Натуральные пластмассы, полимеры

Сферы применения полимерных материалов

Натуральные пластмассы, полимеры
Полимеры — это соединения макромолекулярного типа. Их основа — мономеры, из которых формируется макроцепь полимерных веществ. Применение полимеров позволяет создавать материалы, обладающие высоким уровнем прочности, износостойкости и рядом других полезных характеристик.

Природные. Образуются естественным природным путем. Пример: янтарь, шелк, натуральный каучук.

Синтетические. Производятся в лабораторных условиях и не содержат природных компонентов. Пример: поливинилхлорид, полипропилен, полиуретан.

Искусственные. Производятся в лабораторных условиях, но в их основе лежат природные составляющие. Пример: целлулоид, нитроцеллюлоза.

Виды полимеров и их применение очень многообразны. Большая часть предметов, которые окружают человека, созданы с использованием этих материалов. В зависимости от типа, они имеют различные свойства, которые и определяют сферу их применения.

Существует ряд распространенных полимеров, с которыми мы сталкиваемся ежедневно и этого даже не замечаем:

  • Полиэтилен. Используется для производства упаковки, труб, изоляций и других изделий, где требуется обеспечить влагонепроницаемость, устойчивость к агрессивным средам и диэлектрические характеристики.
  • Фенолформальдегид. Является основой пластмасс, лаков и клеевых составов.
  • Синтетический каучук. Обладает лучшими прочностными характеристиками и устойчивостью к истиранию, чем натуральный. Из него изготавливается резина и различные материалы на ее основе.
  • Полиметилметакрилат — всем известный плексиглас. Используется в электротехнике, а также в качестве конструкционного материала в других производственных областях.
  • Полиамил. Из него изготавливается ткань и нитки. Это капрон, нейлон и другие синтетические материалы.
  • Политетрафторэтилен, он же — тефлон. Применяется в медицине, пищевой промышленности и различных других областях. Всем известны сковородки с тефлоновым покрытием, которые были когда-то очень популярны.
  • Поливинилхлорид, он же ПВХ. Часто встречается в виде пленки, используется для изготовления изоляции кабелей, кожзаменителей, оконных профилей, натяжных потолков. Имеет очень широкую сферу использования.
  • Полистирол. Применяется для производства бытовых изделий и широкого ряда строительных материалов.
  • Полипропилен. Из этого полимера изготавливаются трубы, тара, нетканые материалы, бытовые изделия, строительные клеи и мастики.

Где применяются полимеры

Область применения полимерных материалов очень широка. Сейчас можно с уверенностью сказать — они используются в промышленности и производстве практически в любой сфере. Благодаря своим качествам полимеры полностью заменили природные материалы, существенно уступающие им по характеристикам. Поэтому стоит рассмотреть свойства полимеров и области их применения.

По классификации материалы можно разделить на:

  • композиты;
  • пластмассы;
  • пленки;
  • волокна;
  • лаки;
  • резины;
  • клеящие субстанции.

Качества каждой разновидности определяет область применения полимеров.

Быт

Оглядевшись вокруг, мы можем увидеть огромное количество изделий из синтетических материалов. Это детали бытовых приборов, ткани, игрушки, кухонные принадлежности и даже бытовая химия. По сути — это огромный ряд изделий от обычной пластмассовой расчески до стирального порошка.

Такое широкое использование обусловлено низкой стоимостью производства и высокими качественными характеристиками. Изделия прочны, гигиеничны, не содержат вредных для организма человека компонентов и универсальны.

Даже обычные капроновые колготки изготовлены из полимерных составляющих. Поэтому полимеры в быту применяются гораздо чаще, чем натуральные материалы.

Они существенно превосходят их по качествам и обеспечивают низкую цену изделия.

Примеры:

  • пластиковая посуда и упаковка;
  • части различных бытовых приборов;
  • синтетические ткани;
  • игрушки;
  • кухонные принадлежности;
  • изделия для санузлов.

Любая вещь из пластика или с включением синтетических волокон изготавливается на основе полимеров, так что перечень примеров может быть бесконечным.

Строительная отрасль

Применение полимеров в строительстве тоже очень обширно. Их стали использовать сравнительно недавно, примерно 50-60 лет тому назад. Сейчас большая часть строительных материалов производится с применением полимеров.

Основные направления:

  • изготовление ограждающих и строительных конструкций различного типа;
  • клеящие составы и пены;
  • производство инженерных коммуникаций;
  • материалы для тепло- и гидроизоляции;
  • наливные полы;
  • различные отделочные материалы.

В сфере ограждающих и строительных конструкций — это полимербетон, композитная арматура и балки, рамы для стеклопакетов, поликарбонат, стеклопластик и различные другие материалы подобного типа. Все изделия на полимерной основе имеют высокие прочностные характеристики, длительный срок службы и устойчивость к негативным природным явлениям.

Клеи отличаются устойчивостью к влаге и отличной адгезией. Они используются для склеивания различных материалов и имеют высокую прочность соединения. Пены — идеальное решение для герметизации стыков. Они обеспечивают высокие теплосберегающие характеристики и насчитывают огромное количество разновидностей с различными качествами.

Применение полимерных материалов в сфере производства инженерных коммуникаций — одно из наиболее обширных направлений. Они используются в водоснабжении, электрообеспечении, теплосбережении, оборудовании канализационных сетей, вентиляции и отопительных систем.

Материалы для теплоизоляции имеют отличные теплосберегающие характеристики, малый вес и доступную стоимость. Гидроизоляция отличается высоким уровнем водонепроницаемости и может выпускаться в различном виде (рулонные изделия, порошок или жидкие смеси).
Полимерные полы — это специализированный материал, который позволяет создать на черновой основе идеально ровную поверхность без трудоемких работ. Такая технология используется как в бытовом, так и в промышленном строительстве.

