КИБЕРНЕТИКА

КИБЕРНЕТИКА химическая энциклопедия

Кто был основоположником науки кибернетики: что изучает, история и что такое кибернетика в информатике, современные достижения ядерных технологий

КИБЕРНЕТИКА

Кибернетика — молодое направление в науке, появившееся в середине XX века. Несмотря на свой возраст, с развитием информационных технологий оно стало одним из самых перспективных и востребованных. Сегодня методы этой дисциплины применяются в экономике, социологии и других сферах. Кто был в рядах основателей этой науки, кому современное общество обязано ее появлением и развитием?

Немного истории

Термин «кибернетика» в научный оборот ввел французский физик Ампер в 30-х годах XIX века. Согласно определению Ампера, она является наукой об эффективном управлении государством, главная цель которого — обеспечение потребностей его жителей.

Кибернетика как наука зародилась в 1940-е. Она объединила теоретические знания и исследования из нескольких областей:

  • машиностроения;
  • систем управления;
  • логического моделирования;
  • теории электрических цепей;
  • биологии;
  • неврологии.

Несмотря на то, что первым определение дал Ампер, он не тот, кто заложил основы кибернетики. Основателем научного течения считается Норберт Винер, ученый из США. История кибернетики в современном понимании началась в 1948 году, когда была издана работа Винера под одноименным названием, ставшая фундаментом для нового направления в науке.

Вычислительные машины середины XX века отличались низким быстродействием. Норберт Винер, в сферу интересов и исследований которого входили эти машины, сформировал в своем труде общий список требований к ним.

Ученый довольно точно спрогнозировал, как будет развиваться вычислительная техника. В частности, основоположником кибернетики был предсказан переход от десятичной системы к двоичной в вычислительных устройствах.

[attention type=yellow]

Он считал это необходимым шагом для увеличения быстродействия ЭВМ, так как двоичная система является более экономичной. Также Норберт Винер настаивал на том, что машины должны быть способны к самообучению и, как следствие, к самостоятельному исправлению допущенных ошибок.

[/attention]

Помимо работы Винера, базовыми для нового научного направления стали труды Уильяма Росса Эшби, Уоррена Мак-Каллока и Уильяма Уолтера. Эти ученые наравне с Винером были теми, кто заложил основы кибернетики.

Современное понимание науки

Впервые термин «кибернетика» в научном контексте был использован в трудах древнегреческих ученых. Под этим словом они понимали искусство чиновника, управляющего городом.

Однако ни это определение, ни определение Андре-Мари Ампера, упомянутое выше, не отражает современные представления о ней. В XX веке термин был переосмыслен учеными, поспособствовавшими становлению нового научного направления.

Например, Луи Куффиньяль называл ее искусством обеспечения эффективности действия, а Стаффорд Вир — наукой о правильном управлении в какой-либо совокупности.

Важно! Ученые до сих пор спорят о том, что такое кибернетика. Среди них нет согласия в том, какое определение их науки — наиболее правильное и точное. Самым известным является вариант, предложенный Норбертом Винером.

Согласно Винеру, это наука, которая занимается изучением общих закономерностей работы с информацией в сложных системах управления. Она рассматривает четыре основные операции с информацией:

  • получение;
  • передача;
  • хранение;
  • модификация.

Кибернетика как наука, зародившаяся на стыке междисциплинарных исследований, нашла обширное применение и в точных видах познания, и в социальной сфере.

Объекты изучения

Эта наука изучает всевозможные управляемые системы, используя понятия кибернетической системы и кибернетического подхода.

Кибернетический подход

Кибернетический подход состоит в замене исходной системы управления изоморфной моделью и дальнейшем изучении этой модели. Чтобы реализовать подход, применяется один из двух методов моделирования: компьютерное или имитационное.

Оба метода подразумевают использование принципа «черного ящика».

