НУКЛЕИНОВЫЕ КИСЛОТЫ

Х и м и я

НУКЛЕИНОВЫЕ КИСЛОТЫ

Нуклеиновая кислота (от лат. nucleus — ядро) — высокомолекулярное органическое соединение, биополимер (полинуклеотид), образованный остатками нуклеотидов.

Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и играют главную роль в передаче наследственных признаков (генетической информации) и управлении процессом биосинтеза белка.

История их изучения начинается с выделением швейцарским химиком Ф. Мишером (в 1869 г) из ядер клеток вещества кислотного характера, названного им нуклеином и получившего позже название нуклеиновые кислоты.

Строение нуклеиновых кислот. Нуклеотиды

Нуклеиновые кислоты представляют собой высокомолекулярные соединения, молекулярная масса которых колеблется в пределах от 25 тыс. до 1 млн. Их полимерные цепи построены из мономерных единиц – нуклеотидов, в связи с чем нуклеиновые кислоты называют полинуклеотидами.

Особенность нуклеотидов состоит в том, что обычно «неделимое» мономерное звено (например, аминокислотный остаток в белках) в данном случае представляет собой трёхкомпонентное образование, включающее:

  • Нуклеиновое (гетероциклическое) основание (на схеме показано синим цветом),
  • Углеводную часть (на схеме показано жёлтым цветом) и
  • Фосфатную группу (на схеме показано красным цветом).

Рассмотрим по очереди каждый из трёх компонентов.

Нуклеиновые основания

В химии нуклеиновых кислот нуклеиновыми основаниями называют входящие в их состав гетероциклические соединения пиримидонового и пуринового рядов.

Пиримидиновые и пуриновые основания — органические природные соединения, производные пиримидина и пурина соответственно.

В нуклеотидах встречаются три вида пиримидиновых оснований:

и два вида пуриновых оснований:

В качестве заместителей гетероциклические основания содержат либо оксогруппу (урацил, тимин), либо аминогруппу (аденин), либо одновременно обе эти группы (цитозин, гуанин).

Нуклеиновые кислоты различаются входящими в них гетероциклическими основаниями: урацил входит только в РНК, а тимин – в ДНК.

Таким образом, в молекулах нуклеиновых кислот (как в РНК, так и ДНК) присутствуют последовательности из четырёх чередующихся оснований.
Тимин,Цитозин,Аденин,Гуанин.Урацил,Цитозин,Аденин,Гуанин.

Кроме этих нуклеиновых оснований, называемых основными, в небольших количествах встречаются другие гетероциклические основания. Их называют минорными. К ним относятся: гипоксантин, 5-метилцитозин, 6-N-метиладенин, 1-N-метилгуанин и др.

Углеводная часть. Нуклеозиды

Рибоза и дезоксирибоза

Углеводная часть нуклетидов представлена одним из двух вариантов:

  • Остатком моносахарида рибозы или
  • Остатком моносахарида дезоксирибозы.

В составе нуклеиновых кислот они представлены в циклической (фуранозной) форме.

Оба моносахарида можно представить общей структурной формулой:

Если R = ОН, то моносахарид является рибозой, если R = Н, то – дезоксирибозой.

Дезоксирибоза — производная рибозы, где гидроксильная группа у второго атома углерода замещена водородом с потерей атома кислорода (частица «дезокси» означает — отсутствие атома кислорода).

Эти два моносахарида дают названия соответсвующим нуклеиновым кислотам: рибонуклеиновой кислоте (РНК) и дезоксирибонуклеиновой кислоте (ДНК).

Нуклеоизиды

Рассмотренные выше гетероциклические основания образуют N-гликозиды с рибозой или дезоксирибозой.

Гликозиды — органические соединения, молекулы которых состоят из двух частей: углеводного (пиранозидного или фуранозидного) остатка и неуглеводного фрагмента, т. н. агликона (агликон т.е. «не сахар»).

В данном случае в качестве агликона выступает остаток одного из гетероциклических оснований (урацил, цитозин, тимин, аденин, гуанин).

В химии нуклеиновых кислот такие N-гликозиды называют нуклеозидами.

В зависимости от природы углеводного остатка различают рибонуклеозиды и дезоксирибонуклеозиды.

Название образуется от тривиального названия соответсвующего нуклеинового основания прибавлением суффиксов –идин (у пиримидиновых) и –озин (у пуриновых нуклеозидов).

АденинАденозинДезоксиаденозин
ГуанинГуанозинДезоксигуанозин
ТиминМетилуридинДезокситимидин
УрацилУридинДезоксиуридин
ЦитозинЦитидинДезоксицитидин

Фосфатная группа. Нуклеотиды.

Фосфатная группа в нуклеотидах представлена остатком или остаками фосфорной кислоты Н3РО4.

Фосфорная кислота обычно этерифицирует спиртовой гидроксил при С-5’ или C-3’ в остатке рибозы или дезоксирибозы. Т.е. между фосфорной кислотой и нуклеозидом образуется сложноэфирное соединение.

Полученные таким образом соединения называются нуклеотидами.

Нуклеотидыфосфорные эфиры нуклеозидов, нуклеозидфосфаты.

В зависимости от количества остатков фосфорной кислоты в молекуле различают нуклеотиды монофосфаты, дифосфаты и трифосфаты.

Рассмотрим общий принцип строения нуклеотидов на примере фосфатов аденозина.

Для связывания трёх компонентов в молекуле нуклеотида используется сложноэфирная и N-гликозидная связи.