Современная промышленность выпускает широкий ряд отделочных материалов на основе полимеров. Они могут иметь различную структуру и форму выпуска, но по характеристикам всегда превосходят натуральную отделку и имеют гораздо меньшую стоимость.

Медицина

Применение полимеров в медицине имеет широкое распространение. Самый простой пример — одноразовые шприцы. На данный момент производится около 3 тысяч изделий, используемых в медицинской сфере.

Чаще всего в данной области используются силиконы. Они незаменимы при проведении пластических операций, создания защиты на ожоговых поверхностях, а также изготовления различных изделий.

В медицине полимеры использовались с 1788 года, но в ограниченном количестве.

А 1895 году они получают более широкое распространение после операции, в ходе которой костный дефект был закрыт полимером на основе целлулоида.

Все материалы данного типа можно разделить на три группы согласно применению:

  • 1 группа — для введения в организм. Это искусственные органы, протезы, кровезаменители, клеи, лекарственные препараты.
  • 2 группа — полимеры, имеющие контакт с тканями, а также веществами, предназначенными для введения в организм. Это тара для хранения крови и плазмы, стоматологические материалы, шприцы и хирургические инструменты, составляющие медицинского оборудования.
  • 3 группа — материалы, не имеющие контакта с тканями и не вводящиеся в организм. Это оборудование и приборы, лабораторная посуда, инвентарь, больничные принадлежности, постельное белье, оправы для очков и линзы.

Сельское хозяйство

Наиболее активно полимеры используются в тепличном хозяйстве и мелиорации. В первом случае имеется потребность в различных пленках, агроволокне, сотовом поликарбонате, а также арматуре. Это все необходимо для сооружения теплиц.

В мелиорации используются трубы из полимерных материалов. Они имеют меньший вес, чем металлические, доступную стоимость и более длительный срок службы.

Пищевая промышленность

Полимеры применяются в различных отраслях деятельности человека, что обусловливает их высокую востребованность. Обойтись без них невозможно. Натуральные материалы не могут обеспечить ряда характеристик, необходимых для соответствия конкретным условиям использования.

Что такое полимеры и пластмассы?

Натуральные пластмассы, полимеры

Автор этой статьи  академик  Виктор Александрович  Кабанов — выдающийся ученый в области химии высокомолекулярных соединений, ученик и преемник акадtvbrf В.А. Каргина, одного из мировых лидеров науки о полимерах, создателя  крупной научной школы, автора большого количества работ, книг и учебных пособий.

Полимеры (от греч.

polymeres — состоящий из многих частей, многообразный) — это химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев). Атомы, входящие в состав макромолекул, соединены друг с другом силами главных и (или) координационных валентностей. 

Классификация полимеров

По происхождению полимеры  делятся на природные (биополимеры), например белки, нуклеиновые кислоты, смолы природные, и синтетические, например полиэтилен, полипропилен, феноло-формальдегидные смолы.

Атомы или атомные группы могут располагаться в макромолекуле в виде:

  • открытой цепи или вытянутой в линию последовательности циклов (линейные полимеры, например каучук натуральный);
  • цепи с разветвлением (разветвленные полимеры, например амилопектин);
  • трёхмерной сетки (сшитые полимеры, например отверждённые эпоксидные смолы).

Полимеры, молекулы которых состоят из одинаковых мономерных звеньев, называются гомополимерами, например поливинилхлорид, поликапроамид, целлюлоза.

Макромолекулы одного и того же химического состава могут быть построены из звеньев различной пространственной конфигурации. Если макромолекулы состоят из одинаковых стереоизомеров или из различных стереоизомеров, чередующихся в цепи в определённой периодичности, полимеры называются стереорегулярными (см. Стереорегулярные полимеры).

Что такое сополимеры
Полимеры, макромолекулы которых содержат несколько типов мономерных звеньев, называются сополимерами.

Сополимеры, в которых звенья каждого типа образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах макромолекулы, называются блоксополимерами.

К внутренним (неконцевым) звеньям макромолекулы одного химического строения могут быть присоединены одна или несколько цепей другого строения. Такие сополимеры называются привитыми (см. также Сополимеры).

Полимеры, в которых каждый или некоторые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, называются стереоблоксополимерами.

Гетероцепные и гомоцепные полимеры

В зависимости от состава основной (главной) цепи полимеры делят на: гетероцепные, в основной цепи которых содержатся атомы различных элементов, чаще всего углерода, азота, кремния, фосфора, и гомоцепные, основные цепи которых построены из одинаковых атомов.

Из гомоцепных полимеров наиболее распространены карбоцепные полимеры, главные цепи которых состоят только из атомов углерода, например полиэтилен, полиметилметакрилат, политетрафторэтилен. Примеры гетероцепных полимеров. — полиэфиры (полиэтилентерефталат, поликарбонаты и др.

), полиамиды, мочевино-формальдегидные смолы, белки, некоторые кремнийорганические полимеры. полимеры, макромолекулы которых наряду с углеводородными группами содержат атомы неорганогенных элементов, называются элементоорганическими (см. Элементоорганические полимеры). Отдельную группу полимеров.

образуют неорганические полимеры, например пластическая сера, полифосфонитрилхлорид (см. Неорганические полимеры).

Свойства и важнейшие характеристики полимеров

Линейные полимеры обладают специфическим комплексом физико-химических и механических свойств.