Экспериментатор моделируетвнешнюю деятельность рассматриваемой системы, а ее структура, воспроизводящая поведенческие характеристики, остается скрытой.

Кибернетический подход позволяет исследовать несколько видов информационных моделей, отличающихся по запросам:

  • ответная реакция системы на воздействие внешних факторов;
  • оптимизация характеристик системы относительно функции ценности;
  • адаптивное управление;
  • прогноз динамики системного преобразования.

Кибернетическая система

Кибернетическая система представляет собой множество взаимосвязанных элементов, способных к приему, обработке, запоминанию и обмену информацией. Основные свойства подобных систем: адаптация, самоорганизация и самообучение с использованием накопленного опыта.

Кибернетика в целом рассматривает любые управляемые системы в абстрактной форме, не учитывая их материальную природу, поэтому системой может являться как вычислительная машина, так и общество либо его отдельные группы.

Направления

Кибернетические методы применяются во многих отраслях:

  • Биология. В рамках биологической ветви этой науки исследуются кибернетические системы в организмах. Также ученые решают вопросы передачи генной информации между поколениями живых организмов. В широком смысле биологическая кибернетика занимается исследованием методов моделирования структур и поведения биологических систем.
  • Медицина. Кибернетика в медицине помогает диагностировать заболевания при помощи вычислительной техники и используется для создания высокотехнологичных протезов.
  • Экономика. Методы данной науки используют для анализа всей экономики и отдельных ее элементов как сложной системы при помощи экономико-математического моделирования.
  • Инженерия. Кибернетика в инженерии применяется для анализа масштабных сбоев систем, вызванных мелкими и незначительными ошибками.
  • Информатика. В информатике ее методы используют для анализа информации и управления вычислительной техникой.
  • Психология. В психологии существует отдельное направление психологической кибернетики, в рамках которого изучается взаимодействие систем анализа, сфер сознания и бессознательного в ходе взаимодействия людей с различными системами, а также между собой. Кроме того, эта дисциплина значительно повлияла на развитие психологии труда и ее подвидов.

Особняком стоит направление чистой кибернетики, в рамках которого происходит понятийное изучение систем управления. Ее главная задача – обнаружение основных принципов таких систем.

Внимание! Есть известная шутка про университет ядерной кибернетики, однако на данный момент не существует ни такого вуза, ни такого направления, как ядерная кибернетика.

Смена ориентиров

Конец XX века стал определяющим периодом для кибернетики как науки. В конце 60-х это направление лишилось поддержки со стороны научного сообщества и столкнулось с проблемой выбора дальнейшего пути развития.

Возрождение произошло в 70-х годах, когда биологи занялись разработкой новой кибернетической концепции, применимой для природных организаций и систем, не изобретенных человеком.

История кибернетики получила новое направление для развития.

В 1980-х появилась «новая кибернетика», которая изучала взаимодействие политических подгрупп и элементов, создающих структуру политического сообщества.

[attention type=red]

Была выработана новая концепция информации — ее стали рассматривать как нечто, созданное человеком в процессе взаимодействия с окружающей средой.

[/attention]

Одной из главных задач новой кибернетики стало разрешение противоречия между микро- и макроанализом. Акцент с управляемой сместился к управляющей системе, а также к межсистемным связям.

Кибертехнологии

Говоря о практических достижениях, нужно отметить появление отдельного направления, которое связано с разработкой и созданием кибернетических организмов. Главным образом кибертехнологии позволили совершить прорыв в медицине и улучшить жизнь людей с тяжелыми травмами и заболеваниями.

Важным этапом в этой сфере стало изобретение и повсеместное применение кохлеарных имплантатов — они позволяют улучшить восприятие звуков у слабослышащих людей. Существуют и глазные электронные имплантаты, но пока что они менее распространены из-за сложности производства и вживления пациентам.

Также кибертехнологии позволили создать бионические протезы — искусственные руки и ноги, принимающие и откликающиеся на сигналы нервной системы, успешно имплантируют пациентам с ампутированными конечностями.