Сложноэфирная связь – между остатком фосфорной кислоты и углеводным остатком (рибозой).

N-гликозидная связь – между гетероциклическим основанием и углеводным остатком.

Нуклеотиды можно рассматривать, с одной стороны, как эфиры нуклеозидов (фосфаты), с другой – как кислоты (в связи с наличием остатка фосфорной кислоты).

За счёт фосфатного остатка нуклеотиды проявляют свойства двухосновной кислоты и в физиологических условиях (при рН=7) находится в полностью ионизированном состоянии.

Для нуклеотидов используется два вида названий:

Аденозин-5'-фосфат5'-Адениловая кислота
Гуанозин-5'-фосфат5'-Гуаниловая кислота
Цитидин-5'-фосфат5'-Цитидиловая кислота
Уридин-5'-фосфат5'-Уридиловая кислота
Дезоксиаденозин-5'-фосфат5'-Дезоксиадениловая кислота
Дезоксигуанозин-5'-фосфат5'-Дезоксигуаниловая кислота
Дезоксицитидин-5'-фосфат5'-Дезоксицитидиловая кислота
Тимидин-5'-фосфат5'-Тимидиловая кислота

Источник: http://xn----7sbb4aandjwsmn3a8g6b.xn--p1ai/views/alchemy/theory/chemistry/biochemistry/nucleic_acid.php

Нуклеиновые кислоты

НУКЛЕИНОВЫЕ КИСЛОТЫ

НУКЛЕИНОВЫЕ КИСЛОТЫ представляют собой усложнённые высокомолекулярные соединения, которые имеются во всех без исключения клетках, присущих живым организмам и являются материальными носителями всей наследственной информации.

Нуклеиновым кислотам принадлежит ведущую роль не в одном лишь хранении, но ещё и в передаче важной информации потомкам, а также реализации ее на протяжении индивидуального развития буквально каждого организма.

Нуклеиновые кислоты учёными были открыты уже в середине 60-тых годов 19 века (открытие сделал швейцарский ученый Ф. Мишер).

Во время опыта по обработке клетки гноя пепсином — ферментом из желудочного сока — Ф. Мишер с удивлением обнаружил, что ферментом переваривается не все клеточное содержимое, в их ядрах остаётся неразрушенным некое вещество.

Продолжив свои эксперименты на иных объектах, Мишер убедился в том, что им открыто новое вещество, которое сильно отличается от всех известных ранее веществ, имеющих биологическое происхождение (углеводов, белков, жиров и др.) собственным химическим строением.

Данное вещество Мишером было названо нуклеином, поскольку он нашёл его в клеточных ядрах (ядро — с латыни «нуклеус»). Но в связи со слабым уровнем тогдашнего развития лабораторного оборудования установить точно химическое строение открытого нуклеина учёный не смог.

Поднакопив довольно большое количество нуклеина, Мишер лишь смог обнаружить, что в составе его важная роль отводится какой-то неизвестной и очень сложной в плане своего строения кислоте.

Лишь намного позже было установлено, что нуклеин, открытый Мишером, состоял из прочного соединения белка с особенными по-настоящему сложными для проведения структурного анализа видами кислот, которые получили название «нуклеиновые кислоты».

Ещё одной составной частью нуклеинового вещества были белковые молекулы, так что, по сути, нуклеин из себя представлял химическое вещество, которое сейчас называется нуклеопротеином, либо хроматином.

Лишь по завершению 30-тых годов 20 века химический состав НК был уточнен, а кроме того, установлено, что существует два типа кислот — дезоксирибонуклеиновая (то есть ДНК) и рибонуклеиновая (или РНК), которые входят в клеточный состав абсолютно всех живых существ на планете.

Но, несмотря на это, детали строения нуклеиновых кислот оставались не совсем ясными вплоть до наступления 20-го века. В 50-тых гг., по словам ученого Д. Уотсона из Америки, установившего совместно с англичанином О. Криком базовые принципы ДНК-строения, относительно ДНК, по сравнению с белками, имелось крайне мало с точностью установленных данных.

 Их изучением занимались лишь считанные химики, и если исключить тот факт, что НК представляют собой весьма большие молекулы, которые построены из мельчайших строительных блоков — так называемых нуклеотидов, о их химии не известно было ничего особенного, за что можно ухватиться генетику.

Даже более того, химики-органики, которые работали с ДНК, практически никогда генетикой не интересовались.

Роль нуклеиновых кислот

Довольно сложным был и сам путь к пониманию роли нуклеиновых кислот в жизни клеток.

Довольно скоро после открытия Мишером нуклеина биологи обнаружили, что в клеточных ядрах имеются особенные морфологические структуры, которые отчетливо заметны под микроскопом в момент деления клеток, они получили название «хромосомы».

Эти структуры закономерно распределялись по так называемым дочерним клеткам в ходе процесса клеточного деления.

В первом же десятилетии века 20-ого стали высказываться предположения, согласно которым именно хромосомы — те самые носители наследственности, но сделать правильный дальнейший шаг — то есть связать наследственность с нуклеиновыми кислотами, находящимися в хромосомах, никто не догадался вплоть до 40-вых- 50-тых годов 20-го века.

Даже более того, со временем роль нуклеиновых кислот стали значительно преуменьшать. В конце 19-го века некоторые ученые на этот счет высказывали вполне разумные предположения. К примеру, известные биологи Рихард и Оскар Гертвиги в своих работах писали о возможности роли кислот в передаче важных наследственных признаков.

