Растворимость окиси азота NO в растворах серной кислоты

Оксиды азота. Азотная кислота

Растворимость окиси азота NO в растворах серной кислоты

Известны несколько оксидов азота.

Несолеобразующие оксиды: N2O, NO

Солеобразующие оксиды: N2O3, NO2, N2O4, N2O5

Все оксиды азота, кроме N2O, ядовитые вещества.

Оксид азота (I) N2O – это бесцветный газ со слабым запахом и сладковатым вкусом, хорошо растворимый в воде, но не взаимодействует с ней. При достаточно высокой температуре разлагается по уравнению:

2N2O = 2N2 + O2

В смеси с кислородом  N2O используется в медицине для наркоза («веселящий» газ).

Наиболее важными являются оксиды азота (II) и (IV).

Оксид азота (II) NO – бесцветный газ, не имеет запаха. В воде малорастворим, относится, как и N2O, к несолеобразующим оксидам. Оксид азота (II) NO образуется из азота и кислорода при сильных электрических разрядах (например, во время грозы в воздухе) или при высокой температуре:

N2 + O2 = 2NO

В лаборатории оксид азота (II) получают, например, при взаимодействии меди и разбавленной азотной кислоты:

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO↑ + 4H2O

Оксид азота (II) в промышленности получают каталитическим окислением аммиака и используют для получения азотной кислоты:

4NH3 + 5O2 = 4NO + 6H2O

Оксид азота (II) на воздухе легко окисляется до оксида азота (IV):

2NO + O2 = 2NO2

Оксид азота (IV)

Оксид азота (IV) NO2 – ядовитый газ бурого цвета, имеет характерный запах. Хорошо растворяется в воде. Оксид азота (IV) является смешанным оксидом, которому соответствуют две кислоты: азотистая HNO2 и азотная HNO3. Поэтому взаимодействие с водой происходит по уравнению:

2NO2 + H2O = HNO2 + HNO3

При взаимодействии NO2 с водой в присутствии кислорода (на воздухе) образуется только азотная кислота:

4NO2 + O2 + 2H2O ⇄ 4HNO3

При растворении NO2 в щелочи, например NaOH, образуются две соли (нитрат и нитрит) и вода:

2NO2 + 2NaOH = NaNO2 + NaNO3 + H2O

В избытке кислорода образуется только нитрат натрия:

4NO2 + 4NaOH + O2 = 4NaNO3 + 2H2O

Ниже 22 0С молекулы оксида азота (IV) NO2 легко соединяются попарно и образуют бесцветную жидкость состава N2O4, которая при охлаждении до – 10,2 0С превращается в бесцветные кристаллы.

В лаборатории NO2 можно получить при взаимодействии, например, меди с концентрированной азотной кислотой:

Cu + 4HNO3 = Cu(NO3)2 + 2NO2↑ + 2H2O

В промышленности NO2 получают путем окисления NO кислородом и далее используют для получения азотной кислоты.

Оксид азота (III) N2O3 – это темно-синяя жидкость, является кислотным оксидом. При взаимодействии с водой образуется азотистая кислота:

Оксид азота (III)

N2O3 + H2O = 2HNO2

Оксид азота (V) N2O5 – бесцветные кристаллы, хорошо растворимые в воде с образованием азотной кислоты:

N2O5 + H2O = 2HNO3

Азотная кислота

Физические свойства

Азотная кислота HNO3 – бесцветная жидкость, имеет резкий запах, легко испаряется, кипит при температуре 83 0С. При попадании на кожу азотная кислота может вызвать сильные ожоги (на коже образуется характерное желтое пятно, его сразу же следует промыть большим количеством воды, а затем нейтрализовать содой). С водой азотная кислота смешивается в любых соотношениях.

Обычно применяемая в лаборатории концентрированная азотная кислота содержит 63% HNO3. При хранении довольно легко, особенно на свету разлагается по уравнению:

4HNO3 ⇄ 2H2O + 4NO2↑ + O2↑

Выделяющийся газ NO2 окрашивает азотную кислоту в бурый цвет.