Интересных результатов в нулевые годы добились американские ученые, которые создали управляемых жуков, подключив электроды к нервным узлам насекомых. Таким образом им удалось контролировать полет одного из жуков в течение получаса.

Следующая цель ученых — создание искусственного сердца, которое можно будет использовать в качестве имплантата. В 2011 году врачам удалось вживить подобное сердце пациенту, но после этого он прожил всего месяц. Исследования продолжаются, и ученые полагают, что в будущем достижения в области кибернетики позволят им создать полноценную замену любому человеческому органу.

Чему нас учит кибернетика

О науке Кибернетике



Вывод

Кибернетика занимается исследованием систем и при этом сама является открытой системой. Она взаимодействует с десятками других научных направлений и способна к обмену информацией с окружающей средой. Поэтому это научное направление в информационную эру играет важную роль.

Кибернетика (стр. 1 из 11)

КИБЕРНЕТИКА

1. Кибернетика как наука, основные понятия кибернетики..5 стр.

2. Вклад кибернетики в научную картину мира…………….11 стр.

3. Аспекты философии в познании кибернетики……………13 стр.

4. Искусственный интеллект, как часть кибернетики……….18 стр.

5. Два вида науки о мышлении………………………………..24 стр.

6. От психологии к psyche-логии………………………………32 стр.

7. Проблемы кибернетики…………………………………… 36 стр.

Список литературы………………………………………………45 стр

Введение

В естествознании первой половины нашего века ведущим направлением была физика. Начиная с 50-х годов, наряду с физикой, химией и биологией все возрастающее значение и влияние на развитие науки и всего уклада нашей жизни начала оказывать кибернетика.

Кибернетика становится важнейшим фактором научно-технической революции на высших этапах ее развития. Кибернетика возникла на стыке многих областей знания математики, логики, семиотики, биологии и социологии.

Обобщающий характер кибернетических идей и методов сближает науку об управлении, каковой является кибернетика, с философией.

[attention type=green]

Задача обоснования исходных понятий кибернетики, особенно таких, как информация, управление, обратная связь и др. требуют выхода в более широкую, философскую область знаний, где рассматриваются атрибуты материи — общие свойства движения, закономерности познания. Сама кибернетика как наука об управлении многое дает современному философскому мышлению.

[/attention]

Она позволяет более глубоко раскрыть механизм самоорганизации материи, обогащает содержание категории связей, причинности, позволяет более детально изучить диалектику необходимости и случайности, возможности и действительности.

Открываются пути для разработки «кибернетической» гносеологии, которая не подменяет диалектический материализм теорией познания, но позволяет уточнить, детализировать и углубить в свете науки об управлении ряд существенно важных проблем.

Возникнув в результате развития и взаимного стимулирования ряда, в недалеком прошлом слабо связанных между собой, дисциплин технического, биологического и социального профиля кибернетика проникла во многие сферы жизни. Столь необычная «биография» кибернетики объясняется целым рядом причин, среди которых надо выделить две.

Во-первых, кибернетика имеет необычайный, синтетический характер. В связи с этим до сих пор существуют различия в трактовке некоторых ее проблем и понятий. Во-вторых, основополагающие идеи кибернетики пришли в нашу страну с Запада, где они с самого начала оказались под влиянием идеализма и метафизики, а иногда и идеологии.

То же самое, или почти то же самое происходило и в нашей стране. Таким образом, становится очевидной необходимость разработки философских основ кибернетики, освещение ее основных положений с позиции философского познания. Осмысление кибернетических понятий с позиции философии будет способствовать более успешному осуществлению теоретических и практических работ в этой области, создаст лучшие условия для эффективной работы и научного поиска в этой области познания.

1. Кибернетика как наука, основные понятия кибернетики

Кибернетика — наука об общих закономерностях процессов уп­равления и передачи информации в технических, биологических и социальных системах. Её основателем яв­ляется американский математикН.

