Физические свойства винилкетонов

Алкены — номенклатура, получение, характерные химические свойства

Физические свойства винилкетонов

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины, алкадиены (полиены).

Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалкены), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома).

Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных углеводородов — алканов.

Строение алкенов


Алкены
— ациклические углеводороды, содержащие в молекуле помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле СnН2n.

 Свое второе название — олефины — алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров — масел.
Атомы углерода, между которыми есть двойная связь, находятся в состоянии sр2-гибридизации.

Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию σ-связи, а за счет негибридизованных р-орбиталей
соседних атомов углерода образуется вторая, π-связь.

Таким образом, двойная связь состоит из одной σ- и одной π — связи. Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие π -связь, располагаются перпендикулярно плоскости молекулы. Двойная связь (0,132 им) короче одинарной, а ее энергия больше, т. к.

она является более прочной. Тем не менее, наличие подвижной, легко поляризуемой π -связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Строение этилена

Образование двойной связи в алкенах

Гомологический ряд этена

Неразветвленные алкены составляют гомологи- ческий ряд этена (этилена): С2Н4 — этен, С3Н6 — пропен, С4Н8 — бутен, С5Н10 — пентен, С6Н12 — гексен, С7Н14 — гептен и т.д.

Изомерия алкенов

Для алкенов характерна структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры, — это бутен:

Особым видом структурной изомерии является изомерия положения двойной связи:

Алкены изомерны циклоалканам (межклассовая изомерия), например:

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии — геометрической, или цис- и транс-изомерии.

Цис-изомеры отличаются от транс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости π -связи, а следовательно, и свойствами.

Номенклатура алкенов

1. Выбор главной цепи. Образование названия углеводорода начинается с определения главной цепи — самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.
2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь.
Например,правильное название соединения:

5-метилгексен-2

Если по положению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

3. Формирование названия.  В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс -ен, обозначающий принадлежность соединения к классу алкенов. Например:

Физические свойства алкенов

Первые три представителя гомологического ряда алкенов — газы; вещества состава С5Н10 — С16Н32 — жидкости; высшие алкены — твердые вещества.
Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства алкенов

Реакции присоединения. Напомним, что отличительной чертой представителей непредельных углеводородов — алкенов является способность вступать в реакции присоединения.

Большинство этих реакций протекает по механизму электрофильного присоединения.
1. Гидрирование алкенов.

Алкены способны присоединять водород в присутствии катализаторов гидрирования, металлов — платины, палладия, никеля:

Эта реакция протекает при атмосферном и повышенном давлении и не требует высокой температуры, т. к. является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция — дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (СС14) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.
3. Гидрогалогенирование (присоединение галогеноводорода).

Эта реакция подчиняется правилу Марковникова:
При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген — к менее гидрированному.

4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта.

Обратите внимание на то, что первичный спирт (с гидроксогруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.

Эта реакция протекает также в соответствии с правилом Марковникова — катион водорода присоединяется к более гидрированному атому углерода, а гидроксогруппа — к менее гидрированному.
5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободнорадикальному механизму.

Реакции окисления.

1. Горение. Как и любые органические соединения, алкены горят в кислороде с образованием СО2 и Н2О:

2. Окисление в растворах. В отличие от алканов алкены легко окисляются под действием растворов перманганата калия. В нейтральных или щелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь:

Кетоны

Физические свойства винилкетонов

Кетоны — это карбонильные соединения, в которых группа С=О связана с двумя атомами углерода.

Общая формула кетонов: R1-CO-R2.

По номенклатуре ИЮПАК, названия кетонов образуют путем присоединения к названию соответствующих углеводородов суффикса «он» или к названию радикалов, связанных с кетогруппой С=О, слова «кетон»; при наличии старшей группы кетогруппу обозначают префиксом «оксо». Например, соединения СН3-СН2-СО-СН2-СН2-СН3 называется 3-гексанон или этилпропилкетон, соединения СН3-СО-СН2-СН2-СООН — 4-оксопентановая кислота. Для некоторых кетонов приняты тривиальные названия.

Среди других карбонильных соединений наличие в кетонах именно двух атомов углерода, непосредственно связанных с карбонильной группой, отличает их от карбоновых кислот и их производных, а также альдегидов.

Особый класс циклических ненасыщенных дикетонов — хиноны.

Физические свойства

Простейшие кетоны являются бесцветными, летучими жидкостями, которые растворяются в воде. Кетоны обладают приятным запахом. Высшие кетоны — твердые, легкоплавкие вещества. Газообразных кетонов не бывает, так как уже простейший из них (ацетон) — жидкость. Многие химические свойства, характерные для альдегидов, проявляюся и у кетонов.

Кето-енольная таутомерия

Таутомерия — тип изомерии, при которой происходит быстрое самопроизвольное обратимое взаимопревращение структурных изомеров — таутомеров. Процесс взаимопревращения таутомеров называется таутомеризацией.

Кетоны, которые имеют по крайней мере один α-водородный атом, подвергаются кето-енольной таутомеризации.

Для оксосоединений, имеющих атом водорода в α-положении по отношннию к карбонильной группе, существует равновесие между таутомерными формами. Для подавляющего большинства оксосоединений это равновесие смещено в сторону кето-формы.

Процесс перехода кето-формы в енольную называют енолизацией . На этом основана способность таких кетонов реагировать как С-или О-нуклеофилы. Концентрация енольной формы зависит от строения кетонов и составляет (в %): 0,0025 (ацетон), 2 (циклогексанон), 80 (ацетилацетон).

Скорость енолизации возрастает в присутствии кислот и оснований.