Химические свойства

Азотная кислота

Кислотно – основные свойства

Азотная кислота – одна из наиболее сильных кислот. В водных растворах она полностью диссоциирована на ионы:

HNO3 ⇄ H+ + NO3—

Как и все кислоты, она реагирует:

а) с оксидами металлов:

MgO + 2HNO3 = Mg(NO3)2 + H2O

б) с основаниями:

Mg(OH)2 + HNO3 = Mg(NO3)2 + H2O

в) с солями более слабых кислот:

K2CO3 + HNO3 = KNO3 + CO2↑ + H2O

Окислительно – восстановительные свойства

Азотная кислота является одним из сильнейших окислителей. Ее окислительно-восстановительные свойства обусловлены присутствием в молекуле HNO3 атома азота в высшей степени окисления N+5 в составе кислотного остатка NO3—.

Окислительные свойства кислотного остатка NO3— значительно сильнее, чем ионов водорода Н+, поэтому азотная кислота взаимодействует практически со всеми металлами, кроме золота и платины, находящимися в конце ряда напряжений.

Так как окислителем в HNO3 являются ионы NO3—, а не ионы Н+, то при взаимодействии HNO3 с металлами практически никогда не выделяется водород.

Нитрат-ионы NO3— при взаимодействии HNO3 с металлами восстанавливаются тем полнее, чем более разбавлена кислота и чем более активен металл. На следующей схеме показано, какие продукты могут образоваться при восстановлении HNO3:

Общая схема взаимодействия азотной кислоты с металлами

Концентрированная HNO3 при взаимодействии с наиболее активными металлами (до Al в ряду напряжений) восстанавливается до N2O. Например:

10HNO3 + 4Ca = 4Ca(NO3)2 + N2O↑ + 5H2O

Концентрированная HNO3 при взаимодействии с менее активными металлами (Ni, Cu, Ag, Hg) восстанавливается до NO2. Например:

4HNO3 + Ni = Ni(NO3)2 + 2NO2↑ + 2H2O

Аналогично концентрированная азотная кислота реагирует с некоторыми неметаллами. Неметалл при этом окисляется до оксокислоты. Например:

5HNO3 + P = HPO3 + 5NO2↑ + 2H2O

Следует отметить, что концентрированная HNO3 пассивирует такие металлы, как Fe, Al, Cr. Сущность пассивирования заключается в образовании на поверхности металла тонкой, но очень плотной оксидной плёнки, предохраняющей металл от дальнейшего взаимодействия с кислотой; например:

3Al + 12HNO3 = Al(NO3)3 + Al2O3 + 9NO2↑ + 6H2O

Разбавленная HNO3 реагирует с наиболее активными металлами (до Al) с образованием аммиака или нитрата аммония NH4NO3:

10HNO3 + 4Mg = 4Mg(NO3)2 + NH4NO3 + 3H2O

При взаимодействии разбавленной азотной кислоты с менее активными металлами образуется оксид азота (II) NO:

8HNO3 + 3Cu = 3Cu(NO3)2 + 2NO↑ + 4H2O

Таким же образом разбавленная HNO3 взаимодействует с некоторыми неметаллами:

2HNO3 + S = H2SO4 + 2NO↑

Взаимодействие азотной кислоты с медью

Получение

В лаборатории азотную кислоту получают при взаимодействии безводных нитратов с концентрированной серной кислотой:

Ba(NO3)2 + H2SO4 = BaSO4↓ + 2HNO3

В промышленности получение азотной кислоты идет в три стадии:

  1. Окисление аммиака до оксида азота (II):

4NH3 + 5O2 = 4NO + 6H2O

  1. Окисление оксида азота (II) в оксид азота (IV):

2NO + O2 = 2NO2

  1. Растворение оксида азота (IV) в воде и избытком кислорода:

4NO2 + 2H2O + O2 = 4HNO3

Применение

Азотную кислоту применяют для получения азотных удобрений, лекарственных и взрывчатых веществ.

Соли азотной кислоты

Соли азотной кислоты называются нитратами. Нитраты калия, натрия, аммония и кальция называются селитрами. Селитры применяют как минеральные азотные удобрения, так как азот является одним из основных элементов питания растений.

Все соли азотной кислоты хорошо растворимы в воде.