Винер (1894-1964), выпустивший в 1948 году книгу «Кибернетика, или управление их связь в животном и машине». Своё название новая наука получила от древнегреческого слова «кибернетес», что в переводе означает «управляющий», «руле­вой», «кормчий».

Основной интерес этой науки широкий класс как живых, так и неживых систем.

Со сложными системами управления человек имел дело задолго до кибернетики (управление людьми, машинами; наблюдал регуляционные процессы у живых организмов и т.д.). Но кибернетика выделила общие закономерности управления в различных процессах и системах, а не их специфику. В «докибернетический» период знания об управлении и организации носили «локальный» характер, т.е. в отдельных областях.

Так, еще в 1843 г. польский мыслитель Б. Трентовский опубликовал малоизвестную в настоящее время книгу «Отношении философии к кибернетике как искусству управления народом». В своей книге «Опыт философских наук» в 1834 году известный физик Ампер дал классификацию наук, среди которых третьей по счету стоит кибернетика – наука о текущей политике и практическом управлении государством (обществом)[1].

Эволюция представления об управлении происходила в форме накопления, суммирования отдельных данных. Кибернетика рассматривает проблемы управления на устойчивом фундаменте, вводя в науку новые теоретические «заделы»,новый понятийный, категориальный аппарат. В общую кибернетику обычно включают теорию информации теорию алгоритмов, теорию игр и теорию автоматов, техническую кибернетику.

Техническая кибернетика — отрасль науки, изучающая технические системы управления. Важнейшие направления исследований разработка и создание автоматических и автоматизированных систем управления, а также автоматических устройств и комплексов для передачи, переработки и хранения информации.

К основным задачам кибернетики относятся:

[attention type=yellow]

1) установление фактов, общих для управляемых систем или для некоторых их совокупностей;

[/attention]

2) выявление ограничений, свойственных управляемым системам. и установление их происхождения;

3) нахождение общих законов, которым подчиняются управляе­мые системы;

4) определение путей практического использования установлен­ных фактов и найденных закономерностей1.

«Кибернетический» подход к системам характеризуется рядом по­нятий. Основные понятия кибернетики:управление, управляющая си­стема, управляемая система, организация, обратная связь, алгоритм, модель, оптимизация, сигнал и др.

Для систем любой природы понятие «управление» можно определить следующим образом: управление — это воздействие на объект, выбранное на основании имеющейся для этого информации из множества возможных воздействий, улучшаю­щее его функционирование или развитие.

У управляемых систем все­гда существует некоторое множество возможных изменений, из кото­рого производится выбор предпочтительного изменения. Если у сис­темы нет выбора, то не может быть и речи об управлении.

Есть существенная разница между работой дачника, орудующе­го лопатой, и манипуляциями регулировщика движения на пере­крестке улиц. Первый оказывает на орудие силовое воздействие, вто­рой — управляет движением автомобилей. Управление — это вызов из­менений в системе или перевод системы из одного состояния в другое в соответствии с объективно существующей или выбранной целью.

Управлять — это и предвидеть те изменения, которые произойдут в системе после подачи управляющего воздействия (сигнала, несущего информацию).

Всякая система управления рассматривается как един­ство управляющей системы (субъекта управления) и управляемой си­стемы — объекта управления. Управление системой или объектом всегда происходит в какой-то внешней среде.

[attention type=red]

Поведение любой управля­емой системы всегда изучается с учетом ее связей с окружающей сре­дой. Поскольку все объекты, явления и процессы взаимосвязаны и влияют друг на друга, то, выделяя какой-либо объект, необходимо учитывать влияние среды на этот объект и наоборот.

[/attention]

Свойством уп­равляемости может обладать не любая система. Необходимым усло­вием наличия в системе хотя бы потенциальных возможностей уп­равления является ее организованность.