Химические свойства

По степени окисленности кетоны, как и альдегиды, занимают промежуточное положение между спиртами и кислотами, что во многом определяет их химические свойства.
1. Кетоны восстанавливаются до вторичных спиртов гидридами металлов, например LiAlH4 или NaBH4, водородом (кат. Ni, Pd), изопропанолом в присутствии алкоголята Аl (реакцияция Меервейна-Понндорфа-Верлея).

R2CO + 2H → R2CH(OH)

2. При восстановлении кетонов натрием или электрохимически (катодное восстановление) образуются пинаконы.

2R2CO + 2H → R2CH(OH)-CR2(OH)

3. При взаимодействии кетонов с амальгамированным Zn и концентрированной НCl (реакция Клемменсена) или с гидразином в щелочной среде (реакция Кижнера — Вольфа) группа С=О восстанавливается до СН2.

4. Окисление кетонов

В отличие от альдегидов, многие кетоны устойчивы при хранении к действию кислорода. Кетоны, содержащие α-метиленовую группу, окисляются SeO2 до 1,2-дикетонов, более энергичными окислителями, напр. КМnО4 — до смеси карбоновых кислот.

Циклические кетоны при взаимодействии с HNO3 или КМnО4 подвергаются окислительному расщеплению цикла, например, из циклогексанона образуется адипиновая кислота.

Линейные кетоны окисляются надкислотами до сложных эфиров, циклические — до лактонов (реакция Байера — Виллигера).

Если в качестве окислителя используют, например, хромовую смесь (смесь концентрированной серной кислоты и насыщенного раствора дихромата калия) при нагревании. Окисление кетонов всегда сопровождается разрывом углерод-углеродных связей, в результате образуется, в зависимости от строения исходного кетона, смесь кислот и кетонов с меньшим числом атомов углерода. Окисление протекает по схеме:

В первую очередь окисляется углерод в α-положении по отношению к карбонильной группе, как правило, наименее гидрогенизированный. Если кетон является метилкетоном, то одним из продуктов его окисления будет углекислый газ. Связь между соседними карбонильными углеродами легко рвется, в результате:

Окисление кетонов до карбоновых кислот не может происходить без расщепления углеродного скелета и требует более жестких условий, чем окисление альдегидов. А. Н. Попов, изучавший окисление кетонов, показал, что из несимметрично построенного кетона при окислении могут образоваться все четыре возможные карбоновые кислоты (правило Попова):

Если кетон содержит в α-положении третичный углеродный атом, то в результате окисления образуются три карбоновые кислоты и новый кетон, который в зависимости от условий может или подвергнуться дальнейшему окислению, или остаться неизмененным:

5. Альдольная и кретоновая конденсации

Кетоны образуют продукты замещения α-атомов Н при галогенировании действием Вr2, N-бромсукцинимидом, SO2Cl2, при тиилировании дисульфидами. При алкилировании и ацилировании енолятов кетонов образуются либо продукты замещения α-атомов Н в кетонах, либо О-производные енолов. Большое значение в органическом синтезе имеют альдольная и кретоновая конденсации, например:

При конденсации с альдегидами кетоны реагируют главным образом как СН-кислоты, например из кетонов и СН2О в присутствии основания получают α, β-ненасыщенные кетоны:

RCOCH3 + СН2О → RCOCH=CH2 + Н2О

Вследствие полярности карбонильной группы

кетоны могут вступать в реакции как С-электрофилы, например при конденсации с производными карбоновых кислот (конденсация Штоббе, реакция Дарзана и т. п.):

(CH3)2CO + (C2H5OOCCH2)2 + (CH3)3COK → (CH3)2=C(COOC2H5)CH2COOK + C2H5OH + (CH3)3COH

Особенно легко нуклеофильной атаке подвергаются α,β-непределъные кетоны, но в этом случае атакуется двойная связь (раекция Михаэля), например:

6. Взаимодействие с илидами

При взаимодействии с илидами Р (алкилиденфосфоранами) кетоны обменивают атом О на алкилиденовую группу (реакция Виттига):

R2C=O + Ph3P=CHR' → R2C=CHR' + Ph3PO

7. С циклопентадиеном кетоны образуют фульвены, например:

8. При конденсации кетонов с гидроксиламином получаются кетоксимы R2C=NOH, с гидразином — гидразоны R2C=N—NH2 и азины R2C=N—N=CR2, с первичными аминами — Шиффовы основания R2C=NR', со вторичными аминами — енамины.

9. Присоединение по карбонильной групе

Кетоны способны присоединять по карбонильной группе воду, спирты, бисульфит Na, амины и другие нуклеофилы, хотя эти реакции протекают не так легко, как в случае альдегидов.

Поскольку в спиртовых растворах равновесие между кетоном и его полукеталем сильно смещено влево, получить кетали из кетонов и спиртов трудно:

RCOR' + R»OH ↔ RR'C(OH)OR»

Для этой цели используют реакцию кетонов с эфирами ортомуравьиной кислоты. Кетоны взаимодействуют с С-нуклеофилами, например с литий-, цинк- или магнийорганические соединения, а также с ацетиленами в присутствии оснований (реакция Фаворского), образуя третичные спирты:

В присутствии оснований к кетонам присоединяется HCN, давая α-гидроксинитрилы (циангидрины):

R2C=O + HCN → R2C(OH)CN

При катализе кислотами кетоны реагируют как С-электрофилы с ароматическими соединениями, например:

Гомолитическое присоединение кетонов к олефинам приводит к α-алкилзамещенным кетонам, фотоциклoприсоединение к оксетанам, например:

1. Окисление спиртов

Кетоны могут быть получены окислением вторичных спиртов. Окислителем, обычно применяемым для этой цели в лабораториях, является хромовая кислота, употребляемая чаще всего в виде «хромовой смеси» (смесь бихромата калия или натрия с серной кислотой). Иногда применяются также перманганаты различных металлов или перекись марганца и серная кислота.