Соли азотной кислоты, как и она сама, являются сильными окислителями.

При нагревании все нитраты разлагаются с выделением кислорода, характер других продуктов разложения зависит от положения металла в ряду напряжений:

Примеры:

2NaNO3 = 2NaNO2 + O2↑

2Zn(NO3)2 = 2ZnO + 4NO2↑ + O2↑

2AgNO3 = 2Ag + 2NO2↑ + O2↑

*на изображении записи кристаллы нитрата меди (II)

Азотная кислота

Растворимость окиси азота NO в растворах серной кислоты
/ Кислоты / Азотная кислота

%D
%d.%M.%y %h~:~%m

Азо́тная кислота́ (HNO3), — сильная одноосновная кислота. Твёрдая азотная кислота образует две кристаллические модификации с моноклинной и ромбической решётками.

Азотная кислота смешивается с водой в любых соотношениях. В водных растворах она практически полностью диссоциирует на ионы. Образует с водой азеотропную смесь с концентрацией 68,4 % и tкип120 °C при атмосферном давлении. Известны два твёрдых гидрата: моногидрат (HNO3·H2O) и тригидрат (HNO3·3H2O).

Физические и физико-химические свойства

Плотность азотной кислоты в зависимости от концентрации.Фазовая диаграмма водного раствора азотной кислоты.

Азот в азотной кислоте четырёхвалентен[2], степень окисления +5.

Азотная кислота — бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C с частичным разложением. Растворимость азотной кислоты в воде не ограничена.

Водные растворы HNO3 с массовой долей 0,95-0,98 называют «дымящей азотной кислотой», с массовой долей 0,6-0,7 — концентрированной азотной кислотой. С водой образует азеотропную смесь (массовая доля 68,4 %, d20 = 1,41 г/см, Tкип = 120,7 °C)

При кристаллизации из водных растворов азотная кислота образует кристаллогидраты:

  • моногидрат HNO3·H2O, Tпл = −37,62 °C
  • тригидрат HNO3·3H2O, Tпл = −18,47 °C

Твёрдая азотная кислота образует две кристаллические модификации:

Моногидрат образует кристаллы ромбической сингонии, пространственная группа P na2, a = 0,631 нм, b = 0,869 нм, c = 0,544, Z = 4;

Плотность водных растворов азотной кислоты как функция её концентрации описывается уравнением

где d — плотность в г/см³, с — массовая доля кислоты. Данная формула плохо описывает поведение плотности при концентрации более 97 %.

Химические свойства

Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:

При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).

Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.

HNO3 как сильная одноосновная кислота взаимодействует:

а) с основными и амфотерными оксидами:

б) с основаниями:

в) вытесняет слабые кислоты из их солей:

При кипении или под действием света азотная кислота частично разлагается:

Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO3 взаимодействует:

а) с металлами, стоящими в ряду напряжений правее водорода:

Концентрированная HNO3

Разбавленная HNO3

б) с металлами, стоящими в ряду напряжений левее водорода:

Все приведенные выше уравнения отражают только доминирующий ход реакции.

Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO2, N2O, N2 и NH4NO3.

Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:

увеличение концентрации кислоты увеличение активности металлаПродукты взаимодействия железа с HNO3 разной концентрации

С золотом и платиной азотная кислота, даже концентрированная не взаимодействует.

Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются.

С разбавленной азотной кислотой железо взаимодействует, причем в зависимости от концентрации кислоты образуются не только различные продукты восстановления азота, но и различные продукты окисления железа:

Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO2:

и сложные вещества, например:

Некоторые органические соединения (например амины, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.

Некоторые металлы (железо, хром, алюминий, кобальт, никель, марганец, бериллий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.

Смесь азотной и серной кислот носит название «меланж».

Азотная кислота широко используется для получения нитросоединений.

Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором и хлоридом нитрозила:

Нитраты

Азотная кислота является сильной кислотой. Её соли — нитраты — получают действием HNO3 на металлы, оксиды, гидроксиды или карбонаты. Все нитраты хорошо растворимы в воде. Нитрат-ион в воде не гидролизуется.

Соли азотной кислоты при нагревании необратимо разлагаются, причём состав продуктов разложения определяется катионом:

а) нитраты металлов, стоящих в ряду напряжений левее магния:

б) нитраты металлов, расположенных в ряду напряжений между магнием и медью:

в) нитраты металлов, расположенных в ряду напряжений правее ртути:

г) нитрат аммония:

Нитраты в водных растворах практически не проявляют окислительных свойств, но при высокой температуре в твердом состоянии являются сильными окислителями, например, при сплавлении твердых веществ:

Цинк и алюминий в щелочном растворе восстанавливают нитраты до NH3:

Соли азотной кислоты — нитраты — широко используются как удобрения. При этом практически все нитраты хорошо растворимы в воде, поэтому в виде минералов их в природе чрезвычайно мало; исключение составляют чилийская (натриевая) селитра и индийская селитра (нитрат калия). Большинство нитратов получают искусственно.

С азотной кислотой не реагируют стекло, фторопласт-4.

Исторические сведения

Методика получения разбавленной азотной кислоты путём сухой перегонки селитры с квасцами и медным купоросом была, по видимому, впервые описана трактатах Джабира (Гебера в латинизированных переводах) в VIII веке. Этот метод с теми или иными модификациями, наиболее существенной из которых была замена медного купороса железным, применялся в европейской и арабской алхимии вплоть до XVII века.

В XVII веке Глаубер предложил метод получения летучих кислот реакцией их солей с концентрированной серной кислотой, в том числе и азотной кислоты из калийной селитры, что позволило ввести в химическую практику концентрированную азотную кислоту и изучить её свойства. Метод Глаубера применялся до начала XX века, причём единственной существенной модификацией его оказалась замена калийной селитры на более дешёвую натриевую (чилийскую) селитру.

Во времена М. В. Ломоносова азотную кислоту называли крепкой водкой.

Промышленное производство, применение и действие на организм

Цистерна с азотной кислотой

Азотная кислота является одним из самых крупнотоннажных продуктов химической промышленности.

Производство азотной кислоты

Современный способ её производства основан на каталитическом окислении синтетического аммиака на платино-родиевых катализаторах (процесс Оствальда) до смеси оксидов азота (нитрозных газов), с дальнейшим поглощением их водой

Концентрация полученной таким методом азотной кислоты колеблется в зависимости от технологического оформления процесса от 45 до 58 %.

Впервые азотную кислоту получили алхимики, нагревая смесь селитры и железного купороса:

Чистую азотную кислоту получил впервые Иоганн Рудольф Глаубер, действуя на селитру концентрированной серной кислотой:

Дальнейшей дистилляцией может быть получена т. н. «дымящая азотная кислота», практически не содержащая воды.

Применение

  • в производстве минеральных удобрений;
  • в военной промышленности (дымящая — в производстве взрывчатых веществ, как окислитель ракетного топлива, разбавленная — в синтезе различных веществ, в том числе отравляющих);
  • крайне редко  в фотографии — разбавленная — подкисление некоторых тонирующих растворов;
  • в станковой графике — для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише).
  • в производстве красителей и лекарств (нитроглицерин)
  • в ювелирном деле — основной способ определения золота в золотом сплаве;

Действие на организм

Азотная кислота и её пары очень вредны: пары вызывают раздражение дыхательных путей, а сама кислота оставляет на коже долгозаживающие язвы.

При действии на кожу возникает характерное желтое окрашивание кожи, обусловленное ксантопротеиновой реакцией.

При нагреве или под действием света кислота разлагается с образованием высокотоксичного диоксида азота NO2 (газа бурого цвета). ПДК для азотной кислоты в воздухе рабочей зоны по NO2 2мг/м

Азот и его соединения

Растворимость окиси азота NO в растворах серной кислоты

Азот —  элемент 2-го периода  V А-группы Периодической системы,  порядковый номер 7. Электронная формула атома [2He]2s22p3, характерные степени окисления 0,-3, +3 и +5, реже +2 и +4 и др. состояние Nvсчитается относительно устойчивым.

Шкала степеней окисления у азота:
+5 —   N2O5, NO3, NaNO3, AgNO3

+4 —  NO2

+3 – N2O3, NO2, HNO2, NaNO2, NF3

+2 —  NO

+1 – N2O

0 —  N2

-3 — NH3, NH4, NH3 * H2O, NH2Cl, Li3N, Cl3N.

Азот обладает высокой электроотрицательностью (3,07), третий после F и O. Проявляет типичные неметаллические (кислотные) свойства, образуя при этом различные кислородсодержащие кислоты, соли и бинарные соединения, а так же катион аммония NH4 и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

  Азот N2

Простое вещество. Состоит из неполярных молекул с очень устойчивой ˚σππ-связью N≡N, этим объясняется химическая инертность элемента при обычных условиях.

Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O2).

составная часть воздуха 78,09% по объему, 75,52 по массе. Из жидкого воздуха азот выкипает раньше, чем кислород. Малорастворим в воде (15,4 мл/1 л H2O при 20 ˚C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N2, реагирует с фтором и в очень малой степени – с кислородом:

 N2 + 3F2 = 2NF3,  N2 + O2  ↔ 2NO

Обратимая реакция получения аммиака протекает при температуре 200˚C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe, F2O3, FeO, в лаборатории при Pt )

N2 + 3H2 ↔ 2NH3 + 92 кДж

В соответствии с принципом Ле-Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450-500 ˚C, достигая  15%-ного выхода аммиака. Непрориагировавшие  N2 и H2 возвращают в реактор  и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2C(кокс) + O2 = 2CO при нагревании. В этих случаях получают азот, содержащий так же примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N-3H4N3O2(T) = N20 + 2H2O (60-70)

NH4Cl(p) + KNO2(p) = N20↑ + KCl +2H2O (100˚C)

Применяется для синтеза аммиака. Азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

   Аммиак NH3

Бинарное соединение , степень окисления азота равна – 3. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H)3] (sp3-гибридизация).

Наличие у азота в молекуле NH3  донорской пары электронов на  sp3-гибридной орбитали обуславливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH4. Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей.

Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л H2O при 20˚C); доля в насыщенном растворе равна 34% по массе и  99% по объему, pH= 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N-3) и окислительные (за счет H+1) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным  HCl, почернение бумажки, смоченной раствором Hg2(NO3)2.

Промежуточный продукт при синтезе HNO3  и солей аммония. Применяется  в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:

2NH3(г) ↔ N2 + 3H2
NH3(г) + H2O  ↔ NH3 *  H2O (р)↔ NH4++ OH—
NH3(г) + HCl(г) ↔ NH4Cl(г) белый «дым»
4NH3 + 3O2 (воздух) = 2N2 + 6 H2O   (сгорание)
4NH3 + 5O2 =  4NO+ 6 H2O   (800˚C, кат.

Pt/Rh)
2 NH3 + 3CuO = 3Cu + N2  + 3 H2O   (500˚C)
2 NH3 + 3Mg = Mg3N2 +3 H2           (600 ˚C )
NH3(г) + CO2(г) + H2O = NH4HCO3    (комнатная температура, давление)
Получение.

  В лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью:  Ca(OH)2 + 2NH4Cl = CaCl2+ 2H2O +NH3
Или кипячение водного раствора аммиака с последующим осушением газа.

  В промышленности аммиак получают из азота с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода.

  Гидрат аммиака NH3 *H2O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы  NH3 и H2O, связанные слабой водородной связью. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH4 и анион OH).

Катион аммония имеет правильно-тетраэдрическое строение   (sp3-гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N-3) в концентрированном растворе.

Вступает в реакцию ионного обмена и комплексообразования.

   Качественная реакция – образование белого «дыма» при контакте с газообразным HCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.

В 1 М растворе аммиака содержится в основном гидрат NH3 *H2O и лишь 0,4% ионов NH4  OH (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH4 OH» практически не содержится в растворе,  нет такого соединения и в твердом гидрате.

Уравнения важнейших реакций:

NH3 H2O (конц.)  = NH3↑ + H2O    (кипячение с NaOH)

NH3 H2O   + HCl (разб.)  = NH4Cl + H2O
3(NH3 H2O) (конц.)   + CrCl3 = Cr(OH)3↓ + 3 NH4Cl
8(NH3 H2O) (конц.)   + 3Br2(p) = N2↑ + 6 NH4Br + 8H2O (40-50˚C)
2(NH3 H2O) (конц.)   + 2KMnO4 = N2↑ + 2MnO2↓ + 4H2O + 2KOH
4(NH3 H2O) (конц.)    + Ag2O = 2[Ag(NH3)2]OH + 3H2O
4(NH3 H2O) (конц.)    + Cu(OH)2 + [Cu(NH3)4](OH)2 + 4H2O
6(NH3 H2O) (конц.)   + NiCl2 = [Ni(NH3)6]Cl2 + 6H2O
Разбавленный раствор аммиака (3-10%-ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5 – 25%-ный) – аммиачный раствор (выпускается промышленностью).

  Монооксид азота NO

Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ-связь (N꞊O) , в твердом состоянии димер N2О2  со связью N-N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней.

Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами . весьма реакционноспособная смесь NO и NO2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.Уравнения важнейших реакций:

2NO + O2(изб.

) = 2NO2    (20˚C)

2NO + C(графит) =  N2 +  CО2 (400- 500˚C)
10NO + 4P(красный) =  5N2 + 2P2O5 (150- 200˚C)
2NO + 4Cu = N2  + 2 Cu2O   (500- 600˚C)
Реакции на смеси  NO и  NO2:
NO + NO2  +H2O = 2HNO2(p)
NO + NO2  + 2KOH(разб.) = 2KNO2 + H2O
NO + NO2  +  Na2CO3 =  2Na2NO2  +  CО2 (450- 500˚C)
Получение в промышленности: окисление аммиака кислородом на катализаторе, в лаборатории  — взаимодействие разбавленной азотной кислоты с восстановителями:
8HNO3 + 6Hg = 3Hg2(NO3)2 + 2NO + 4 H2Oили восстановлении нитратов:

2NaNO2 + 2H2SO4 + 2NaI = 2NO↑ + I2↓ + 2 H2O + 2Na2SO4

Диоксид азота NO2

Кислотный оксид, условно отвечает двум кислотам — HNO2 и  HNO3 (кислота для N4 не существует). Бурый газ, при комнатной температуре мономер  NO2, на холоду жидкий бесцветный димер N2О4 (тетраоксид диазота).  Полностью реагирует с водой, щелочами.

Очень сильный окислитель, вызывает коррозию металлов. Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит.

Уравнение важнейших реакций:

2NO2 ↔ 2NO + O2

4NO2(ж) + H2O = 2HNO3 + N2О3 (син.)     (на холоду)
3 NO2 + H2O = 3HNO3 + NO↑
2NO2 + 2NaOH(разб.) = NaNO2 + NaNO3 + H2O
4NO2 + O2+ 2 H2O = 4 HNO3
4NO2 + O2 + KOH = KNO3 + 2 H2O
2NO2 + 7H2 = 2NH3 + 4 H2O   (кат. Pt, Ni)
NO2 + 2HI(p) = NO↑ + I2↓ + H2O
NO2 + H2O + SO2 = H2SO4 + NO↑   (50- 60˚C)
NO2  + K = KNO2
6NO2 + Bi(NO3)3 + 3NO   (70- 110˚C)
  Получение:  в промышленности —   окислением NO  кислородом воздуха, в лаборатории – взаимодействие концентрированной азотной кислоты с восстановителями:
6HNO3 (конц.,гор.) + S = H2SO4 + 6NO2↑ + 2H2O
5HNO3 (конц.,гор.) + P (красный) = H3PO4  + 5NO2 ↑ + H2O
2HNO3 (конц.,гор.) +  SO2 = H2SO4  + 2 NO2 ↑

Оксид диазота N2O

Бесцветный газ с приятным запахом («веселящий газ»), N꞊N꞊О, формальная степень окисления азота +1, плохо растворим в воде. Поддерживает горение графита и магния:

2N2O + C = CO2 + 2N2   (450˚C)
N2O + Mg = N2 + MgO (500˚C)Получают термическим разложением нитрата аммония:

NH4NO3 = N2O + 2 H2O (195- 245˚C)

применяется в медицине, как анастезирующее средство.

Триоксид диазота N2O3

При низких температурах –синяя жидкость, ON꞊NO2, формальная степень окисления азота +3. При 20 ˚C  на 90% разлагается на смесь бесцветного NO  и  бурого NO2 («нитрозные газы», промышленный дым – «лисий хвост»).

  N2O3 – кислотный оксид, на холоду с водой образует HNO2 , при нагревании реагирует иначе:
3N2O3 + H2O = 2HNO3 + 4NO↑
Со щелочами дает соли HNO2, например NaNO2.
Получают взаимодействием  NO c O2 (4NO + 3O2 = 2N2O3) или с NO2 (NO2 + NO = N2O3)
при сильном охлаждении.

«Нитрозные газы» и экологически опасны, действуют как катализаторы разрушения озонового слоя атмосферы.

Пентаоксид диазотаN2O5

Бесцветное,  твердое вещество, O2N – O – NO2, степень окисления  азота равна +5. При комнатной температуре за 10 ч разлагается на NO2 и O2.

Реагирует с водой и щелочами как кислотный оксид:
N2O5 + H2O = 2HNO3
N2O5 + 2NaOH = 2NaNO3 + H2
Получают дегидротацией дымящейся азотной кислоты:
2HNO3  + P2O5 = N2O5 + 2HPO3
или окислением NO2 озоном при  -78˚C:
2NO2 + O3 = N2O5 + O2

 Нитриты и нитраты

Нитрит калия KNO2.  Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуя бесцветный раствор), гидролизуется по аниону. Типичный окислитель и восстановитель в кислотной среде, очень медленно реагирует в щелочной среде. Вступает в реакции ионного обмена.

Качественные реакции на ион NO2— обесцвечивание фиолетового раствора MnO4  и появление черного осадка при добавлении ионов I. Применяется в производстве красителей, как аналитический реагент на аминокислоты и йодиды, компонент фотографических реактивов.уравнение важнейших реакций:

2KNO2(т)  + 2HNO3(конц.) = NO2↑ + NO↑ + H2O  + 2KNO3
2KNO2 (разб.)+ O2(изб.

) → 2KNO3 (60-80 ˚C)
KNO2  + H2O + Br2 = KNO3  + 2HBr

5NO2— + 6H+  + 2MnO4— (фиол.) = 5NO3—   + 2Mn2+ (бц.) + 3H2O
3 NO2—  + 8H+ + CrO72- = 3NO3— + 2Cr3+ + 4H2O
NO2—(насыщ.) + NH4+(насыщ.)=  N2↑ +  2H2O
2NO2—  + 4H+ + 2I—(бц.) = 2NO↑ + I2(черн.) ↓ = 2H2O
NO2—(разб.) + Ag+ = AgNO2 (светл.желт.)↓
Получение впромышленности – восстановлением калийной селитры в процессах:
KNO3 + Pb = KNO2  + PbO (350-400˚C)
KNO3 (конц.) + Pb(губка) + H2O = KNO2+ Pb(OH)2↓
3 KNO3 + CaO + SO2 = 2 KNO2  + CaSO4 (300 ˚C)

Hитраткалия KNO3
Техническое название калийная, или индийская соль, селитра. Белый, плавится без разложения при дальнейшем нагревании разлагается. Устойчив на воздухе.

Хорошо растворим в воде (с высоким эндо-эффектом, = -36 кДж), гидролиза нет. Сильный окислитель при сплавлении (за счет выделения атомарного кислорода). В растворе восстанавливается только атомарным водородом (в кислотной среде до KNO2, в щелочной среде до NH3).

Применяется в производстве стекла, как консервант пищевых продуктов, компонент пиротехнических смесей и минеральных удобрений.