Чтобы управление могло функционировать, то есть целе­направленно изменять объект, оно должно содержать четыре необхо­димых элемента:

1. Каналы сбора информации о состоянии среды и объекта.

2. Канал воздействия на объект.

3. Цель управления.

4. Способ (алгоритм, правило) управления, указывающий, каким образом можно достичь поставленной цели, располагая информаци­ей о состоянии среды и объекта.

Понятие цели и целенаправленности. Основатель кибернетики

Н. Винер писал, что «действие или поведение допускает истолкование как направленность на достижение некоторой цели, т.е. некоторого ко­нечного состояния, при котором объект вступает в определенную связь в пространстве и во времени с некоторым другим объектом или собы­тием»1.

Цель определяется как внеш­ней средой, так и внутренними потребностями субъекта управления. Цель должна быть принципиально достижимой, она должна соответ­ствовать реальной ситуации и возможностям системы (управляющей и управляемой).

За счет управляющих воздействий управляемая сис­тема может целенаправленно изменять свое поведение. Целенаправ­ленность управления биологических управляемых систем сформиро­вана в процессе эволюционного развития живой природы. Она означает стремление организмов к их выживанию и размножению.

Целе­направленность искусственных управляемых систем определяется их разработчиками и пользователями.

Понятие обратной связи. Управление по «принципу обратной свя­зи». Если между воздействием внешней среды и реакцией системы устанавливается связь, то мы имеем дело с обратной связью. Прин­цип обратной связи характеризует информационную и простран­ственно-временную зависимость в кибернетической системе.

[attention type=green]

Если по­ведение системы усиливает внешнее воздействие, то мы имеем дело с положительной обратной связью, а если уменьшает, то с отрицатель­ной обратной связью. Понятие обратной связи имеет отношение к цели управления. Поведение объекта управляется величиной ошибки в по­ложении объекта по отношению к стоящей цели.

[/attention]

Понятие информации. Управление — информационный процесс. Иинформация — «пища», «ресурс» управления. Поэтому кибернетика есть вместе с тем наука, об информации, об информационных системах и процессах.

Самый исходный смысл термина «информация» свя­зан со сведениями, сообщениями и их передачей.

Бурное развитие в нашем веке телефона, телеграфа, радио, телевидения и других средств массовой коммуникации потребовало повышения эффективности про­цессов передачи, хранения и переработки передаваемых сообщении информации.

«Докибернетическое» понятие информации связано с совокупностью сведений, данных и знаний. Оно стало явно непонятным, неопределенным с возникновением кибернетики. Понятие ин­формации в кибернетики уточняется в математических «теориях ин­формации». Это теории статистической, комбинаторной, топологи­ческой, семантической информации2.

Кибернетик — это что за ученый?

КИБЕРНЕТИКА

Кибернетик — это специалист, который занимается изучением управления информационными процессами в системах, а также механизмами ее передачи там. Кибернетика возникла на стыке большого количества наук.

Она имеет свои связи с огромным количеством всевозможных дисциплин: психологией, социологией, биологией, информатикой и так далее. Можно сказать, что кибернетика — это наука, которая изучает управляющие системы.

Немного о системах

Система — это упорядоченная совокупность элементов, между которыми происходит какое-то взаимодействие и которая направлена на реализацию определенной задачи.

Основное правило систем — это то, что ни одна из них не является банальной совокупностью всех элементов. В качестве примера можно привести любую систему.

Если бы компьютер был банальной совокупностью деталей, он бы просто не работал.

Кибернетик — это специалист, который изучает и компьютер в том числе. Также в сферу его научных интересов входят задачи, которые компьютером выполняются.

Исходя из того, насколько это эффективно, оцениваются возможности для совершенствования определенной системы. Компьютер является управляемой системой. Это означает, что она может изменяться под воздействием человека.

Есть и неуправляемые системы, например Вселенная. Она не входит в сферу интересов кибернетиков по той причине, что не может управляться людьми.