2. Дегидрогенизация (дегидрирование) вторичных спиртов

При пропускании паров спирта через нагретые трубки с мелко раздробленной, восстановленной водородом металлической медью вторичные спирты распадаются — на кетон и водород. Несколько хуже эта реакция проходит в присутствии никеля, железа или цинка.

3. Из одноосновных карбоновых кислот

Кетоны могут быть получены сухой перегонкой кальциевых и бариевых солей одноосновных кислот. Для всех кислот, кроме муравьиной, реакция идет следующим образом:

Чаще восстанавливают не самые кислоты, а их производные, например хлорангидриды:

CH3-CO-Cl + 2H → CH3-CHO + HCl

т. е. образуется кетон с двумя одинаковыми радикалами и карбонат кальция.

Если взять смесь солей двух кислот или смешанную соль, то наряду с предыдущей реакцией происходит также реакция между молекулами разных солей:

Вместо сухой перегонки готовых солей используют также контактный способ, так называемую реакцию кетонизации кислот, состоящую в том, что пары кислот пропускают при повышенной температуре над катализаторами, в качестве которых применяют углекислые соли кальция или бария, закись марганца, окись тория, окись алюминия и др.

Здесь сначала образуются соли органических кислот, которые затем разлагаются, регенерируя вещества, являющиеся катализаторами. В результате реакция идет, например, для уксусной кислоты по следующему уравнению:

2CH3-COOH → CH3-CO-CH3 + H2O + CO2

4. Действие воды на дигалоидные соединения

Кетоны могут получаться при взаимодействии с водой дигалоидных соединений, содержащих оба атома галоида при одном и том же атоме углерода. При этом можно было бы ожидать обмена атомов галоида на гидроксилы и получения двухатомных спиртов, у которых обе гидроксильные группы находятся при одном и том же атоме углерода, например:

Но такие двухатомные спирты в обычных условиях не существуют, они отщепляют молекулу воды, образуя кетоны:

5. Действие воды на ацетиленовые углеводороды (реакция Кучерова)

При действии воды на гомологи ацетилена в присутствии солей окиси ртути, получаются кетоны:

CH3-C≡CH + H2O → CH3-CO-CH3

6. Получение с помощью магний- и цинкорганических соединений

При взаимодействии производных карбоновых кислот с некоторыми металлоорганическими соединениями присоединение одной молекулы металлоорганического соединения по карбонильной группе протекает по схеме:

Если на полученные соединения подействовать водой, то они реагируют с ней с образованием в кетонов:

При действии на амид кислоты двух молекул магнийорганического соединения, а затем воды получаются кетоны без образования третичных спиртов:

7. Действие кадмийорганических соединений на хлорангидриды кислот

Кадмийорганические соединения взаимодействуют с хлорангидридами кислот иначе, чем магний- или цинкорганические:

R-CO-Cl + C2H5CdBr → R-CO-C2Н5 + CdClBr

Поскольку кадмийорганические соединения не вступают в реакцию с кетонами, здесь не могут получаться третичные спирты.

Применение кетонов

В промышленности кетоны используют как растворители, фармацевтические препараты и для изготовления различных полимеров. Важнейшими кетонами являются ацетон, метилэтиловый кетон и циклогексанон.

Физиологическое действие

Токсичны. Обладают раздражающим и местным действием, проникают через кожу, особенно хорошо ненасыщенные алифатические. Отдельные вещества обладают канцерогенным и мутагенным эффектом. Галогенпроизводные кетонов вызывают сильное раздражение слизистых оболочек и ожоги при контакте с кожей. Алициклические кетоны обладают наркотическим действием.

Кетоны играют важную роль в метаболизме веществ в живых организмах. Так, убихинон участвует в окислительно-восстановительных реакциях тканевого дыхания.

К соединениям, содержащим кетонную группу, относятся некоторые важные моносахариды (фруктоза и др.

), терпены (ментон, карвон), компоненты эфирных масел (камфора, жасмон), природные красители (индиго, ализарин, флавоны), стероидные гормоны (кортизон, прогестерон), мускус (мускон), антибиотик тетрациклин.

В процессе фотосинтеза 1,5-дифосфат-D-эритро-пентулозы (фосфолированная кетопентоза) является катализатором. Ацетоуксусная кислота — промежуточный продукт в цикле Креббса.

Наличие в моче и крови человека кетонов говорит о гипогликемии, различных расстройствах метаболизма или кетоацидозе.

Физические и химические свойства этилена

Физические свойства винилкетонов

Формула – С2Н4 (СН2 = СН2). Молекулярная масса (масса одного моль) – 28 г/моль.

Углеводородный радикал, образованный от этилена называется винил (-CH = CH2). Атомы углерода в молекуле этилена находятся в sp2-гибридизации.

Химические свойства этилена

Для этилена характерны реакции, протекающщие по механизму электрофильного, присоединения, реакции радикального замещения, окисления, восстановления, полимеризации.

Галогенирование (электрофильное присоединение) — взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:

CH2 = CH2 + Br2 = Br-CH2-CH2Br.

Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:

CH2 = CH2 + Cl2 → CH2 = CH-Cl + HCl.

Гидрогалогенирование — взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:

CH2 = CH2 + HCl → CH3-CH2-Cl.

Гидратация — взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:

CH2 = CH2 + H2О → CH3-CH2-ОН.

Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты (1), реакции гидрокси- и алкоксимеркурирования (2, 3) (получение ртутьорганических соединений) и гидроборирование (4):

CH2 = CH2 + HClO → CH2(OH)-CH2-Cl (1);

CH2 = CH2 + (CH3COO)2Hg + H2O → CH2(OH)-CH2-Hg-OCOCH3 + CH3COOH (2);

CH2 = CH2 + (CH3COO)2Hg + R-OH → R-CH2(OCH3)-CH2-Hg-OCOCH3 + CH3COOH (3);

CH2 = CH2 + BH3 → CH3-CH2-BH2 (4).

Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,

2ON-CH = CH2 + HCN →2ON-CH2-CH2-CN.

В ходе реакций окисления этилена возможно образование различных продуктов, причем состав определяется условиями проведения окисления. Так, при окислении этилена в мягких условиях (окислитель – перманганат калия) происходит разрыв π-связи и образование двухатомного спирта — этиленгликоля:

3CH2 = CH2 + 2KMnO4 +4H2O = 3CH2(OH)-CH2(OH) +2MnO2 + 2KOH.

При жестком окислении этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:

Окисление этилена кислородом при 200С в присутствии CuCl2 и PdCl2 приводит к образованию ацетальдегида:

CH2 = CH2 +1/2O2 = CH3-CH = O.

При восстановлении этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

CH2 = CH2 + H2 = CH3-CH3.

Этилен вступает в реакцию полимеризации. Полимеризация — процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):

n CH2 = CH2 = -(-CH2-CH2-)n-.

Физические свойства этилена

Этилен – бесцветный газ со слабым запахом, малорастворимый в воде, растворим в спирте, хорошо растворим в диэтиловом эфире. При смешении с воздухом образует взрывоопасную смесь

Получение этилена

Основные способы получения этилена:

— дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

CH3-CH2-Br + KOH → CH2 = CH2 + KBr + H2O;

— дегалогенирование дигалогенпроизводных алканов под действием активных металлов

Сl-CH2-CH2-Cl + Zn → ZnCl2 + CH2 = CH2;

— дегидратация этилена при его нагревании с серной кислотой (t >150 C) или пропускании его паров над катализатором

CH3-CH2-OH → CH2 = CH2 + H2O;

— дегидрирование этана при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

CH3-CH3 → CH2 = CH2 + H2↑.

Применение этилена

Этилен является одним из важнейших соединений, производимых в огромных промышленных масштабах.

Его используют в качестве сырья для производства целого спектра различных органических соединений (этанол, этиленгликоль, уксусная кислота и т.д.).

Этилен служит исходным сырьем для производства полимеров (полиэтилен и др.). Его применяют в качестве вещества, ускоряющего рост и созревание овощей и фруктов.

Примеры решения задач

Производство поливинилхлорида и его основные свойства (стр. 1 из 6)

Физические свойства винилкетонов

Введение

1. Исходные вещества

1.1 Характеристика исходных продуктов

1.2 Химические свойства ХВ

2. Физика — химия получения ПВХ. Методы получения

2.1 Методы получения поливинилхлорида

2.2 Закономерности полимеризации винилхлорида

2.3 Гель-эффект

2.4 Передача цепи и молекулярный вес полимера

3. Технология получения ПВХ

3.1 Производство поливинилхлорида в массе

3.2 Производство жесткого поливинилхлорида

3.3 Сведенья о технике безопасности при производстве ПВХ

4. Свойства ПВХ

4.1 Физико-механические свойства ПВХ

4.2 Химические свойства ПВХ

Введение

Поливинилхлорид (ПВХ) — термопластичный материал, получаемый полимеризацией винилхлорида, хлорзамещенного этилена.

Занимает одно из ведущих мест среди полимерных продуктов, выпускаемой мировой промышленностью. На базе этого полимера получают свыше 3000 видов материалов и изделий, которые используются для самых разнообразных целей и завоевывают с каждым годом все новые области применения.

Впервые хлористый винил был получен в 1935 г. Реньо обработкой дихлорэтана спиртовым раствором щелочи, хотя полагают, что это. Собственно, являлось повторением более ранних работ Либиха. В 1912 году был выдан первый патент на промышленное использование винил-галогенидов для получения полимеров. Однако товарным продуктом ПВХ стал лишь в 1935 г.

Полимер требовал специфического подхода к его переработке и преодоления ряда сложных задач, связанных с длительной эксплуатацией в естественных условиях материалов или изделий на его основе, что в то время казалось непреодолимым препятствием. Одна из основных проблем, с которой сталкиваются при работе с ПВХ, − малая стабильность его макромолекул.

В процессе переработки, хранения и эксплуатации полимер подвергается действию многочисленных химических, биологических и физических факторов: тепла, света, кислорода, озона, влаги, агрессивных химических и биохимических агентов, механических нагрузок, которые могут приводить к существенному необратимому изменению физических и химических свойств полимера, к его старению, т.е.

к потере комплекса полезных эксплуатационных свойств, и разрушению.

Тем не менее, исключительно высокая экономическая эффективность производства и применение ПВХ в различных отраслях промышленности обусловила быстрый рост его выпуска во многих странах мира благодаря доступности и низкой стоимости исходного сырья, ценным физическим и физико-химическим свойством материалов и изделий из ПВХ.

При изготовлении материалов и изделий из ПВХ полимер сочетают с различными ингредиентами, выполняющих роль пластификаторов, стабилизаторов, лубрикантов (смазок), наполнителей, красящих веществ которые придают материалам или изделиям из ПВХ специфические свойства.