2KNO3 = 2KNO2  +  O2                                                             (400- 500 ˚C)

KNO3 + 2H0 (Zn, разб. HCl) = KNO2 + H2O     

KNO3 + 8H0 (Al, конц. KOH) = NH3↑ + 2H2O + KOH     (80 ˚C)

KNO3 + NH4Cl = N2O↑ + 2H2O + KCl                 (230- 300 ˚C)

2 KNO3 + 3C (графит) + S = N2 + 3CO2 + K2S   (сгорание)

KNO3 + Pb = KNO2 + PbO                                    (350 — 400  ˚C)

KNO3 + 2KOH + MnO2 = K2MnO4 + KNO2 + H2O                                    (350 — 400  ˚C)

Получение: в промышленности
4KOH (гор.) + 4NO2  + O2  = 4KNO3 +  2H2O

и в лаборатории:
KCl + AgNO3 = KNO3 + AgCl↓

Азот — характеристика элемента, физические и химические свойства простого вещества. Аммиак, соли аммония.
Азотная кислота — строение и химические свойства

Оксиды азота

Растворимость окиси азота NO в растворах серной кислоты

При описании свойств азота отмечалось, что при непосредственном взаимодействии азота с кислородом образуется только оксид азота (II) NO. Однако существуют оксиды азота со всеми возможными степенями окисления (от +1 до +5).

При обычной температуре N2O — бесцветный газ со слабым приятным запахом и сладковатым вкусом; обладает наркотическим действием, вызывая сначала судорожный смех, затем — потерю сознания.

Способы получения

1. Разложение нитрата аммония при небольшом нагревании:

NH4NO3 = N2O↑ + 2Н2О

2. Действие HNO3 на активные металлы

10HNO3(конц.) + 4Са = N2O↑ + 4Ca(NO3)2 + 5Н2О

NO — оксид азота (II), монооксид азота

При обычной температуре NO — бесцветный газ без запаха, малорастворимый в воде, очень токсичный (в больших концентрациях изменяет структуру гемоглобина).

I. NO — окислитель

2NO + SO2 + Н2О = N2O↑ + H2SO4

2NO + 2H2 = N2 + 2Н2О (со взрывом)

II. NO — восстановитель

2NO + O2 = 2NO2

10NO + 6KMnO4 + 9H2SO4 = 10HNO3 + 3K2SO4 + 6MnSO4 + 4Н2О

NO2 — оксид азота (IV), диоксид азота

При обычной температуре NO2 — красно-бурый ядовитый газ с резким запахом. Представляет собой смесь NO2 и его димера N2O4 в соотношении -1:4. Диоксид азота хорошо растворяется в воде.

NO2 — кислотный оксид, смешанный ангидрид 2-х кислот

NO2 взаимодействует с водой, основными оксидами и щелочами. Но реакции протекают не так, как с обычными оксидами — они всегда окислительно — восстановительные. Объясняется это тем, что не существует кислоты со С.О. (N) = +4, поэтому NO2 при растворении в воде диспропорционирует с образованием 2-х кислот — азотной и азотистой:

2NO2 + Н2О = HNO3 + HNO2

Если растворение происходит в присутствии O2, то образуется одна кислота — азотная:

4NO2 + 2Н2О + O2 = 4HNO3

Аналогичным образом происходит взаимодействие NO2 со щелочами:

в отсутствие O2: 2NO2 + 2NaOH = NaNO3 + NaNO2 + Н2О

в присутствии O2: 4NO2 + 4NaOH + O2 = 4NaNO3 + 2Н2О

NO2 — очень сильный окислитель

По окислительной способности NO2 превосходит азотную кислоту. В его атмосфере горят С, S, Р, металлы и некоторые органические вещества. При этом NO2 восстанавливается до свободного азота:

10NO2 + 8P = 5N2 + 4P2O5

2NO2 + 8HI = N2 + 4I2 + 4Н2О (возникает фиолетовое пламя)

В присутствии Pt или Ni диоксид азота восстанавливается водородом до аммиака:

2NO2 + 7Н2 = 2NH3 + 4Н2О

Как окислитель NO2 используется в ракетных топливах. При его взаимодействии с гидразином и его производными выделяется большое количество энергии:

2NO2 + 2N2H4 = 3N2 + 4Н2О + Q

N2O3 и N2O5 — неустойчивые вещества

Оба оксида имеют ярко выраженный кислотный характер, являются соответственно ангидридами азотистой и азотной кислот.

N2O3 как индивидуальное вещество существует только в твердом состоянии ниже Т пл. (-100С).

С повышением температуры разлагается: N2O3 → NO + NO2

N2O5 при комнатной температуре и особенно на свету разлагается так энергично, что иногда самопроизвольно взрывается:

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.