Кибернетик — это ученый, который занимается целым спектром разнообразных исследований:

  • Искусственный интеллект.
  • Человеческий организм.
  • Сложные информационные системы, такие как компьютеры и их сети.

Кибернетика делится на множество разнообразных отраслей, которые базируются на связях между определенными научными дисциплинами. Например, есть психологичная кибернетика, экономическая или техническая.

В общем, существует целый спектр отраслей, на которые распространяется кибернетика. Это очень распространённая наука, которая используется везде. Давайте более детально разберемся с ветками данной дисциплины.

Психологическая кибернетика

Психологическая кибернетика — это отрасль, предмет которой во многом схож с общей психологией, а также нейрофизиологией. Но это уже другой разговор.

Данная отрасль изучает взаимодействие между разными анализаторными системами и обменом информации внутри человеческого мозга. Также данная наука занимается построением реалистичных моделей определённых психических функций.

Давайте рассмотрим более детально их, чтобы было немного понятнее:

  1. Мышление. Каждый человек по-своему мыслит. По своей природе данный психический процесс является способом отражения окружающей действительности человеческой психикой, которое выражается в суждениях, умозаключениях и понятиях. Каждый человек имеет свой стиль мышления, специфичный конкретно для него. Поэтому можно говорить о том, что данный стиль имеет определенные характеристики, смоделировать которые и пытаются кибернетики.
  2. Память. Не все человек может запомнить, равно как и механизм запоминания у каждого человека индивидуальный. При этом кибернетики стараются выделить какие-то общие свойства и построить на их основе реалистичные модели, которые помогут психологам более эффективно взаимодействовать с человеком.
  3. Ощущение — это отражение действительности, которое основано на непосредственном воздействии отдельных частей окружающей действительности на наши органы чувств. Для того чтобы человек мог что-то ощущать, ему нужно перед этим переработать информацию. И данные механизмы переработки изучаются психологической кибернетикой.

Естественно, это не все сферы, которые входят в круг интересов психологической кибернетики. Но и этих достаточно для того, чтобы раскрыть данную отрасль.

Экономическая кибернетика

Также достаточно часто экономические вопросы изучает кибернетика. Значение слова «экономическая кибернетика» такое: данная сфера старается использовать открытие кибернетиков по отношению к разнообразным экономическим системам. Поскольку последние являются в целом управляемыми, то рассматриваемая дисциплина имеет к ним непосредственное отношение.

Если брать более расширенное определение, то экономическая кибернетика — это наука, которая была образована на стыке целых трех наук: математики, экономики и непосредственно кибернетики. И этим она ценна.

Выводы

Мы разобрались, что такое кибернетика. Значение этого слова стало нам понятно. И это прекрасно. Не нужно теперь думать, что означает слово «кибернетика», так как некоторые люди, возможно, даже решили посвятить данной науке свою жизнь после прочтения этой статьи. Хочется на это надеяться.

Ученый-кибернетик может считаться универсальным специалистом в любой сфере. Ведь большая часть областей нашей жизни базируется на управляемых системах, которые входят в сферу изучения этой науки. Поскольку она становится с каждым днем все популярнее, то можно смело говорить: за искусственным интеллектом — будущее.

Кибернетик — это настоящий универсал. Этим он и ценен.

Кибернетика. Устройство и применение. Особенности и будущее

КИБЕРНЕТИКА

Кибернетика – наука, занимающаяся изучением способов управления в различных сложных системах. Ее появление было связано с развитием нейрофизиологии, техники и математики.

Эта наука в основу своей деятельности включила изучение живых и не живых систем, в которых присутствовали структуры обратной связи. Всех их объединяла возможность воспринимать, сохранять и обрабатывать определенную информацию.

К числу подобных систем можно отнести общество людей, компьютеры, мозг человека, автоматизированные регуляторы и тому подобное.