В 1897-мом году в статье «Нуклеины», размещённой в «Энциклопедическом словаре» Брокгауза и Эфрона было отмечено, что нуклеин имеет огромное распространение и везде, где присутствуют клеточные ядра, есть и нуклеин…

А ещё ему приписывается поистине выдающееся значение в размножении и развитии клеток. Однако позже эти в действительности правильные взгляды оказались забыты. Учёная мысль вплоть до 50-тых годов 20 века была скованной успехами в изучении свойств и структуры белковых молекул, а нуклеиновые кислоты же получили второстепенную роль.

В распространении всеобщего убеждения в том, что основополагающая роль в наследственности отводится именно белкам, определяющее значение сыграло то обстоятельство, что видный советский ученый Н.

Кольцов, который предсказал механизм осуществления передачи различных наследственных признаков посредством специфического строения полимерных макромолекул, совершенно ошибочно считал, что роль данных «наследственных молекул» отводится белкам.

Строение нуклеиновых кислот

И только после открытия 2-ойной спирали ДНК в 1953-ем году и установления важности роли нуклеиновых кислот в передаче наследственности пришла пора расцвета исследований этих кислот.

Удивительно быстро (меньше чем за 2 десятилетия) полностью было установлено строение двух типов молекул нуклеиновых кислот (ДНК и РНК) и доказано, что это в них сосредоточены основные структуры наследственности — так называемые гены.

Выяснена конкретная роль буквально каждого отдельного вида НК в передаче тех или иных наследственных свойств, а также управлении клеточной жизнедеятельностью, осуществлен поначалу искусственный молекулярный синтез ДНК и РНК вне живых клеток организмов.

После чего разработаны методы по осуществлению искусственного синтеза частей данных молекул — генов. На сегодняшний день идёт разработка способов внедрения чужеродных участков молекул ДНК в живые клетки в целях исправления тех или иных наследственных дефектов.

Наконец, надо отметить, что на протяжении последних лет препараты НК начали применять и непосредственно в целях лечения больных, которые страдают некоторыми тяжелыми формами кроветворных нарушений и ещё рядом иных болезней.

Например, установлено, что препараты НК имеют способность  плодотворность деятельности костного мозга, в значительной мере способствуют коррекции выраженных нарушений обмена фосфора, приводящих к рахиту.

Поэтому изучение этих кислот является исключительно важным не только для правильного понимания основных моментов в жизни организмов и клеток, но и для проникновения в суть способности сохранять постоянными свойства в целом ряду поколений, роль в делении клеток, управлении всеми протекающими в организмах биохимическими реакциями, способности логично отвечать на раздражения, которые вызываются внешней в отношении организма средой и т. д.

Изучение НК, кроме того, создает возможности и для успешного практического использования этих кислот в медицине. Они — наибольшие молекулы в клетках у живых организмов и внешне представляют собой полимеры линейного типа с огромным молекулярным весом.

 В клетках НК многократно скручены (иначе говоря, спирализованы) и образуют довольно компактные структуры, позволяющие им занимать сравнительно небольшой объем, однако если разложить молекулы ДНК в длину (всего лишь одной человеческой клетки), то получились бы цепи, чья длина составила несколько метров.

Только этот один факт уже говорит о сложности строения НК. Но как оказалось, основной их принцип строения довольно-таки прост. Цепи кислот состоят из чередующихся звеньев — так называемых нуклеотидов, чьё специфическое чередование и определяет запись всей наследственной информации в каждой клетке.

Каждые 3 последовательно располагающихся нуклеотида кодируют одну какую-то аминокислоту, а порядок последовательности нуклеотидов в ДНК-цепях у каждого организма поистине уникален, как и уникальна сама по себе наследственная информация у любого из видов  организмов.

В свою очередь нуклеотиды тоже имеют достаточно сложное строение и состоят из 3-ех соединенных меж собой молекул: 5-тиуглеродного сахара (так называемой пентозы), азотистого основания, а также остатка фосфорной кислоты. А названия нуклеотидам даются по имени конкретного азотистого основания, которое входит в их состав.

В строении молекулы ДНК встречается 4 основных вида азотистых оснований: это аденин (А), цитозин (Ц), гуанин (Г) и тимин (Т).

В состав молекулы РНК тимин заменяет другое, близкое к нему по строению основание — это урацил (У).

Ещё одним отличием ДНК и РНК становится то, что включённые в состав ДНК нуклеотиды содержат в себе 5-тичленный сахар — так называемую дезоксирибозу, а в РНК в наличие имеется иной углевод — рибоза.

В клетках буквально каждого из высших организмов есть ядро, которое от цитоплазмы отграничено особой оболочкой. Потому данные организмы названы были эукариоты (от греческого «эу» — значит «собственно», и «карио» — значит «ядро»).

Как раз в ядре и содержится превалирующая часть клетки ДНК. Причём ДНК ядерная эукариотов соединяется с особыми, называемыми ядерными белками, образуя так называемые нуклеопротеидные нити.

Данные нити, скручиваясь многократно, формируют хромосомы. Помимо того, в клетках высших организмов — то есть эукариотов — ДНК обнаруживается в составе целого ряда разного рода внутриклеточных образований.

В большинстве случаев ДНК молекула выстроена из 2-ух полинуклеотидных цепей, которые скручены друг с другом. Данные цепи между собой соединяются по строго установленным правилам: тимин может соединяться с адештном и лишь с аденином, а тозин — с гуанином и т. п.