Важнейшие из этих свойств: способность образовывать высокопрочные анизотропные высокоориентированные волокна и плёнки; способность к большим, длительно развивающимся обратимым деформациям; способность в высокоэластическом состоянии набухать перед растворением; высокая вязкость растворов (см. Растворы полимеров, Набухание). Этот комплекс свойств обусловлен высокой молекулярной массой, цепным строением, а также гибкостью макромолекул. При переходе от линейных цепей к разветвленным, редким трёхмерным сеткам и, наконец, к густым сетчатым структурам этот комплекс свойств становится всё менее выраженным. Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Полимеры могут существовать в кристаллическом и аморфном состояниях. Необходимое условие кристаллизации — регулярность достаточно длинных участков макромолекулы. В кристаллических полимерах.

возможно возникновение разнообразных надмолекулярных структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала.

Надмолекулярные структуры в незакристаллизованных (аморфных) полимеров  менее выражены, чем в кристаллических.

Незакристаллизованные полимеры могут находиться в трёх физических состояниях: стеклообразном, высокоэластическом и вязкотекучем.

полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. В зависимости от химического состава, строения и взаимного расположения макромолекул свойства полимеров.

могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20 град.С — эластичный материал, который при температуре — 60 град.

С переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жёстких цепей, при температуре около 20 град.С — твёрдый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100 град.С.

Целлюлоза — полимер с очень жёсткими цепями, соединёнными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры её разложения. Большие различия в свойствах П.

могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235 град.

С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80 град.С.

Полимеры могут вступать в следующие основные типы реакций: образование химических связей между макромолекулами (т. н. сшивание), например при вулканизации каучуков, дублении кожи; распад макромолекул на отдельные, более короткие фрагменты (см. Деструкция полимеров); реакции боковых функциональных групп полимеров.

с низкомолекулярными веществами, не затрагивающие основную цепь (т. н. полимераналогичные превращения); внутримолекулярные реакции, протекающие между функциональными группами одной макромолекулы, например внутримолекулярная циклизация. Сшивание часто протекает одновременно с деструкцией.

Примером полимераналогичных превращений может служить омыление поливинилацетата, приводящее к образованию поливинилового спирта.

Скорость реакций полимеров. с низкомолекулярными веществами часто лимитируется скоростью диффузии последних в фазу полимеров. Наиболее явно это проявляется в случае сшитых полимеров.

Скорость взаимодействия макромолекул с низкомолекулярными веществами часто существенно зависит от природы и расположения соседних звеньев относительно реагирующего звена.

Это же относится и к внутримолекулярным реакциям между функциональными группами, принадлежащими одной цепи.

Некоторые свойства полимеров., например растворимость, способность к вязкому течению, стабильность, очень чувствительны к действию небольших количеств примесей или добавок, реагирующих с макромолекулами. Так, чтобы превратить линейный полимеры из растворимого в полностью нерастворимый, достаточно образовать на одну макромолекулу 1-2 поперечные связи.

Важнейшие характеристики полимеров — химический состав, молекулярная масса и молекулярно-массовое распределение, степень разветвлённости и гибкости макромолекул, стереорегулярность и др. Свойства полимеров. существенно зависят от этих характеристик.

Получение полимеров

Природные полимеры образуются в процессе биосинтеза в клетках живых организмов. С помощью экстракции, фракционного осаждения и др. методов они могут быть выделены из растительного и животного сырья. Синтетические полимеры получают полимеризацией и поликонденсацией.

Карбоцепные полимеры  обычно синтезируют полимеризацией мономеров с одной или несколькими кратными углерод-углеродными связями или мономеров, содержащих неустойчивые карбоциклические группировки (например, из циклопропана и его производных).

Гетероцепные полимеры получают поликонденсацией, а также полимеризацией мономеров, содержащих кратные связи углерод-элемент (например, С = О, С º N, N = С = О) или непрочные гетероциклические группировки (например, в окисях олефинов, лактамах).

Применение полимеров

Благодаря механической прочности, эластичности, электроизоляционным и др. ценным свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту.

Основные типы полимерных материалов — пластические массы, резины, волокна (см. Волокна текстильные, Волокна химические), лаки, краски, клеи, ионообменные смолы.

Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Историческая справка. Термин «полимерия» был введён в науку И.

Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры), имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Т. о.

, содержание термина не соответствовало современным представлениям о полимерах. «Истинные» синтетические полимеры к тому времени ещё не были известны.

Ряд полимеров  был, по-видимому, получен ещё в 1-й половине 19 в.

Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к «осмолению» продуктов основной химической реакции, т. е., собственно, к образованию полимера.

(до сих пор полимеры  часто называли «смолами»). Первые упоминания о синтетических полимерах  относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол).

Химия полимеров  возникла только в связи с созданием А. М. Бутлеровым теории химического строения (начало 60-х гг. 19 в.). А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее своё развитие (до конца 20-х гг. 20 в.

) наука о полимерах  получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, нем. учёный К. Гарриес, И. Л. Кондаков, С. В. Лебедев и др.). В 30-х гг. было доказано существование свободнорадикального (Г. Штаудингер и др.) и ионного (американский учёный Ф. Уитмор и др.

) механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.

С начала 20-х гг. 20 в. развиваются также теоретические представления о строении полимеров.

Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен), состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория «малых блоков»).

Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного (к началу 40-х гг. 20 в.) заставила рассматривать полимеры как качественно новый объект исследования химии и физики.

Литература.: Энциклопедия полимеров, т. 1-2, М., 1972-74; Стрепихеев А. А., Деревицкая В. А., Слонимский Г. Л., Основы химии высокомолекулярных соединений, 2 изд., [М., 1967]; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 2 изд., М., 1964; Коршак В. В.