Из ПВХ получают как пластифицированные (мягкие и полужесткие), так и непластифицированные (жесткие) изделия.

Потребление пластифицированного ПВХ — изоляция и оболочки электропроводов и кабелей, мягкие листы и пленки, с/х назначения, упаковочные, облицовочные, линолеум, для получения искусственной кожи, гибкие трубы и шланги и тд.

Непластифицированный ПВХ находит применение в производстве жестких труб и фитингов (канализация, газо — и водоснабжение), листов и жестких пленок, в том числе светопрозрачных, декоративных, конструкционных, вытяжных шкафов, электротехнических изделий, пенопласта (звуко-, теплоизоляция, набивочный материал), емкости (банки, бутылки, флаконы), панели, профили, волокна и тд. Большое значение имеет использование ПВХ для предохранения трубопроводов химической аппаратуры, цистерн или резервуаров от воздействия хлора, соляной и серной кислот и других агрессивных сред.

Уже было сказано, что ПВХ как любой другой полимер, при хранении, переработке и эксплуатации подвержен различным видам старения. С этим наблюдают разнообразные химические превращения ПВХ.

Большую роль в развитии процессов старения могут играть внутренние факторы — строение и структура макроцепей, причем часто можно наблюдать изменение структуры ПВХ за счет переориентации молекул, уменьшения внутренних напряжений, разрыва и сшивки полимерных цепей.

Возможно так же испарение летучих компонентов, экстракция пластификаторов, поглощение воды, растворение, набухание и т.д.

Все изложенное выше предопределяет первостепенный интерес не только к вопросам совершенствования методов и технологии синтеза мономера и ПВХ. Разработки научных снов полимеризации хлористого винила и т.п., но и к вопросам стабилизации, принципом составления оптимальных рецептур, переработки ПВХ с целью обеспечения долговечности материалов или изделий из этого материала.

1.1 Характеристика исходных продуктов

Основным сырьем для производства ПВХ служит винилхлорид (ВХ). Он является вторым по спросу и использованию после этилена мономером.

ВХ при комнатной температуре и атмосферном давлении представляет собой бесцветный газ с эфирным запахом, температура кипения равна — 13, 9ºС и плотность 970 кг/м3. ВХ растворяется в ацетоне, этиловом спирте, ароматических и алифатических углеводородах, но в воде практически не растворим.

Вещество является чрезвычайно огнеопасным, его смеси с воздухом взрывоопасны; при горении выделяет раздражающие, токсичные и коррозионно-активные вещества, среди которых, в частности, обнаруживается крайне ядовитый фосген.

Температура вспышки: −78°С, температура самовоспламенения: 472°С. Пределы воспламенения в воздухе: 3,6-33%. Гашение пламени при горении винилхлорида производят только после остановки подачи газа, при этом используют воду на максимально возможном от очага возгорания расстоянии, создавая плотную туманоподобную завесу, а также охлаждая горячие поверхности.

ВХ оказывает комплексное токсическое воздействие на организм человека, вызывая поражение ЦНС, костной системы, системное поражение соединительной ткани, мозга, сердца. Поражает печень, вызывая ангиосаркому. Вызывает иммунные изменения и опухоли, оказывает канцерогенное, мутагенное и тератогенное действие.

Многие исследования сообщают, что воздействие винилхлорида на человека вызывает рак в различных тканях и органах, включая печень (опухоли помимо ангиосаркомы), мозг, лёгкие, лимфатическую и гематопоэтическую систему (органы и ткани, вовлечённые в кровообразование).

При этом можно отметить, что употребление этанола только усиливает канцерогенный эффект винилхлорида.

ХВ может быть получен различными методами:

Гидрохлорированием ацетилена в присутствии катализатора.

Пиролизом дихлорэтана или дегидрохлорированием щелочью в спиртовом растворе.

Высокотемпературным хлорированием этилена.

Оксихлорированием этилена.

Получение ХВ это в настоящее время практически единственный пример реального внедрения метода окислительного хлорирования углеводородов.

На первой стадии образуется 1,2 — дихлорэтан.

Далее полученный дихлорэтан подвергают пиролизу, образуется ХВ и HCl

Для использования HCl его отправляют на стадию окислительного хлорирования этилена для получения ПВХ.

ВХ хранится вдали от источников тепла и огня в жидком виде при температуре −14÷22°C в больших сферических металлических заземлённых ёмкостях с небольшой добавкой стабилизатора (например: гидрохинон). Ёмкости должны быть оснащены самозапорными клапанами, устройствами контроля давления и искрогасителями.

Контейнер с веществом должен находиться в хорошо проветриваемых условиях при внешней температуре ниже 50°C. Необходимо избегать контакта с медью, любыми источниками огня или тепла, окислителями, каустической содой и активными металлами.

Стабилизированный хлористый винил транспортируется в жидком виде в охлаждаемых стальных цистернах, которые предварительно должны быть тщательно высушены и продуты азотом.

1.2 Химические свойства ХВ

Реакции с участием ХВ можно разделить на две группы. К первой группе относятся реакции с участием галогена, а ко второй группе те реакции которые идут по месту двойной связи.

Реакции с участием атома галогена.

Атом галогена в галогенопроизводных (галоген находится при атоме углерода при двойной связи) обладает низкой подвижностью, по этому такие реакции возможны с применением активных реагентов и катализаторов.

Отщепление галогеноводородов.

Отщепление HCl происходит под действием очень сильных оснований таких как металлический натрий в среде жидкого аммиака (NH3).

Процесс:

Взаимодействие с бензолом.

Происходит в присутствие с катализаторов Фриделя — Кравца. Готовят суспензию AlCl3в бензоле и в нее вводят ХВ.