Строго установленные правила сочетания различных оснований в пары (иначе говоря, комплементарность аденина тимину и цитозина гуанину) понятными стали лишь после изучения точных размеров 2-ойной ДНК спирали.

Оказалось, что по всей длине диаметр 2-ойной спирали постоянен. Обеспечено постоянство данного размера спирали обеспечено может быть лишь в случае единственного сочетания оснований в паре. Лишь в том случае, если тимин соединяется с аденином, а цитозин с гуанином, могут получиться пары оснований, имеющих одинаковую длину.

Перед началом деления клеток происходит их удвоение (то есть репликация) ДНК молекул. Данный процесс представляет собой довольно сложную цепь одну за другой протекающих реакций, в итоге которых на материнских исходных молекулах ДНК происходит синтезирование их точных дочерних копий.

РНК также присутствуют во всех клетках живых организмов, при этом у части вирусов они являются одним единственным видом НК. Рибонуклеиновые кислоты исполняют важнейшую роль — обеспечивают перенос важной генетической информации непосредственно от ДНК к белкам. В живых организмах присутствует довольно большое количество разных белков, каждый из них выполняет чёткие функции.

Причём функциональные возможности, а также специализированность конкретного белка определяется его строением и, как правило, тем, в какой именно последовательности у него в молекуле располагаются основные единицы его структуры — аминокислоты.

Нуклеиновые кислоты — это основные участники центрального жизненного акта — синтеза молекул белка. Все, что требуется клетке для нормальной жизни, изначально запрограммировано на отрезках ДНК молекулы — то есть генах, что располагаются главным образом в ядре клетки.

Как раз они и являются хранителями всех эволюционных жизненных достижений, зафиксированных на языке генетического кода. Однако сами по себе гены белка не синтезируют. Информация, записанная в них, реализуется молекулами РНК.

Прежде чем построить белки, снимаются так называемые «чертежи» гена: на ДНК молекуле синтезируется информационной РНК молекула, являющаяся её точной копией — то есть зеркальным отражением скопированного гена. После этого молекулы информационной РНК переходят в цитоплазму, доставляя туда «приказы» генов. 

Роль так называемых «переводчиков» с языка непростого генетического кода на рабочий язык аминокислот выполняется молекулами РНК иного вида — транспортными.

Маленькие по своему размеру и удельному молекулярному весу эти молекулы имеют способность различать необходимые аминокислоты, подтаскивать и присоединять их к себе, транспортировать к рибосоме.

Буквально каждой из аминокислот соответствует собственная транспортная РНК. То есть, в клетке присутствует, по меньшей мере, два десятка видов РНК транспортных в соответствии с числом аминокислот.

Процесс распознавания транспортными РНК «собственных» аминокислот идёт при помощи специальных ферментов (коих также существует не менее 20-ти видов), управляющих аминокислотным прикреплением к соответствующим РНК транспортного типа.

Молекула РНК-транспортной, которая соединена с аминокислотой, подплывая к рибосоме, воссоединяется с ней.

Уже в следующее мгновение сформировавшаяся матрица (то есть информационная РНК) двигается по рибосоме на определённое расстояние, что соответствует участку, на котором записан шифр присоединённой аминокислоты, словно подставляя участок для прочтения, на котором закодирована определённая аминокислота.

РНК информационная так продвигается до тех самых пор, пока буквально вся матрица не будет прочитанной рибосомой, а молекула соответствующего ей белка в полной мере синтезированной.

1-рвая транспортная аминокислота, которая выполнила свою задачу, сразу же покидает рибосому, освободив место для последующей.

Полностью освободившиеся от аминокислотного груза транспортные РНК постепенно уходят в цитоплазму, где их ожидают молекулы ферментов, дабы соединить со следующими порциями аминокислот. Так как в клетке, пока та живет, необходимы всё новые белки.

Существует и еще один тип РНК — рибосомные, составляющие основную массу. Их биологическая роль в настоящее время остаётся до конца не выясненной. Известно только, что нарушение целостности рибосомных РНК молекул приводит к нарушению активности рибосом.

Похожее

Источник: https://ClinicAll.ru/medicin/nukleinovye-kisloty

Основные понятия

Нуклеиновые кислоты — фосфорсодержащие биополимеры, построенные из мономеров — нуклеотидов и обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

■ Открыты Ф. Мишером (1869 г., Швейцария).

* В молекулах нуклеиновых кислот содержится от 80 до нескольких сот миллионов нуклеотидов.

■ Нуклеиновые кислоты содержатся в ядрах, митохондриях и пластидах клеток.

Нуклеотид — органическое соединение, в состав которого входят: одно из пяти азотистых оснований (аденин, гуанин, урацил, тмин, цитозин), пятиуглеродный моносахарид (рибоза или дезокснрибоза) и остаток молекулы фосфорной кислоты (РO4).

Название и обозначение нуклеотидов: нуклеотид называется по имени своего азотистого основания и обозначается первой заглавной буквой его названия (пример: А — адениновый нуклеотид).

Комплементарные нуклеотиды — это пары нуклеотидов А и Т, а также Г и Ц, между азотистыми основаниями которых могут образовываться водородные связи.

В зависимости от того, какой сахар входит в состав нуклеотидов, нуклеиновые кислоты подразделяются на дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК).

Дезоксирибонуклеиновая кислота (ДНК)

❖ Состав ДНК:

■ пятиуглеродный сахар дезокси-рибоза,

■ азотистые основания (аденин, гуанин, тимин, цитозин),

■ остаток фосфорной кислоты.