, Общие методы синтеза высокомолекулярных соединений, М., 1953; Каргин В. А., Слонимский Г. Л., Краткие очерки по физике-химии полимеров, 2 изд., М., 1967; Оудиан Дж., Основы химии полимеров, пер. с англ., М., 1974; Тагер А. А., Физико-химия полимеров, 2 изд., М., 1968; Тенфорд Ч., Физическая химия полимеров, пер.

с англ., М., 1965.

В. А. Кабанов. Источник  www.rubricon.ru

Пластмассы и природные полимеры

Натуральные пластмассы, полимеры

Полимеры состоят из небольших молекул, соединенных в длинные цепи. Пластмасса и синтетические волокна. например нейлон, — полимеры, полученные из содержащихся в нефти соединений. Помимо синтетических, существуют природные полимеры — резина, крахмал, шерсть, шелк и даже волосы человека. Пластик может принимать любую форму благодаря формовке.

Как делают пластмассу

Пластмассы — это синтетические полимеры, состоящие из органических соединений, входящих в состав нефти. Множество пластмасс, включая полиэтилен,  поливинилхлорид и полистирол получают из этилена — одного из алканов. Полиэтилен и полистирол можно расплавить и затем делать из них посуду. В тонкие листы полиэтилена упаковывают продукты.

Этилен — ненасыщенное соединение т.е. в нем есть двойные ковалентные связи, по которым могут присоединяться новые атомы. Термин «двойная связь» оз­начает, что у двух атомов есть две общие пары электронов. В состав молекулы этилена (C2H4) входят два атома углерода, соединенные двойной ковалентной связью. Двойная связь может открыться и присоединить новые атомы.

При нагревании, высоком давлении и в присутствии катализатора молекулы этиле­на могут реагировать друг с другом. При этом двойные связи раскрываются, атомы углерода соединяются и образуют длинные цепочки — огромные молекулы по­лиэтилена.Такое соединение молекул называется полимеризацией.

Небольшие молекулы, из которых состоит молекула полимера, называются мономерами. Гигантская молекула полиэтилена может содержать до 20 000 атомов углерода.  При замене некоторых атомов в мономерах на другие можно получать разные виды пластмасс.

Поливинилхлорид (ПВХ) образуется при замещении атомов водорода в этилене атомами хлора: при этом образует­ся хлорэтилен. Молекула ПВХ состоит из длинной цепочки мономеров – молекул хлорэтилена.

Пластмассы делятся на две группы. Термопластичные пластмассы можно расплавить и использовать вновь, а термореактивные расплавить вновь нельзя. В термопластичных пластмассах полимерные цепочки не связанны между собой. В термореактивных пластмассах полимерные цепи жестко связаны друг с другом.

Термопластичные пластмассы – такие, как полиэтилен, полистирол, нейлон, — гибкие, но не термостойкие. Эти пластмассы можно перерабатывать по нескольку раз, но пока это мало применяется. Термореактивные пластмассы используются только один раз. Они имеют жесткую структуру, они тверды и теплостойки.

Эбонит, из кото­рого делают посуду, относится к термореактивным пластмассам.

Синтетические волокна

Из некоторых пластмасс, например из нейлона, полистирола и акрила, можно делать волокна. Их можно прясть, как шерсть и хлопок, делать из них одежду ковры, веревки и прочные ткани для парусов и парашютов.

Синтетические волокна, например лайкра, гладкие и легкие. Они помогают уменьшить вес и трение, что важно для танцоров и спортсменов. Синтетические волокна прочнее и лег­че натуральных — шерсти, хлопка.

К тому же из синтетических волокон, в отличие от натуральных, можно сделать очень длинные нити.

Свойства пластмасс

Здесь вы найдете описание множества ­полезных свойств пластмасс. Некоторые свойства пластмасс создают трудности. Пластмассы не подвержены гниению и коррозии, поэтому их нелегко уничтожить, а некоторые из них при горении выделяют ядовитые газы.

Впрочем, сейчас уже разработаны новые сорта пластмасс, поддающихся биологическому разложению. Первые пластмассы были получены более 170 лет назад. Тогда был создан целлулоид, а позднее – бакелит. В начале XX века из бакелита делали корпуса радиоприемников и телефонов.

Сейчас телефоны не делают из бакелита, а из значительно более легких материалов. Полиэтилен, полистирол и нейлон появились в 1930 годах. В упаковке из полистирола еда долго не остывает. Пенополистирол —   прекрасный изолятор, к тому же он очень легок. Из него делают упаковки для продуктов и бьющихся приборов.

Современные паруса делают из чрезвычайно прочных и легких синтетических волокон, например майлара. Тефлон (политетрафторэтилен) делает поверхность сковородок гладкими, и к ним ничего не прилипает. Компакт-диски делают из поликарбоната. Затем их покрывают тонким слоем алюминия.

Пластмассы не проводят электричество, поэтому из них делают вилки и розетки, а также изоляцию для проводов. В аэрокосмической промышленности используются композитные материалы – пластмассы, укрепленные стеклянным волокнами.

Природные полимеры

До изобретения пластмасс в текстильной промышленности использовались природные полимеры – шерсть, хлопок, джут. Молекулы природных полимеров, как и пластмасс, представляют собой длинные цепочки более простых молекул. Белки – тоже природные полимеры. ДНК, вещество, из которого состоят хромосомы, — природный полимер.

Хромосомы находятся в составе ядер живых клеток. В них записана генетическая информация организма. Резину делают из природного полимера под названием латекс, млечного сока коры каучуконосных растений. После вулканизации — нагревания в присутствии серы — резина становится прочной.

Вулканизация используется при производстве автомобильных шин.