Основателем данной науки является Винер Норберт, виднейший ученый из США. В своих работах он сформулировал ее главные положения. Они охватывали вычислительную технику, электрические сети, теорию вероятностей, математику и ряд иных трудов.

Кибернетический подход начал активно развиваться в 1940-е годы. В основе науки стали использоваться и другие направления: языкознание, медицина, биология, экономика и тому подобное.

Благодаря ней эти и многие области знаний получили существенное развитие.

Кибернетика

Поня­тие «кибернетика» включает множество определений, однако они сходятся в одном: она представляет науку, исследующую закономерности построения систем сложного характера и особенностей их управления. В виду того, что практически каждый процесс управления базируется на базе полученных данных, то эту науку связывают с принципами доставки, хранения и переработки информации в указанных системах.

Особенность данной науки в том, что изучается не сам состав систем, а непосредственно итог их деятельности. Изучению подвергаются управляющие системы требуемой степени сложности. Но это не все системы, а только те, которые меняются или находятся в движении, то есть динамические системы.

К подобным системам можно отнести:

  • Живые организмы, к ним можно отнести представителей животного и растительного мира.
  • Технические агрегаты в виде систем агрегатов, транспортных средств, компьютерных систем и тому подобное.
  • Социально-экономические структуры, к которым можно отнести группу людей, компании, определенные отрасли промышленности, страны и так далее.

Но, изучая сложные системы динамического характера, не стоит задача определения всех особенностей их функционирования. Из вида, в частности, упускаются некоторые физические особен­ности построения системы.

К примеру, при исследовании крупной электрической станции не стоит задача выяснить размеры генераторов, КПД станции, а также физические процессы образования электрической энер­гии и тому подобное.

В происходящих процессах главным является то, как конкретные устройства агрегата управляют отдельными элементами и выполняют конкретные логические функции. Если же рассматривать социально-экономические структуры, то здесь не важны биохимические или биофизические процессы, которые могут происходить в человеческих организмах.

Всеми вышеуказанными вопросами уже занимаются конкретные науки, среди которых физика, математика, биология, химия, электротехника и меха­ника.

[attention type=yellow]

Кибернетикаже исследует только структуры систем, которые отвечают за процессы управления, то есть сбор данных, их обработка, хранение и использование для последующего управления.

[/attention]

В то же время некоторые физико-химические процессы могут входить в сферу интересов нашей науки, но только в том случае, если они напрямую касаются процессов управления.

Устройство

Кибернетикакак наука развивается в различных направлениях. Она включает различные кластеры, которые выступают в качестве ее основы:

  • Теоретическая наука. Она разрабатывает научный аппарат и методы изучения систем управления. В нее входят определенные разделы матема­тики, к примеру, теория алгоритмов и так далее. Теоретическая наука интересуется теорией автома­тов, теорией преобразова­ния информации и тому подобное.
  • Техническая наука. Она занимается изучением особенностей управления техническими системами. Этот кластер занимается изучением предмета создания автоматов, включая роботов и электронных вычислительных машин. К тому же техническая наука занимается проблемами сбора данных, их перемещения, переработки, сохранения и тому подобное.
  • Биологическаякибернетика. Она занимается изучением особенностей управления биологических систем.

Этот кластер также может быть поделен на ряд разделов:

•Медицинский раздел, куда входит моделирование болезней, диагностирование и лечение.
•Физиологический раздел, куда входит моделирование и изучение функций клеток и органов живых существ в нормальном и патологическом состоянии.
•Нейрокибернетика. Здесь происходит моделирование процессов управления, касающихся нервной системы.

•Психологи­ческий раздел, куда входит моделирование психики на базе поведенческого анализа людей.
•Можно выделить отдельный раздел, который находится на стыке технической и биологической науки.

Его называют бионикой, она занимается моделированием биологических процессов и механизмов с целью улучшения уже созданных и проектируемых технических устройств.