❖ Структура ДНК впервые расшифрована Дж. Уотсоном и Ф. Криком в 1953 г.

■ молекула ДНК состоит из двух полинуклеотидных цепочек, спирально закрученных одна относительно другой;

■нуклеотиды в каждой цепочке ДНК связаны друг с другом ковалентными фосфодиэфирными связями, образующимися между фосфатной группой одного нуклеотида и гидроксильной группой дезоксирибозы соседнего;

■ цепочки ДНК соединены друг с другом двумя или тремя водородными связями между комплементарными азотистыми основаниями: А = Т, Ц = Г.

Комплементарносгь — принцип, в соответствии с которым объединяются две полинуклеотидные цепи в молекуле ДНК, а также осуществляется синтез всех типов РНК на молекулах ДНК и синтез полипептидов по и-РНК в рибосомах: против нуклеотида А одной цепи может быть только нуклеотид Т другой цепи, а против нуклеотида Г — только нуклеотид Ц.

Правило Чаргофа (следствие комплементарности нуклеотидов): число адениловых нуклеотидов равно числу тимидиловых: А = Т, а число гуаниловых нуклеотидов равно числу цити-диловых: Г = Ц; откуда следует, что А + Г = Т + Ц.

Свойства ДНК: эта молекула способна к транскрипции, репарации, репликации.

Транскрипция — это процесс «считывания» генетической информации с одной из нитей молекулы ДНК и копирования ее на молекулу и-РНК, происходящий путем биосинтеза молекул и-РНК на соответствующих участках ДНК; является первым этапом реализации генетической информации в живых клетках.

■ Транскрипция происходит с помощью фермента РНК-лоли-меразы, который, двигаясь по молекуле ДНК, подбирает нуклеотиды, комплементарные нуклеотидам участка ДНК, и соединяет их в цепочку и-РНК.

Репарация — процесс исправления повреждений (восстановления) в молекулах ДНК и компенсации уже закрепившихся мутаций; происходит при участии особых ферментов.

Репликация (или удвоение) ДНК — происходящий под контролем ферментов процесс синтеза новой молекулы ДНК как точной копии уже существующей молекулы ДНК при ее использовании как матрицы; наблюдается в ходе подготовки клетки к делению. Матричный синтез ДНК идет по принципу комплементарности, антипараллельно; полуконсервативный прерывистый матричный синтез — от 3′- к 5′-концу.

Этапы репликации ДНК:

■ постепенное разделение (с помощью специального фермента) комплементарных цепей ДНК в результате разрыва водородных связей между ними;

■ деспирализация разделившихся участков полинуклеотидных цепей ДНК (происходит при участии фермента ДНК-изомеразы);

■ комплементарный синтез новых (дочерних) полинуклеотидных цепей на каждой из старых цепей как на матрице; осуществляется с помощью фермента ДНК-полимеразы.

Локализация ДНК в клетках:

■ в хромосомах клеточного ядра (около 99% всей ДНК клетки), в митохондриях и пластидах эукариотических клеток;

■ в прокариотических клетках погружена в цитоплазму.

Функции ДНК: хранение, передача дочерним клеткам и воспроизведение генетической информации.

■В ДНК любой клетки закодирована информация о строении, количестве и последовательности синтеза всех белков данного организма.

Рибонуклеиновая кислота (РНК)

Состав РНК:

■ пятиуглеродный сахар рибоза,

■ азотистые основания (аденин, гуанин, урацил, цитозин),

■ остаток фосфорной кислоты.

Структура РНК (см. рис. 1.3):

■ молекула РНК состоит из одной полинуклеотидной цепочки;

■ нуклеотиды в каждой цепочке РНК связаны друг с другом ковалентными фосфодиэфирными связями;

■ кроме того, между соседними нуклеотидами цепочки могут образовываться водородные связи;

* цепочки РНК значительно короче молекул ДНК, имеют меньшую молярную массу.

Виды РНК:

■ информационная РНК (и-РНК),

■ транспортная РНК (т-РНК),

■ рибосомальная РНК (р-РНК).

Информационная РНК (составляет 7 — рибозофосфатная основа около 5% от всех РНК клетки):

■ структура: незамкнутая цепь, содержащая от 300 до 30000 нуклеотидов; является комплементарной копией определенного участка ДНК (гена);

* функции: каждая специфическая молекула и-РНК переносит информацию о структуре определенного белка от ДНК в рибосомы (место сборки молекул белков) и является матрицей для синтеза молекул этого белка.

Транспортная РНК (составляет до 15% от всех РНК клетки):

■ структура: содержит 75-85 нуклеотидов; молекула т-РНК имеет вторичную структуру в форме «клеверного листа» (из-за наличия водородных связей) и два активных участка: антикодонтриплет нуклеотидов на верхушке «клеверного листа», и акцепторный конец, к которому присоединяются аминокислоты;

функция т-РНК — транспорт аминокислот в рибосому к месту сборки молекул белка.

Рибосомальная РНК (составляет до 85% от всех РНК клетки):

■ место синтеза: молекулы р-РНК синтезируются в ядре клетки;

■ локализация: в комплексе с белками образует рибосомы — ор-ганеллы, на которых происходит синтез белка;

■ функция р-РНК — обеспечение нужного пространственного взаимного расположения и-РНК и т-РНК в рибосоме.

Аденозинтрифосфорная кислота (АТФ)

Аденозинтрифосфорная кислота (АТФ) — органическое вещество, выполняющее роль аккумулятора энергии в клетке в виде макроэргических связей.