Виды пластмасс

Натуральные пластмассы, полимеры

Разновидности пластика и их сфера применения основывается на том, какие полимеры являются базовыми – синтетические или природные. Эти материалы могут быть в виде термопластичных пластмасс (обратимыми по форме) и термореактивными (необратимыми).

Самыми распространенными в производстве и в быту являются следующие виды:

(1) PET или PETE – лавсан (полиэтилентерефталат). Чаще всего используется при изготовлении упаковок, обивок и одноразовых стаканчиков для холодных напитков. Не рекомендуется повторное применение и изготовление из него детских игрушек.

(2) HDPE или PE HD  – так обозначается полиэтилен высокой плотности и полиэтилен низкого давления. Используют при изготовлении пластиковых пакетов, пищевых контейнеров, посуды, тары для моющих средств, ненагруженных деталей оборудования, покрытий, футляров и фольги. Относительно безопасен, но может выделять токсичное вещество (формальдегид).

(3) PVC или V — это маркировка поливинилхлорида (или просто — ПВХ). Используется только в технических целях при производстве химического оборудования, различных деталей, элементов напольных покрытий, изоленты, жалюзи, мебели, окон, труб и тары. Эти виды пластмасс при сжигании выделяют много ядовитых веществ. 

(4) LDPE или PEBD – обозначение полиэтилена низкой плотности и высокого давления. Из него изготавливают пакеты, брезент, мусорные мешки, компакт-диски и линолеум. Относительно безопасен для человека, но вреден в плане экологии.  

(5) PP – маркировка полипропилена. Используют для изготовления детских игрушек, пищевых контейнеров, упаковок и медицинских шприцов. Идеальный материал для труб, элементов холодильного оборудования и деталей в автомобильной промышленности. Практически безвреден, хотя в некоторых случаях может выделяться формальдегид – ядовитый для здоровья человека газ. 

(6) PS – полистирол. Из него изготавливают сэндвич-панели, теплоизоляционные строительные плиты, оборудование, изоляционные пленки, стаканчики, чашки, столовые приборы, пищевые контейнеры, лоточки для различных видов продуктов. Не рекомендуется для повторного использования. В случае горения выделяет ядовитый стирол.

(7) O или OTHER– полиамид, поликарбонат и другие виды пластмасс. Используют в производстве точных деталей машин, радио- и электротехники, аппаратуры, а также при изготовлении бутылок для воды, игрушек, бутылочек для детей и упаковок. При частом нагревании или мытье выделяют вещество (бисфенол А), ведущее к гормональным сбоям в человеческом организме.

В строительстве часто используют следующие виды пластика:

Полимербетон. Это композиционный материал, созданный на основе термореактивных полимеров на основе эпоксидной смолы. Хрупкость этого пластика нивелируется волокнистыми наполнителями – стекловолокном и асбестом. Полимербетон применяется при изготовлении конструкций, стойких к различным агрессивным средам.

Стеклопластик – листовой материал из тканей и стеклянных волокон, связанных полимером.

• Напольные материалы – это разные виды вязких жидких составов на основе полимеров и рулонные покрытия. Широко применяется в строительстве поливинилхлоридный линолеум. Он обладает хорошими теплозвукоизоляционными показателями.

К термореактивным видам пластмасс относятся:

Фенопласт. Применяется для изготовления вилок, розеток, пепельниц корпусов сотовых телефонов, радиоприборов и изделий галантереи.

Аминопласты. Используют в производстве электротехнических деталей, клея для дерева, пенистых материалов, галантереи и тонких покрытий для украшений.

Стекловолокниты. Они чаще всего, применяются в машиностроении для изготовления крупногабаритных изделий несложных форм (лодок, кузовов автомобилей, корпусов приборов и пр.) и силовых электротехнических деталей.

Полиэстеры – на их основе создают части автомобилей, спасательные лодки, корпусы летательных аппаратов, кровельные плиты для крыш, мебель, мачты для антенн, плафоны ламп, удочки, лыжи и палки, защитные каски и др.

Эпоксидная смола — применяется как изоляционный материал: в трансформаторах, электромашинах и приборах, в радиотехнике (для печатных схем) и при производстве телефонной арматуры.

Производство

Основным сырьем при производстве пластмасс является этилен. С его помощью получают полиэтилен, полистирол и поливинилхлорид.

Нарушение технологии режима полимеризации, ухудшает качество готовой продукции. В ней могут появиться поры в виде пузырьков и разводов. Существуют следующие виды пористости пластмассы: гранулярная, газовая и пористость сжатия.

Такие дефекты недопустимы при изготовлении продуктов влияющих на здоровье человека, например  съемных протезов.

Для их изготовления используются базисные пластмассы (самотвердеющие, при смешивании специального порошка и жидкости, материалы).

Существует несколько основных технологий производства пластмассовых изделий:

1. Технология выдувания. Хорошо разогретая формовочная масса заливается в открытую опоку, после чего ее герметично закрывают. Затем туда подается  сжатый воздух, который распыляет горячий пластик по стенкам заданной формы.2.

Формовка посредством вакуума (процесс изготовления проводится с перепадами воздушного давления).

3. Технология литья. Жидкая пластмасса заливается в специальные емкости, в которых происходит охлаждение и  формовка материала.

4. Метод экструзии. Размягченную пластичную массу, продавливают через специальные отверстия в приспособление, которое формирует готовое изделие.

5. Прессование. Это самый распространенный способ получения продукции из термоактивных пластмасс. Формование выполняется в специальных опоках под воздействием высокого давления и температуры.

Тонет ли пластик в воде?

По поведению пластика в воде можно определить его вид.

 Плотность воды известна – 1,10 г/куб.см. Для разных видов пластмасс она варьируется от 0,90 г/куб.см до 2,21 г/куб.см.

Легче воды только:

1. Полипропилен (0,90 г/куб.см).2. Полиэтилен высокого давления (0,92 г/куб.см).

3. Полиэтилен низкого давления(0,96 г/куб.см).

Только эти виды пластика будут плавать, остальные пойдут ко дну.

Одним из самых тяжелых видов пластика является фторопласт с плотностью — 2,20 г/куб.см.

Обзор технологии получения биоразлагаемых полимеров и пластиков

Натуральные пластмассы, полимеры

Ужесточающиеся год от года экологические требования на уровне международного сообщества рано или поздно поставят вопрос об утилизации использованных полимерных изделий перед всеми странами мира.

То, что сейчас кажется чудачеством экологов, станет обязательной нормой. «Нефтехимия РФ» обратилась к теме биоразлагаемых пластиков, чтобы понять, насколько развиты эти технологии в мире и могут ли они быть реальной альтернативой традиционным полимерам. Полимерная технология поглощения запахов. Синтетические полимеры, обладая уникальными свойствами и относительно низкой ценой, в последние десятилетия безраздельно господствуют практически во всех сферах человеческой жизни. Однако эти соединения имеют два принципиальных недостатка. Во-первых, подавляющее большинство пластиков производится из невозобновляемого углеводородного сырья, запасы которого ограничены. Во-вторых, большинство полимеров не разлагаются в природе, что приводит к загрязнению окружающей среды и проблемам утилизации. 

Борьба с пакетами

Если первое соображение пока не кажется таким уж реальным, то экологические мотивы уже заставляют многие страны и регионы ограничивать использование полимеров. Так, в Тайване с 2003 года полимерные пакеты запрещены к использованию во всех торговых центрах. То же произошло в Лос-Анджелесе в 2007 году.

С пластиковыми пакетами борются в Кении, Руанде и Танзании. В Бангладеш использование пластиковых пакетов запрещено полностью, после того как было обнаружено, что они, засорив дренажные системы, явились основной причиной наводнений в 1988 и1998 годах, которые затопили 2/3 страны. Во многих странах Европы существуют налоги на пластиковые пакеты.

В декабре 2010 года их запретили в Италии. Если меры по охране среды будут ужесточаться, а цены на нефть и газ продолжат расти, то возможна смена парадигмы в области производства и использования полимеров, то есть переход к производству биоразлагаемых пластиков из возобновляемого сырья наступит гораздо быстрее, чем мы этого ожидаем.

Все производимые и изучаемые технологии биоразлагаемых пластиков делятся на четыре группы. Первая – это полимеры, выделенные из биомассы, и природные полимеры: крахмал, целлюлоза, белки. Вторая – полимеры, производимые микроорганизмами в ходе своей жизнедеятельности (полигидроксиалканоаты, бактериальная целлюлоза).

Третья – полимеры, искусственно синтезированные из природных мономеров (например, полилактиды). И последняя группа – традиционные синтетические пластики с введенными в них биоразрушающими добавками. Эти технологии активно развиваются в странах с постиндустриальной экономикой. Прежде всего, в США и Европе.

Свои разработки и внедрения есть в Китае, Японии, Корее. А вот в России поиск технологий получения полимеров из возобновляемого сырья и биодеградируемых пластиков идет неактивно. С одной стороны, это странно, ведь Россия располагает большими ресурсами достаточно дешевых зерновых, которые могли бы служить сырьем для производства биополимеров.

Но с другой стороны, это достаточно закономерно.

Научные разработки в области экотехнологий у нас в принципе не популярны, да и получить на них финансирование научным центрам (в основном, государственным) довольно сложно. С другой стороны, уровень потребления традицион ных пластиков в России крайне низкий.

Насыщение базовых потребностей в традиционных полимерах еще не произошло, поэтому кажется, что заниматься биотехнологиями в нефтехимии еще рано. Да и нефти в России пока достаточно. 

Отходы бактерий

При росте некоторых микроорганизмов на средах, содержащих питательные углеродные вещества и имеющих дефицит азота или фосфора, микробныеклетки начинают синтезировать и накапливать полигидроалканоаты (PHA), которые служат им резервом энергии и углерода.

При изменении окружающей среды в случае голода микроорганизмы могут разлагать PHA и использовать образующиеся продукты для питания. Это свойство бактерий человек использует для промышленного получения полигидроалканоатов. Важнейшими из них являются полигидроксибутират (PHB) и его сополимер с полигидроксивалератом (PHV).

Полигидроксиалканоаты – это полностью биодеградируемые пластики. В компосте при влажности 85% и температуре 20-60 °С разлагается на воду и углекислый газ за 7-10 недель. PHV бактериального происхождения был открыт в 1925 году во Франции у бактерий Ralstonia entrophus и Bacillus megaterium.

Первое промышленное производство сополимеров PHB-PHV организовала в 1980 году английская фирма ICA. Полимер получил название Biopol. Он характеризуется относительной термостабильностью, пропускает кислород, устойчив к агрессивным химикатам и имеет прочность, сопоставимую с полипропиленом.

Biopol выпускается до сих пор несколькими компаниями, но объемы не превышают 10 тыс. тонн в год. Дело в том, что его стоимость составляет $10-15 за кг – это в 8-10 раз выше, чем у традиционных пластиков.

Поэтому основные сферы применения – медицина (биоразлагаемые шовные нити, штифты, пленки, капсулы для доставки лекарств), упаковка некоторых парфюмерных товаров, изделия личной гигиены. В апреле 2010 года в США в городе Клинтон компанией Тelles был запущен завод по производству PHBV мощностью 50 тыс. тонн в год.

Пластик получил название Mirel, его предполагаемая цена – $4,5-5,5 за кг. Отметим, что традиционный полиэтилен низкого давления стоит в России около $2,2-2,5 за кг. Сырьем для предприятия Тelles служит глюкоза, получаемая из осахаренного кукурузного крахмала. Стоимость сырья в себестоимости PHBV составляет при этом 60%. Поэтому основные усилия ученых и технологов направлены на поиск дешевого сырья для производства PHA. Для России перспективным сырьем сегодня является крахмал зерновых (пшеница, рожь, ячмень) и, в перспективе, производные древесного сырья.

Клетка – завод мономеров

Бактерии могут производить не только готовые полимеры, но и сырье – мономеры, из которых уже искусственно можно получать пластики. Самым распространенным биоразлагаемым полимером из этой группы является полимолочная кислота (PLA).

Производство мономера – собственно молочной кислоты – микробиологическим способом дешевле традиционного, так как бактерии синтезируют ее из доступных сахаров в технологически несложном процессе.

Сам полимер молочной кислоты (точнее, смесь двух оптических изомеров одного и того же состава) имеет достаточно высокую термическую стабильность: температуру плавления 210-220 °С, температура стеклования – около 90 °С. Изделия из PLA характеризуются высокой жесткостью, прозрачностью и блеском, напоминая в этом отношении полистирол.

В качестве пластификатора можно использовать сам мономер – молочную кислоту. Патент на способ промышленного получения PLA был выдан компании DuPont еще в 1954 году. Однако коммерциализация этого биопластика началась лишь в XXI веке. В 2002 году в городе Блэр в США фирмой Nature Work был запущен завод мощностью 140 тыс.

тонн по производству PLA из глюкозы кукурузного крахмала. Сегодня это крупнейший производитель PLA в мире, его мощности уже 280 тыс. тонн. В ближайшие 5-10 лет планируется строительство третьего завода, сырьем для которого будут практически бесплатные отходы переработки кукурузы. Продукцию завода в Блэр перерабатывают множество компаний, только в Европе их более 30.

В Старом Свете также функционирует несколько заводов PLA, ряд мелких производителей есть в Азии. Известные мировые инжиниринговые компании также осваивают новую нишу. Лицензии на технологию PLA предлагают, например, Sulzer Chemtech Uhde Inventa-Fischer. PLA самый дешевый из биопластиков, его цена – $2,2-4,5 за кг.

Свойства PLA определяют его широкое применение: он устойчив к действию ультрафиолетового света, плохо воспламеняется и горит с малым выделением дыма. Переработка PLA возможна практически любыми современными методами вплоть до экструзии пленок. Кроме того, PLA – полностью биоразлагаемый полимер.

Изделия из PLA при компостировании полностью разлагаются на воду и углекислый газ за период 20-90 дней.

Главные области применения PLA – упаковка (сумки, тара для пищевых продуктов), бутылки для молока, соков, воды, но не газированных напитков, так как PLA пропускает углекислый газ. Из PLA также изготавливают игрушки, корпусы сотовых телефонов, компьютерные мышки и ткани. Пока развитие этого биопластика сдерживается его ценой. Однако прогнозируется, что новые технологии сделают его конкурентоспособным с полиэтиленом и полипропиленом уже до 2020 года. 

Добавки-разрушители

Одним из вариантов добиться биодеградации традиционных пластиков является использование специальных добавок. Как правило, это соединения переходных металлов, которые на свету и/или в тепле катализируют разложение полимеров. Проблемы тут две.

Добавки должны допускать обработку полимера традиционными способами (литье, формование, выдув, экструзия), при этом полимеры не должны разлагаться, хотя подвергаются температурной обработке. Кроме того, добавка должна ускорять разложение полимера на свету, но допускать длительный период его использования. Тоже на свету.

Иными словами, добавка должна «включать» разложение в определенный момент. Это существенная сложность. Современные добавки допускают типовые способы обработки полимеров, но с условием,что время нахождения сырья в зоне нагрева не должно превышать 7-12 минут.

Малый процент добавки (обычно 1-8%) почти не сказывается при этом на остальных технологических режимах обработки, единственное – нужно равномерно распределять ее по объему полимера.

Очевидно, что использование биоразлагающих добавок целесообразно в тех изделиях, которые часто и массово, используются и выбрасываются.

Это пакеты, сельскохозяйственные и упаковочные пленки, одноразовая посуда, бутылки и т.п. Поэтому наиболее популярные полимеры для использования с добавками – это полиэтилен, полипропилен, ПЭТФ. Основными производителями таких добавок являются американские компании Willow Ridge Plastics, BioTec Environmental, ECM BioFilms.

Но одним из лидеров и пионеров рынка является британская Symphony Environmental со своей добавкой D2W. Как правило, добавки этих фирм работают с полиолефинами, однако, например, добавки серии EcoPure фирмы Bio-Tec Environmental можно использовать более чем с 15 полимерами.

ECM BioFilms выпускает добавки для полистирола, полиуретанов и ПЭТФ. Срок деградации может варьироваться от 9 месяцев до 5 лет. Стоимость добавок за оптовую партию может составлять от $4,2 до $18 за кг в зависимости от производителя. 

Смена парадигмы

Пока биоразлагаемые пластики из природного сырья не могут составить конкуренцию традиционным по самой простой причине – ценовой. Точно так же использование дорогих биоразлагающих добавок приводит к удорожанию изделий и из традиционных полимеров. Однако прогнозы развития рынка биопластиков более чем оптимистичны.

Его объем в 2010 году оценивался в $640 млн, а к 2012 году ожидается рост до $1,3 млрд. В более отдаленной перспективе 2015-2016 годов прогнозируется рост на 43% ежегодно. Ожидается, что самые дешевые из сегодняшних биопластиков смогут конкурировать с традиционными по цене к 2020 году.