1-хлор-1-фенилэтан 1,1-дифенилэтан

Тот же результат может быть получен если образующийся HCl взаимодействует с хлористым винилом.

Образуется 1,1-дихлорэтан который далее взаимодействует с бензолом, что приводит к получению 1,1-дифинилэтан.

Образование виниловых эфиров.

Виниловые эфиры (ВЭ) сами по себе являются очень ценными мономерами, их общая формула

Они образуются при взаимодействии ХВ с окси соединениями (спирты, фенолы) либо с готовыми алкоголятами.

Каталог товаров ООО «Полтавхим»

Физические свойства винилкетонов

Поливинилхлорид (ПВХ) — достаточно жесткий полимерный материал, с высокой температурой стеклования (+75°С). Для повышения эластичности и морозостойкости поливинилхлорида в него вводят пластификаторы.

Пластификаторы — органические жидкости с высокой температурой кипения и низкой температурой застывания, совмещающиеся с полимером в различных соотношениях. В качестве пластификаторов используют сложные эфиры фталевой, себациновой, фосфорной и других кислот (дибутилфталат, диоктилсебацинат, трикрезилфосфат и др.), а также различные полиэфирные пластификаторы.

При производственном смешивании поливинилхлорида с пластификатором и нагревании смеси в определенных технологических условиях происходит термическая пластификация полимера.

Результатом этой реакции достигается более качественные пластические и эластические свойства полимера, особенно в охлажденном состоянии.

Это можно объяснить нарушением или ослаблением межмолекулярного взаимодействия в результате проникновения пластификатора между макромолекулами.

На основе поливинилхлорида путем термической пластификации получают гибкие мягкие материалы — пластикаты, идущие на производство кабельной изоляции, плащей, обуви, а также поливинилхлоридные пасты, применяемые в производстве моющихся обоев, линолеума, клеенки и материалов, имитирующих кожу.

Термической пластикацией поливинилхлорида, не содержащего пластификаторов, получают жесткие материалы в основном конструкционного и противокоррозионного назначения (листовой винипласт, пластмассовые трубы, профили и другие изделия).

Термическая пластикация — процесс перемешивания и расплавления полимера в ходе переработки для повышения (или придания) пластических свойств.

При введении в поливинилхлорид порообразователей — динитрил азобисизомасляной кислоты (парофор4ХЗ-57 и др.

) или при насыщении его газом образуются жесткие, полужесткие и эластичные материалы — пенопласты с закрытоячеистой структурой или поропласты с открытыми сообщающимися ячейками (открытопористой структурой).

Жесткий газонаполненный поливинилхлорид применяют для тепло- и звукоизоляции в строительстве, авиа- и судостроении, а также для изготовления спасательных средств, буйков, плотов; эластичный — как амортизационный материал, а полужесткий —для изготовления полировальных кругов.

Поливинилхлорид обладает достаточно высокой химической стойкостью к действию кислот, щелочей и смазочных масел.

Но при этом он обладает целым списком характерных недостатков для сложных полимеров: малая устойчивость к действию теплоты и света.

Резкое понижение прочности при повышении температуры, а также присущая ему хладо-текучесть под влиянием длительного действия нагрузки ограничивают его применение, несмотря на высокие показатели механической прочности при нормальной температуре.

Основные физико-механические свойства прессованного порошка поливинилхлорида:

Плотность, кг/м3   1380-1400  
Константа Фикентчера   45—75  
Теплостойкость по Мартенсу, °С   50—70  
Температура разложения, °С   140—170  
Разрушающее напряжение при растяжении, МПа   50-60  
Относительное удлинение при разрыве, %   10-50  

Применение поливинлхлорида

Материалы на основе ПВХ вырабатываются двух видов:

  • с применением пластификатора (пластифицированный ПВХ);
  • без применения пластификатора (не пластифицированный ПВХ).

Другие обозначения:

  • FPVC, PVC-F, PVC-P (пластифицированный);
  • RPVC, PVC-R, PVC-U (непластифицированный).

По внешнему виду товарный ПВХ представляет собой порошок белого цвета, без вкуса и запаха. ПВХ достаточно прочен, обладает хорошими диэлектрическими свойствами. Химическая формула ПВХ (-СН2-CHCl-)n , где n – степень полимеризации.

Как указывалось ранее, ПВХ не растворим в воде, устойчив к действию кислот, щелочей, спиртов, минеральных масел, набухает и растворяется в эфирах, кетонах, хлорированных и ароматических углеводородах.

ПВХ совмещается со многими пластификаторами (например фталатами, себацинатами, фосфатами), стоек к окислению и практически не горюч. Поливинилхлорид обладает невысокой теплостойкостью, при нагревании выше 100 ºС заметно разлагается с выделением HCl.

Для повышения теплостойкости и улучшения растворимости ПВХ подвергают хлорированию.

Поливинилхлорид является достаточно слаботоксичным веществом. Продукты разложения вызывают раздражение верхних дыхательных путей и слизистых оболочек глаза.

ПДК в воздухе производственных помещений б мг/м3. Осевшая пыль пожароопасна.

При нагревании выше 150°С начинается деструкция полимера с выделением хлористого водорода и окиси углерода, вредно действующих на организм человека.

ПВХ аморфный материал, свойства которого сильно зависят от метода получения. ПВХ получают:

  • суспензионным (suspension)
  • эмульсионным (emulsion) методами
  • полимеризацией в массе — блочным методом (mass, bulk).