❖ Состав молекул АТФ:

■ пятиуглеродный сахар рибоза,

• азотистое основание аденин,

• три остатка молекул фосфорной кислоты.

❖ Энергетика химических связей:

■ между остатками молекул фосфорной кислоты существуют макроэргические связи; при разрыве одной такой связи в результате гидролитического (под воздействием молекулы воды) отщепления выделяетс)( 40 кДж энергии;

■ аккумуляция энергии в вышеуказанных связях происходит в процессе синтеза АТФ за счет энергии, освобождающейся при окислении органических веществ (окислительное фосфорилирование).

❖ Некоторые особенности АТФ:

■ АТФ синтезируется в гиалоплазме, митохондриях и хлоропла-стах (у растений в процессе фотосийтеза);

■ среднее время жизни молекулы АТФ в клетке — менее 1 мин.

❖ Значение АТФ: это — главный и универсальный источник энергии для всех процессов жизнедеятельности в клетке.

биология, клетки

Источник: https://esculappro.ru/nukleinovyie-kislotyi.html

Нуклеиновые кислоты: строение и функции. Биологическая роль нуклеиновых кислот

НУКЛЕИНОВЫЕ КИСЛОТЫ

Нуклеиновые кислоты осуществляют хранение и передачу генетической информации, которую мы наследуем от своих предков. Если у вас есть дети, ваша генетическая информация в их геноме будет рекомбинирована и объединена с генетической информацией вашего партнера.

Ваш собственный геном дублируется всякий раз, когда каждая из клеток делится. Кроме того, нуклеиновые кислоты содержат определенные сегменты, называемые генами, которые отвечают за синтез всех протеинов в клетках.

Свойства генов контролируют биологические характеристики вашего организма.

Общие сведения

Различают два класса нуклеиновых кислот: дезоксирибонуклеиновую кислоту (более известную как ДНК) и рибонуклеиновую кислоту (более известную как РНК).

ДНК представляет собой нитевидную цепь генов, которая необходима для роста, развития, жизнедеятельности и размножения всех известных живых организмов и большинства вирусов.

Изменения в ДНК многоклеточных организмов приведет к изменениям у последующих поколений.

ДНК — это биогенетический субстрат, обнаруженный во всех существующих живых существ, от простейших живых организмов до высокоорганизованных млекопитающих.

Многие вирусные частицы (вирионы) содержат в ядре РНК в качестве генетического материала. Однако нужно упомянуть, что вирусы лежат на границе живой и неживой природы, так как без клеточного аппарата хозяина они остаются неактивными.

Историческая справка

В 1869 году Фридрих Мишер выделил ядра из лейкоцитов и обнаружил, что они содержат богатое фосфором вещество, которое он назвал нуклеином.

Герман Фишер в 1880-х годах обнаружил пуриновые и пиримидиновые основания в нуклеиновых кислотах.

В 1884 году Р. Гертвиг предположил, что нуклеины ответственны за передачу наследственных признаков.

В 1899 году Рихард Альтман ввел термин «кислота ядра».

И уже позднее, в 40-х годах 20-го века, ученые Касперссон и Браше обнаружили связь между нуклеиновыми кислотами с синтезом белка.

Нуклеотиды

Полинуклеотиды строятся из множества нуклеотидов — мономеров, соединенных вместе в цепочки.

В строении нуклеиновых кислот выделяют нуклеотиды, каждый из которых имеет в составе:

  • Азотистое основание.
  • Пентозный сахар.
  • Фосфатную группу.

Каждый нуклеотид содержит азотсодержащее ароматическое основание, прикрепленное к пентозному (пятиуглеродному) сахариду, который, в свою очередь, присоединен к остатку фосфорной кислоты. Такие мономеры, соединяясь друг с другом, образуют полимерные цепочки.

Они соединены ковалентными водородными связями, возникающими между фосфорным остатком одной и пентозным сахаром другой цепочки. Данные связи называются фосфодиэфирными. Фосфодиэфирные связи формируют фосфатно-углеводный каркас (скелет) как ДНК, так и РНК.

Дезоксирибонуклеотид

Рассмотрим свойства нуклеиновых кислот, находящихся в ядре. ДНК формирует хромосомный аппарат ядра наших клеток. ДНК содержит «программные инструкции» для нормального функционирования клетки. Когда клетка воспроизводит себе подобную, эти инструкции передаются новой клетке в ходе митоза. ДНК имеет вид двухцепочечной макромолекулы, скрученной в двойную спиралевидную нить.

В составе нуклеиновой кислоты присутствует фосфат-дезоксирибозный сахаридный скелет и четыре азотистых основания: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В двухцепочечной спирали аденин образует пару с тимином (А-Т), гуанин — с цитозином (Г-Ц).

В 1953 году Джеймс Д. Уотсон и Фрэнсис Х.К. Крик предложили трехмерную структуру ДНК, основанную на рентгеновских кристаллографических данных с низким разрешением. Они также ссылались на выводы биолога Эрвина Чаргаффа о том, что в ДНК количество тимина эквивалентно количеству аденина, а количество гуанина эквивалентно количеству цитозина.

Уотсон и Крик, заслужившие Нобелевскую премию в 1962 году за свой вклад в науку, выдвинули постулат о том, что две нити полинуклеотидов образуют двойную спираль. Нити, хотя они и идентичны, но закручиваются в противоположных направлениях.

Фосфат-углеродистые цепочки расположены на внешней стороне спирали, а основания лежат внутри, где они связываются с основаниями на другой цепочке через ковалентные связи.

