галогенами, приходила в голову многим ученым. Так, еще в 1924 г.
высказывалась идея, что некоторые соединения тяжелых инертных газов (в частности, фториды и хлориды ксенона) термодинамически вполне стабильны и могут существовать при обычных условиях.
Через девять лет эту идею поддержали и развили известные теоретики — Полипг и Оддо.
Изучение электронной структуры оболочек криптона и ксенона с позиций квантовой механики привело к заключению, что эти газы в состоянии образовывать устойчивые соединения с фтором.
Нашлись и экспериментаторы, решившие проверить гипотезу, но шло время, ставились опыты, а фторид ксенона не получался.
В результате почти все работы в этой области были прекращены, и мнение об абсолютной инертности благородных газов утвердилось окончательно.
Однако в 1961 г. Бартлетт, сотрудник одного из университетов Канады, изучая свойства гексафторида платины — соединения более активного, чем сам фтор, установил, что потенциал ионизации у ксенона ниже, чем у кислорода (12,13 и 12,20 эв соответственно). Между тем кислород образовывал с гексафторидом платины соединение состава O2PtF6… Бартлетт ставит опыт и при комнатной температуре из газообразного гексафторида платины и газообразного ксенона получает твердое оранжево-желтое вещество — гексафторплатинат ксенона XePtF6, поведение которого ничем не отличается от поведения обычных химических соединений. При нагревании в вакууме XePtF6 возгоняется без разложения, в воде гидролизуется, выделяя ксенон:
2XePtFe + 6Н2O → 2Хе + O2 + 2PtO2 + 12HF.
Последующие работы Бартлетта позволили установить, что ксенон в зависимости от условий реакции образует два соединения с гексафторидом платины: XePtF6 и Xe(PtF6)2;. при гидролизе их получаются одни и те же конечные продукты.
Убедившись, что он действительно вступил в реакцию с гексафторидом платины, Бартлетт выступил с докладом и в 1962 г. опубликовал в журнале «Proceedings of the Chemical Society» статью, посвященную сделанному им открытию. Статья вызвала огромный интерес, хотя многие химики отнеслись к ней с нескрываемым недоверием. Но уже через три недели эксперимент Бартлетта повторила группа американских исследователей во главе с Черником в Аргоннской национальной лаборатории. Кроме того, они впервые синтезировали аналогичные соединения ксенона с гексафторидами рутения, родия и плутония. Так были открыты первые пять соединений ксенона: XePtF6, Xe(PtFe)2, XeRuFe, XeRhF6, XePuFe — миф об абсолютной инертности благородных газов развеян и заложено начало химии Xe.
Фториды ксенона
Настало время проверить правильность гипотезы о возможности прямого взаимодействия ксенона с фтором.
Смесь газов (1 часть ксенона и 5 частей фтора) поместили в никелевый (поскольку никель наиболее устойчив к действию фтора) сосуд и нагрели под сравнительно небольшим давлением. Через час сосуд быстро охладили, а оставшийся в нем газ откачали и проанализировали. Это был фтор. Весь газ прореагировал! Вскрыли сосуд и обнаружили в нем бесцветные кристаллы XeF,.
Тетрафторид Xe оказался вполне устойчивым соединением, молекула его имеет форму квадрата с ионами фтора по углам и ксеноном в центре. Тетрафторид Xe фторирует ртуть:
XeF4 + 2Hg → Хе + 2HgF2.Платина тоже фторируется этим веществом, но только растворенным во фтористом водороде.
Интересно в химии ксенона то, что, меняя условия реакции, можно получить не только XeF4, но и другие фториды — XeF2, XeF6.
Советские химики В. М. Хуторецкий и В. А. Шпанский показали, что для синтеза дпфторида ксенона совсем не обязательны жесткие условия.
По предложенному ими способу смесь ксенона и фтора (в молекулярном отношении 1:1) подается в сосуд из никеля или нержавеющей стали, и при повышении давления до 35 атм начинается самопроизвольная реакция.
Дифторпд ксенона XeF2 можно получить, не пользуясь элементарным фтором.
Он образуется при действии электрического разряда на смесь ксенона и четырехфтористого углерода. Возможен, конечно, и прямой синтез. Очень чистый XeF2 получается, если смесь ксенона и фтора облучить ультрафиолетом.
Растворимость дифторида в воде невелика, однако раствор его — сильнейший окислитель. Постепенно он саморазлагается на ксенон, кислород и фтористый водород; особенно быстро разложение идет в щелочной среде. Дифторид имеет резкий специфический запах.
Большой теоретический интерес представляет метод синтеза дифторида ксенона, основанный на воздействии на смесь газов ультрафиолетового излучения (длина волн порядка 2500—3500 А). Излучение вызывает расщепление, молекул фтора F2 на свободные атомы. В этом и заключается причина образования дифторида: атомарный фтор необычайно активен.
Для получения XeFe требуются более жесткие условия: 700° С и 200 атм. В таких условиях в смеси Xe и фтора (отношение от 1:4 до 1 : 20) практически весь ксенон превращается в XeF6.
Гексафторид ксенона черезвычайно активен и разлагается со взрывом. Он легко реагирует с фторидами щелочных металлов (кроме LiF): XeF6 + RbF = RbXeF7, но при 50° С эта соль разлагается: 2RbXeF7 = XeF6 + Rb2XeF8.Сообщения о синтезе высшего фторида XeFs, устойчивого лишь при температуре ниже 77° К, не подтвердились.Синтез первых соединений Xe поставил перед химиками вопрос о месте инертных газов в периодической системе элементов. Прежде благородные газы были выделены в отдельную нулевую группу, что вполне отвечало представлению об их валентности.
Но, когда ксенон вступил в химическую реакцию, когда стали известны его высший оксид ХеO4 и оксифториды, в которых валентность ксенона равна 8 (а это вполне согласуется со строением его электронной оболочки), инертные газы решили перенести в VIII группу.
Нулевая группа перестала существовать.
Заставить ксенон вступить в реакцию без участия фтора (или некоторых его соединений) пока не удалось. Все известные ныне соединения ксенона получены из его фторидов. Эти вещества обладают повышенной реакционной способностью. Лучше всего изучено взаимодействие фторидов ксенона с водой.
Гидролиз XeF4 в кислой среде ведет к образованию окиси ксенона ХеO3— бесцветных, расплывающихся на воздухе кристаллов. Молекула ХеO3 имеет структуру приплюснутой треугольной пирамиды с атомом ксенона в вершине.
Это соединение крайне неустойчиво; при его разложении мощность взрыва приближается к мощности взрыва тротила. Достаточно нескольких сотен миллиграммов ХеO3, чтобы эксикатор разнесло в куски.
Не исключено, что со временем трехокись ксенона будут использовать как взрывчатое вещество дробящего действия. Такая взрывчатка была бы очень удобна, потому что все продукты взрывной реакции — газы.
Пока же использовать для этой цели трехокись ксенона слишком дорого — ведь ксенона в атмосфере меньше, чем золота в морской воде, и процесс его выделения слишком трудоемок. Напомним, что для получения 1 м3 ксенона нужно переработать 11 млн. м3 воздуха.
Соответствующая трехокиси неустойчивая кислота шестивалентного ксенона Н2ХеO4 образуется в результате гидролиза XeF6 при 0°С:
XeF6 + 4Н20 → 6HF + Н2ХеO4.
Если к продуктам этой реакции быстро добавить Ва(ОН)2, выпадает белый аморфный осадок ВаХеO4. При 125° С он разлагается на окись бария, ксенон и кислород. Получены аналогичные соли — ксенонаты аммония, натрия, лития, кальция и калия.
При действии озона на раствор ХеO3 в одномолярном едком натре образуется натриевая соль высшей кислоты ксенона Na4XeO6. Перксенонат натрия может быть выделен в виде бесцветного кристаллогидрата Na4XeO6 • 6Н2O. К образованию перксенонатов приводит и гидролиз XeF6 в гидроокисях натрия и калия. Если твердую соль Na4XeO6 об-работать раствором нитрата свинца, серебра или уранила UO22+ получаются соответствующие перксенопаты. Перксенонат серебра — черного цвета, свинца и уранила — желтого. Перксенонатанион — самый сильный из ионов окислителей. Чрезвычайно мощный окислитель и перхлорат ксенона Хе(СlO4)г, в котором ксенон играет роль катиона. Из всех окислителей-перхлоратов он самый сильный.
Окисел, соответствующий высшей кислоте ксенона, получают при взаимодействии Na4XeO6 с охлажденной безводной серной кислотой. Получается уже упоминавшаяся четырехокись ксенона ХеO4. Ее молекула построена в виде тетраэдра с атомом ксенона в центре. Вещество это нестойко. При температуре выше 0°С оно разлагается на кислород и ксенон. Иногда разложение четырехокиси ксенона (трехокиси — тоже) носит характер взрыва.
И все-таки большинство известных ныне соединений ксенона (а всего их получено примерно полторы сотни) — бескислородные. Преимущественно это двойные соли — продукты взаимодействия фторидов ксенона с фторидами сурьмы, мышьяка, бора, тантала, ниобия, хрома, платиновых металлов.
Сильные окислительные свойства соединений ксенона химики уже используют в своих целях. Так, водные растворы дифторида ксенона позволили впервые в мировой практике получить перброматы — соединения семивалентного брома, состав которых МВгO4, где М — одновалентный металл.