Вместе с тем, осознание той реальной цены, которую человечество должно платить за сохранение среды своего обитания, так или иначе приведет к введению серьезных ограничений на использование неразрушающихся изделий массового спроса и переходу к пусть более дорогим, но более экологичным материалам.

Поэтому крупнейшие частные компании и научные центры многих стран занимаются поисками новых, более дешевых технологий получения биопластиков. Вместе с тем, не во всех сферах человеческой жизни известные пластики из природного сырья могут заменить традиционные. Речь идет, скорее всего, о продуктах массового спроса.

В крайнем случае, приемлемым выходом является применение биоразрушающих добавок и использование технологий рецикла полимерных отходов. Поэтому производителям нефтехимической продукции в ближайшие десятилетия не стоит опасаться потери своих рынков.

Из чего делают пластмассы. Полимерное сырье

Натуральные пластмассы, полимеры

Слово полимер широко вошло в обиход, однако, не все точно знают, что оно означает. Каждого из нас окружают предметы, сделанные из полимеров. Что это такое и чем они полезны для человека?

Сложная химия полимеров доступными словами

Высокомолекулярные соединения, состоящие из повторяющихся мономерных звеньев, которые соединяются химическими связями или слабыми межмолекулярными силами и характеризующиеся определенным набором свойств, называют полимерами. Они бывают разного происхождения:

  • Органические;
  • Неорганические;
  • Элементоорганические.

Основные свойства полимеров – эластичность и почти полное отсутствие хрупкости их кристаллических соединений нашли широкое применение в производстве пластиковых изделий. Под влиянием направленных механических воздействий молекулы полимеров имеют способность к ориентированию.

Разделяют полимеры и по реакции на температурные режимы – одни из них могут плавиться в процессе нагрева и возвращаться в исходное состояние при охлаждении. Эти полимеры получили название термопластичных, а ряд полимеров, которые при нагреве разрушаются, минуя стадию плавления, относят к термореактивным.

По происхождению различают полимеры природные и синтетические.

В промышленности полимерное сырье используется практически во всех областях.

За счет способности некоторых полимеров после переработки принимать свои исходные свойства, существуют производства, выпускающие вторичное полимерное сырье.

Используется вторичное полимерное сырье на те же цели, что и первичное, однако его применение имеет ряд ограничений для использования в пищевой и медицинской промышленности.

Первичное полимерное сырье

Рассмотрим основные характеристики некоторых видов первичного полимерного сырья.

Полипропилен – синтетический. Вещество белого цвета, выпускается в виде твердых гранул. Имеет много модификаций, среди которых гомополимер, вспенивающийся полипропилен, каучуковый и металлоценовый полипропилен. Ссылка на каталог: Полипропилен

Полистирол – термопластический синтетический полимер. Твердый, стеклообразный.

Хороший диэлектрик, отличается устойчивостью к радиоактивным воздействиям, инертен к кислотам и щелочным растворам (за исключением ледяной уксусной и азотной кислоты).

Гранулы полистирола прозрачны и имеют цилиндрическую форму. Используются для производства различной продукции методом экструзионного выдавливания. Ссылка на каталог: Полистирол

Полиэтилен низкого давления – кристаллические малопрозрачные гранулы высокой плотности. Всем известны «шумные» пакеты из ПНД, способные выдержать высокие нагрузки. Путем экструзии из него выдувают очень тонкие пленки. Ссылка на каталог: ПНД

Полиэтилен высокого давления – гранулы белого цвета с красивой гладкой глянцевой поверхностью. Имеет второе название – полиэтилен низкой плотности. Рекомендован для использования в пищевой промышленности и для изготовления изделий медицинского назначения. Ссылка на каталог: ПВД

Поливинилхлорид (ПВХ) – сыпучий порошок с размером частиц до 200 мкм. Легко перерабатывается в твердые и мягкие пластики. Используется для производства труб, пленок, линолеума и других изделий технического назначения. Ссылка на каталог: ПВХ ( Поливинилхлорид )

Линейный полиэтилен высокого давления – используют для выпуска тонких эластичных упаковочных пленок и пленок для ламинирования. По свойствам занимает среднее положение между полиэтиленом низкой и полиэтиленом высокой плотности. Работы по усовершенствованию его свойств не прекращаются. Ссылка на каталог: Линейный полиэтилен низкой плотности ЛПЭНП (LLDPE)

Вторичное полимерное сырье

На многих предприятиях с целью экономии бракованная продукция из полимерных пластиков поступает на вторичную переработку, обеспечивая безотходное производство. Наряду с этим существует целое направление бизнеса по переработке отходов во вторичные гранулы полимера для продажи.

Процесс многоступенчатый, весь цикл от сбора и закупки бытовых пластиковых отходов, сортировке, промывке, дробления и переработки в гранулы довольно трудоемкий. Однако готовая продукция по своим свойствам практически не отличается от первичного сырья и успешно используется во многих производствах.

Выпуск вторичного полимерного сырья – важная и нужная отрасль народного хозяйства, позволяющая сэкономить огромные средства на отсутствии необходимости утилизации отработанных пластиков.

Что выбрать?

Вопрос какое сырье выбрать стоит перед каждым производителем. И если у вторичного сырья есть очевидный плюс – низкая цена. То не менее очевидны и его минусы:

  • Нестабильность свойств
  • Наличие посторонних примесей
  • Нет уверенности в марке полимера

Автоматически вытекают плюсы первичного полимерного сырья:

  • Стабильные свойства
  • Точно известна марка
  • Абсолютная чистота
  • Стабильные поставки
Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.