Рибонуклеотиды

Молекула РНК существует как одноцепочечная спиралевидная нить. В структуре РНК присутствует фосфат-рибозный углеводный скелет и нитратные основания: аденин, гуанин, цитозин и урацил (У). Когда РНК в ходя транскрипции создается на матрице ДНК, гуанин формирует пару с цитозином (Г-Ц) и аденин с урацилом (А-У).

Фрагменты РНК используются для воспроизведения белков внутри всех живых клеток, что обеспечивает непрерывный их рост и деление.

Существуют две основные функции нуклеиновых кислот. Во-первых, они помогают ДНК, служа посредниками, передающими необходимую наследственную информацию бесчисленному количеству рибосом в нашем теле. Другая основная функция РНК заключается в доставке правильной аминокислоты, необходимой каждой рибосоме для создания нового белка. Выделяют несколько различных классов РНК.

Информационная РНК (иРНК, или мРНК — матричная) представляет собой копию базовой последовательности участка ДНК, полученную в результате транскрипции. Информационная РНК служит посредником между ДНК и рибосомами — органеллами клеток, которые принимают аминокислоты от транспортной РНК, и используют их для построения полипептидной цепи.

Транспортная РНК (тРНК) активирует считывание наследственных данных с матричной РНК, в результате чего запускается процесс трансляции рибонуклеиновой кислоты — синтез белка. Она также переносит нужные аминокислоты к местам, где синтезируется белок.

Рибосомальная РНК (рРНК) является основным строительным материалом рибосом. Она связывает матричный рибонуклеотид в определенном месте, где возможно считать его информацию, тем самым запуская процесс трансляции.

МикроРНК — это небольшие молекулы РНК, выполняющие роль регуляторов многих генов.

Функции нуклеиновых кислот чрезвычайно важны для жизни в целом и для каждой клетки в частности. Почти все функции, которые выполняет клетка, регулируются белками, синтезированными с помощью РНК и ДНК. Ферменты, белковые продукты, катализируют все жизненно важные процессы: дыхание, пищеварение, все виды обмена веществ.

Различия между строением нуклеиновых кислот

ДезоскирибонуклеотидРибонуклеотид
ФункцияДолгосрочное хранение и передача наследственных данныхПреобразование информации, хранящейся в ДНК, в белки; транспорт аминокислот. Хранилище наследственных данных некоторых вирусов.
МоносахаридДезоксирибозаРибоза
СтруктураДвухцепочечная спиралевидная формаОдноцепочечная спиралевидная форма
Нитратные основанияТ, Ц, А, ГУ, Ц, Г, А

Отличительные свойства оснований нуклеиновых кислот

Аденин и гуанин по своим свойствам являются пуринами. Это значит, что их молекулярная структура включает два конденсированных бензольных кольца. Цитозин и тимин, в свою очередь, относятся к пиримидинам, и имеют одно бензольное кольцо.

РНК-мономеры строят свои цепочки используя адениновые, гуаниновые и цитозиновые основания, а вместо тимина они присоединяют урацил (У).

Каждое из пиримидиновых и пуриновых оснований имеют свою уникальную структуру и свойства, собственный набор функциональных групп, сцепленных с бензольным кольцом.

В молекулярной биологии приняты специальные однобуквенные сокращения для обозначения азотистых оснований: А, Т, Г, Ц, или У.

Пентозный сахар

В дополнение к различному набору азотистых оснований, ДНК- и РНК-мономеры отличаются входящим в состав пентозным сахаром. Пятиатомный углевод в ДНК — дезоксирибоза, тогда как в РНК — рибоза. Они почти идентичны по строению, лишь с одной разницей: рибоза присоединяет гидроксильную группу, а у дезоксирибозы она замещена атомом водорода.

Выводы

В эволюции биологических видов и непрерывности жизни роль нуклеиновых кислот невозможно переоценить. Как неотъемлемая часть всех ядер живых клеток, они ответственны за активацию всех процессов жизнедеятельности, протекающих в клетках.

Источник: http://fb.ru/article/15932/nukleinovyie-kislotyi-hraniteli-geneticheskoy-informatsii

Нуклеиновые кислоты. Строение и функции нуклеиновых кислот

НУКЛЕИНОВЫЕ КИСЛОТЫ

Нуклеиновые кислоты — фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации. Открыты они в 1869 г. швейцарским химиком Ф. Мишером в ядрах лейкоцитов. Впоследствии нуклеиновые кислоты были обнаружены во всех растительных и животных клетках, бактериях, вирусах и грибах.

В природе существуют два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновые (РНК) Различие в названиях объясняется тем, что молекула ДНК содержит пятиуглеродный сахар дезоксирибозу, а молекула РНК — рибозу. В настоящее время известно большое число разновидностей ДНК и РНК, отличающихся друг от друга по строению и значению в метаболизме.

ДНК локализуется преимущественно в хромосомах клеточного ядра (99 % всей ДНК клетки), а также в митохондриях и хлоропластах. РНК, кроме ядра, входит в состав рибосом, цитоплазмы, пластид и митохондрий.

Нуклеиновые кислоты — сложные биополимеры, мономерами которых являются нуклеотиды. В состав каждого нуклеотида входит пятиуглеродный сахар (рибоза или дезоксирибоза), азотистое основание и остаток фосфорной кислоты.

Существует пять основных азотистых оснований: аденин, гуанин, урацил, тимин и цитозин. Первые два являются пуриновыми — их молекулы состоят из двух соединенных между собой колец. Следующие три являются пиримидинами и имеют одно шестичленное кольцо.