Суспензионный ПВХ или ПВХ С (PVC-S) имеет сравнительно узкое молекулярно-массовое распределение, малую степень разветвленности, более высокую степень чистоты, низкое водопоглощение, хорошие диэлектрические свойства, лучшую термостойкость и светостойкость.

Эмульсионный ПВХ или ПВХ Е (PVC-E) характеризуется широким молекулярно-массовым распределением, высоким содержанием примесей, высоким водопоглощением, худшими диэлектрическими характеристиками, худшей термостойкостью и светостойкостью.

Максимальная температура длительной эксплуатации: 60°С. FPVC (пластифицированный) выдерживает охлаждение до -60°С, RPVC — до -15 оС. Температура стеклования: 70 — 105°С.

Имеет широкий разброс механических характеристик. FPVC — эластичный материал. RPVC имеет высокую прочность и жесткость.

Материал на основе суспензионного ПВХ имеет хорошие диэлектрические характеристики (но хуже, чем у PE, PP, PS).

Использование материалов из ПВХ в медицине

ПВХ применяется в медицине и при производстве медицинского инстурмента, оборудования и инвентаря уже более 50 лет.

Толчком к широкому применению ПВХ в этой области стала насущная потребность заменить резину и стекло предварительно стерилизованными предметами одноразового (и не только) использования. Со временем ПВХ стал наиболее популярным полимером в медицине благодаря химической стабильности и инертности.

Продукция из него крайне разнообразна и легко производима. Медицинские продукты из ПВХ могут быть использованы внутри человеческого тела, легко стерилизуются, не трескаются и не протекают.

Вот далеко не полный перечень медицинской продукции, производимой из ПВХ:

  • контейнеры для крови и внутренних органов
  • катетеры
  • трубки для кормления
  • приборы для измерения давления
  • хирургические перчатки и маски
  • хирургически шины
  • блистер-упаковка для таблеток и пилюль.

Основные преимущества ПВХ, позволившие этому материалу стать наиболее применимым в медицине

Одним из основных требований к медицинской продукции является ее соответствие токсикологическим стандартам. Принятие ПВХ к использованию в медицине странами Евросоюза является свидетельством его полной медицинской безопасности.

Материал, используемый в медицине, должен обладать следующим важным свойством -при контакте с разнообразными жидкостями его композиция должна оставаться неизменной, именно таким материалом является ПВХ.

Когда полимерный материал контактирует с тканью или кровью пациента, крайне важен показатель химической совместимости.

ПВХ характеризуется высокой биосовместимостью которая постоянно растет благодаря новым разработкам в технологии его производства. Благодаря своим физическим характеристикам продукты из ПВХ могут обладать высокой про¬зрачностью, продукции из ПВХ может быть придана любая цветовая окраска.

Продукция из ПВХ также отличается высокой гибкостью и прочностью даже при изменяющихся внешних условиях (например, температуре). ПВХ легко совместим с практически всеми фармацевтическими продуктами. Он также устойчив к воде и химическим реакциям.

Из ПВХ легко производить упаковку любой формы, будь то трубы, гибкая или жесткая упаковка.

ПВХ — один из самых дешевых материалов. Это также играет важную роль при выборе материала для применения в производстве медицинской продукции.

Применение ПВХ в транспорте

ПВХ пластины широко используется в качестве материала для производства автотранспорта. В этой области он является вторым по популярности полимером (после полипропилена). В автомобилестроении ПВХ используется для производства покрытий, уплотняющих материалов, кабельной изоляции, отделки салона, приборных и дверных панелей, подлокотников и т.д.

Благодаря использованию ПВХ современные автомобили более живучи. Средний срок жизни современного автомобиля — 17 лет. Еще в 70-х годах прошлого века эта цифра не превышала 11 лет. Увеличение срока эксплуатации автомобиля означает реальную экономию природных ресурсов (если машины служат дольше, значит производить их можно меньше).

Использование в автомобилестроении полимеров вообще и ПВХ в частности ведет к снижению затрат топлива. Так как полимеры, не уступая традиционным материалам (металлу, стеклу) по прочностным свойствам, весят меньше – без ущерба для качества автомобиля снижается его вес, а, следовательно, и количество топлива, необходимое для работы двигателя.

ПВХ в строительстве

Из всех полимеров именно листы ПВХ имеет наиболее широкое применение в строительстве. В Европе в этой отрасли используется более 50% всего производимого ПВХ, в США — более 60%.

И снова таки основными преимуществами ПВХ являются все те же способности производства разнообразных видов продукции с различными свойствами. Главными конкурентами ПВХ являются глина и дерево.

ПВХ профиль

Главные качества ПВХ в строительстве:

  • износоустойчивость
  • механическая прочность
  • жесткость
  • небольшая масса
  • устойчивость к коррозии
  • химическому
  • погодному и температурному воздействию.

Одно из свойств ПВХ, которое способствовало его массовому применению в строитлеьстве — он отличный огнеупорный материал. Он с трудом поддается возгоранию. И прекращает гореть и тлеть сразу же после того, как исчезает источник высокой температуры. Основная причина — высокое содержание хлора. Это способствует повышению пожарной безопасности построенных объектов.

ПВХ не проводит электричество и, таким образом, идеален в качестве изоляционного материала. Основной чертой строительных материалов из ПВХ является их долговечность. 85% всех строительных материалов из ПВХ используются для долгосрочных сооружений.

Более 75% труб, произведенных из ПВХ, имеют срок службы более 40 лет (потенциал новых разработок в этой области увеличивает этот срок до 100 лет!). Аналогичные показатели у более чем 60% сделанных из ПВХ оконных профилей и кабельной изоляции.

ПВХ существенно дешевле конкурирующих материалов. Стройматериалы из ПВХ легче, чем стройматериалы из бетона, железа и стали.

Это вновь приводит нас к мысли об экономической выгоде — на обработку продукции из ПВХ затрачивается меньше энергии, меньше транспортных услуг (а, следовательно, и топлива). Долговечность материала также позволяет экономить — трубы, окна и т.д.

приходиться менять реже. Теплоизоляционные свойства ПВХ позволяют затрачивать меньше энергии на отопление помещений.

Винил

Физические свойства винилкетонов

Как ни странно, винил — это совсем не то, из чего делаются виниловые пластинки.
В химии винил — это радикал (углеводородный остаток) этилена. Из радикалов ничего нельзя сделать, это просто обозначение для устойчивой части органических молекул, переходящей из одного соединения в другое без изменений.

Химическая формула винила:

— CH = CH2

Производство виниловых пластинок же основано на сополимере винилхлорида/винилацетата, то есть полимере, состоящем из двух типов молекул-мономеров, многократное повторение которых и образует огромные молекулы с новыми свойствами.

А теперь подробнее о всех участниках шоу:

Винилхлорид и поливинилхлорид (PVC)

Мономер винилхлорида (VCM), полимеризуется с образованием поливинилхлорида (PVC).Полярные связи C-Cl способствуют образованию прочных межмолекулярных связей между цепочками.

В результате PVC имеет очень жесткую структуру и для придания пластичности требуется добавка пластификаторов.

Поливинилхлорид стал первым синтетическим материалом, на который был получен патент (1913).

PVC является важнейшим современным полимером, из него делается огромный спектр продукции — от труб (36% всего объема PVC), стройматериалов (17%) и оконных рам (13%) до искусственной кожи и авторучек.

В 1970е годы около 3% западноевропейского производства PVC шло на изготовление виниловых грампластинок.

Сейчас ежегодное мировое производство PVC превышает 30 миллионов тонн.

Винилхлорид производят хлорированием этилена, полученного из нефти, с дальнейшим воздействием высокой температуры на полученный дихлорэтилен. Хлор получают электролизом водного раствора каменной соли.

Поливинилхлорид обладает очень хорошей устойчивостью к кислотам, щелочам и алифатическим углеводородам,
хорошей устойчивостью к маслам, жирам и спиртам (зависит от вещества), средней устойчивостью к галогенозамещённым углеводородам (зависит от вещества) и плохой устойчивостью к ароматическим углеводородам.

На практике это значит, что толуол, бензол, ксилол, нафталин смертельно опасны для пластинок. Первые три вещества из этого списка входят в состав красок, лаков и растворителей для них. Будете проводить дома лакокрасочные работы — вынесите пластинки. Четвёртое вещество входит в состав старых заячьих шапок, так что для смахивания пыли всё-таки лучше использовать графитовую щетку.

Винилацетат и поливинилацетат (PVA)

Благодаря способности полимеризоваться не только в объёме, но и виде раствора, суспензии или эмульсии, винилацетат применяется для производства дисперсий синтетических смол. Поливинилацетат, его производные и сополимеры применяются для призводства клея (да-да, того самого ПВА), красок, покрытий, синтетических волокон, упаковки и т.д.

Винилацетат получают реакцией ацетилена с уксусной кислотой, которую, в свою очередь, получают из этилена или этана.

Поливинилацетат обладает хорошей устойчивостью к кислотам и щелочам и средней устойчивостью к растворителям.

Сополимер винилхлорида/винилацетата (VC/VA)

Поливинилхлорид является основой множества композиций, в которых добавки других компонентов используются для получения дополнительных свойств. Обычно доля этих добавок составляет 5-30%.

Одной из таких композиций является сополимер винилхлорида и винилацетата с долей последнего около 13% — тот самый «винил», который и и лежит в основе производства пластинок.

Я ещё раз подчеркиваю, что речь идёт не о смеси двух полимеров, а о сополимере — высокомолекулярном химическом веществе, молекулы которого состоят из двух (в нашем случае) типов структурных звеньев, а название «винил» является сугубо жаргонным и с точки зрения химии неверным.

Сополимеризация проводится в жидкой фазе из раствора компонентов в например, этилацетате — этиловом эфире уксусной кислоты или в воде, если речь идет о получении дисперсии сополимера.

В растворе обычно присутствует ряд других веществ разного назначения: инициаторы полимеризации, стабилизаторы, добавки для улучшения свойств конечного продукта и проч.

Процесс может проводиться при пониженном давлении и повышенной температуре.

В промышленности часто используется термин «виниловая смола», а также различные фирменные названия, под которыми производители поставляют сополимер винилхлорида/винилацетата. Например, производимая в Санкт-Петербурге «Виниловая смола TР-400M».

Сополимер винилхлорида/винилацетата растворим, кроме вышеупомянутых ароматических соединений, в эфирах и кетонах. И те и другие в быту наиболее вероятно встретить опять же в составе растворителей.

В композицию, используемую для производства пластинок, кроме сополимера VC/VA часто включают и сам винилхлорид в довольно значительных количествах — надо полагать, из соображений экономии.

По западноевропейским данным на 1977 год производство пластинок потребляло 50% всей производимой виниловой смолы. Это были годы максимальных продаж виниловых пластинок.

Итак, мы наконец начинаем понимать, из чего сделана пластинка. Однако, если мы сделаем пластинку только из сополимера VC/VA, она получится дряненькой: недолговечной, плохо пропечатанной, с шумящей поверхностью, трещащей от статического электричества. И еще она будет прозрачной.

Продолжение исследования читайте в статье «Из чего же сделаны наши пластинки: винил и все-все-все».

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.