  • Социальная наука. Она занимается изучением особенностей управления в социальных системах. Но, следует сказать, что социальная наука не может в полной мере охватить все нюансы управления обществом, которая часто характеризуется яв­лениями и процессами неформального характера.
  • Экономическая наука. Она занимается изучением особенностей управления народным хозяйством, в том числе ее отдельными элементами, организациями, предприятиями и тому подобное. Одним из главных направлений деятельности данного кластера является изучение автоматизированных систем управления.

Применение

На данный момент кибернетикаприменяется в самых разнообразных сферах человеческой жизни, начиная от экономической и политической деятельности до генетического программирования.

Особое направление уделяется созданию робототехнических систем.

Благодаря внедрению в жизнь новейших технологий и производству продвинутых устройств, в числе которых малогабаритные приводы, миниатюрные датчики, новая элементная база, наука может двигаться вперед семимильными шагами.

Благодаря вышеперечисленному робототехника сегодня получила невероятный толчок. Сегодня роботы перестали быть сюжетом фантастических книг и кино, они существуют и развиваются.

Появляются не только промышленные роботы, но и высокотехнологичные и умные робототехнические комплексы, которые с успехом применяются и в быту.

На текущий момент они активно используются в промышленности, а в скором времени появятся серийные роботы для домашнего использования.

На данный момент это роботы преимущественно первого поколения, в которых заложен только жесткий алгоритм действия по конкретной команде. Тем не менее, их возможностей вполне хватает для осуществления многих целей.

Сегодня появляются роботы второго поколения, в которых заложена функция адаптации к происходящим процессам. Подобные кибернетические системы могут приспосабливаться к изменениям, подбирая оптимальные действия.

На данный момент большая часть подобных робототехнических систем только разрабатываются и проходят лабораторные испытания. Но самые простые экземпляры уже находятся в опытной эксплуатации.

Роботы третьего поколения будут иметь элементы искусственного интеллекта. То есть они смогут оценивать окружающую обстановку, ее изменение и сами принимать решение о своих последующих действиях, чтобы выполнить конкретно поставленную задачу. При этом робот сможет сам обучаться, накапливать опыт, чтобы использовать его в будущем.

Прогнозы на будущее

Кибернетикасегодня активно связана с информатикой. Во многом именно интернет становится той основой, на которой базируется эта наука. Сегодня интернет проникает в самые разные области жизни, в том числе робототехники. Ученые предполагают, что в скором времени кибернетические системы будут одной из главных составляющих окружающей среды и человека.

Через 5-10 лет активно будут применяться системы виртуальной реальности. Их можно будет встретить повсеместно: это медицина, школьное и университетское образование, строительство, инженерное проектирование и многое другое.

К примеру, совершенно поменяются способы диагностики и лечения людей, в том числе методы обучения.

[attention type=red]

Купив квартиру, можно будет надеть шлем виртуальной реальности и создать уникальный дизайн помещений, просто подбирая виртуальные краски, мебель, технику.

[/attention]

Через 10-20 лет наступит время искусственного интеллекта, который будет преобладать в многочисленных областях. Исчезнут многие профессии, в числе которых водители, проектировщики, секретари и многие другие.

Автобусы, троллейбусы, грузовики и даже личные автомобили смогут ездить без водителя.

Искусственный интеллект сможет самостоятельно ставить диагнозы, назначать лечение, проектировать мосты, здания, решать иные многочисленные задачи.

Через 50 лет. Искусственный интеллект будет повсеместно. Его возможности достигнут таких высот, что практически всем будет заниматься компьютер.

Он будет снимать кино, продумывать распорядок дня человека, моментально лечить его, давать ему указания.

Искусственный интеллект будет писать книги, сочинять музыку, заниматься научными и исследовательскими работами, строить машины, новых роботов, космические корабли, разрабатывать новые технологии и многое другое.

Похожие темы:

Оцените статью
Добавить комментарий