Названия нуклеотидов происходят от названия соответствующих азотистых оснований; и те и другие обозначаются заглавными буквами: аденин — аденилат (А), гуанин — гуанилат (Г), цитозин — цитидилат (Ц), урацил — уридилат (У), тимин — дезокситимилилат (Т).

Количество нуклеотидов в молекуле нуклеиновых кислот бывает разным — от 80 в молекулах транспортных РНК до нескольких десятков миллионов у ДНК.

ДНК

Молекула ДНК — это двухцепочечная спираль, закрученная вокруг собственной оси.

В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между фосфатной группой одного нуклеотида и 3'-спиртовой группой пентозы другого. Такие связи называются фосфодиэфирными. Фосфатная группа образует мостик между 3'-углеродом одного пентозного цикла и 5'-углеродом следующего.

Остов цепей ДНК образован, таким образом, сахарофосфатными остатками.

Полинуклеотидная цепь ДНК закручена в виде спирали, напоминая винтовую лестницу и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между аденином и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными.

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых — числу цитидиловых. Эта закономерность получила название «правило Чаргаффа». Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой.

Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы.

Цепи в молекуле ДНК противоположно направлены, т. е., если одна цепь имеет направление от 3'-конца к 5'-концу, то в другой цепи 3'-концу соответствует 5'-конец и наоборот. Это свойство биспирали ДНК называется антипараллельностью.

Впервые двухцепочечная модель молекулы ДНК была предложена в 1953 г. американским ученым Дж. Уотсоном и англичанином Ф. Криком. Он объединил данные Э.

Чаргаффа о соотношении пуриновых и пиримидиновых оснований молекул ДНК и результаты рентгеноструктурного анализа, полученные М. Уилкинсом и Р. Франклин.

За разработку двухспиральной модели молекулы ДНК Уотсон, Крик и Уилкинс были удостоены в 1962 г. Нобелевской премии.

ДНК — самые крупные биологические молекулы. Их длина составляет от 0,25 мм — у некоторых бактерий до 40 мм — у человека. Это значительно больше самой крупной молекулы белка, которая в развернутом виде достигает не более 100-200 нм. Масса молекулы ДНК составляет 6 ∙ 10-12 г.

Диаметр молекулы ДНК — 2 нм, шаг спирали — 3,4 нм; каждый виток спирали содержит 10 пар нуклеотидов.

Спиральная структура поддерживается многочисленными водородными связями, возникающими между комплементарными азотистыми основаниями, и гидрофобными взаимодействиями.

Молекулы ДНК эукариотических организмов линейны. У прокариот ДНК, напротив, замкнута в кольцо и не имеет ни 3'-, ни 5'-концов.

Подобно белкам при изменении условий ДНК может подвергаться денатурации, которая называется плавлением. При постепенном возврате к нормальным условиям ДНК ренатурирует.

Функции ДНК

Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В ДНК любой клетки закодирована информация о всех белках данного организма, о том, какие белки и в какой последовательности будут синтезироваться.

РНК

Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий. В молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза. Вместо тимидилового нуклеотида (Т) входит уридиловый (У).

Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь.

Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), но в этом случае речь идет о внутрицепочечном соединении комплементарных нуклеотидов.

Цепочки РНК значительно короче ДНК.

Виды РНК

В клетке существует несколько видов РНК, которые различаются по величине молекул, структуре, расположению в клетке и функциям.

Информационная (матричная) РНК — мРНК — наиболее разнородная по размерам и структуре. мРНК представляет собой незамкнутую полинуклеотидную цепь.

Она синтезируется в ядре при участии фермента РНК-полимеразы по принципу комплементарности участку ДНК, отвечающего за кодирование данного белка. мРНК выполняет важнейшую функцию в клетке.

Она служит в качестве матриц для синтеза белков, передавая информацию об их структуре с молекул ДНК. Каждый белок клетки кодируется специфичной ему мРНК.

Рибосомная РНК — рРНК. Это одноцепочечные нуклеиновые кислоты, которые в комплексе с белками образуют рибосомы — органеллы, на которых происходит синтез белка. Информация о структуре рРНК закодирована в участках ДНК, расположенных в области вторичной перетяжки хромосом.

На долю рРНК приходится 80 % всей РНК клетки, поскольку клетки содержат большое количество рибосом. рРНК обладают сложной вторичной и третичной структурой, образуя петли на комплементарных участках, что приводит к самоорганизации этих молекул в сложное по форме тело.

В состав рибосом входят 3 типа рРНК — у прокариот и 4 типа рРНК — у эукариот.

Транспортная (трансферная) РНК — тРНК. Молекула тРНК состоит в среднем из 80 нуклеотидов. тРНК в клетке — около 15 % всей РНК. Функция тРНК — перенос аминокислот к месту синтеза белка и участие в процессе трансляции.

Число различных типов тРНК в клетке невелико (около 40). Все они имеют сходную пространственную организацию.

Благодаря внутрицепочечным водородным связям молекула тРНК приобретает характерную вторичную структуру, называемую клеверным листом.

Трехмерная же модель тРНК выглядит несколько иначе. В тРНК выделяют четыре петли: акцепторную (служит местом присоединения аминокислоты), антикодоновую (узнает кодон в мРНК в процессе трансляции), две боковые.

Читать далее

Источник: https://ed-lib.ru/biology/13-nukleinovye-kisloty-stroenie-i-funkcii-nukleinovyh-kislot.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть