ПОЛИМЕТАКРИЛАТЫ

Что такое полиметилакрилат и где его используют

ПОЛИМЕТАКРИЛАТЫ

Полиметилакрилат – полимер метилакрилата, который обладает широчайшими возможностями для применения, обусловленными его исключительными физическими свойствами. Различают полиметилакрилат получаемый блочным и суспензионным способом производства.

Данные разновидности полимера имеют различия в своих свойствах в основном по степени прозрачности и твердости. Промышленность производит полимер двух типов: листовой и гранулированный, после чего эти разновидности полиметилакрилата перерабатываются в конечную продукцию.

Материал имеет несколько более распространенных названий – органическое стекло (оргстекло) или плексиглас.

Полиметилакрилат, получение которого производится путем полимеризации метилового эфира метакриловой кислоты при равномерном повышении температуры в пределах 60 – 1000С, широко используется как в промышленности, так и в быту. Химическая формула полиметилакрилата СН2-С(СН3)-)n COOCH3.

Свойства полиметилакрилата

Данный полимер сохраняет твердость при температуре до 800С, дальнейшее нагревание приводит к снижению прочностных характеристик и деформации изделия.

При нагревании полиметилакрилата до температуры 1250С производят его формование и вытягивание. Повышение температуры свыше 1900С приводит к расплавлению полимера, при такой температуре материал подвергают литью под давлением, и экструзии.

Температура свыше 3000С приводит к деполимеризации материала. При этом выделяется метилметакрилат.

Полилетилакрилат растворим в некоторых углеводородных соединениях – бензол, ацетон, дихлорэтан и т.д. Материал не вступает в реакцию со щелочными растворами, неорганическими кислотами, водой, бензинами и маслами. При воздействии на полиметилакрилат концентрированных азотной, серной, фтористоводородной и некоторых других кислот материал незначительно изменяет свои свойства.

Широкое применение полиметилакрилат получил благодаря своим физическим свойствам:

  • Оптическая прозрачность. Полиметилакрилат пропускает более 90% светового излучения.
  • Ультрафиолетовая проницаемость. Полимер пропускает более 70% ультрафиолетового излучения.
  • Гибкость. Материал не образует острых осколков при механическом повреждении изделия.
  • Легкость механической обработки. Материал легко режется и обрабатывается, а также подвергается шлифовке. Это свойство имеет обратную сторону – материал легко царапается, из-за чего ответственные светопрозрачные конструкции из полиметилакрилата покрывают защитным слоем, предотвращающим появление царапин, приводящих к снижению оптической прозрачности.
  • Химическая стойкость к воздействию органических жидкостей и агрессивных веществ. Данное свойство широко применяется в авиа-, судо- и автомобилестроении, а также в медицине.
  • Высокая коррозионная стойкость. Материал не подвергается окислению на открытом воздухе.
  • Легкость окрашивания полимерной массы. Полиметилакрилат легко окрашивается красителями с сохранением прозрачных свойств материала.
  • Низкая теплопроводность позволяет использовать полимер в качестве теплоизоляционного материала.

Кроме того, материал имеет и свойства, которые снижают возможные способы его применения: низкая температура плавления, под воздействием окружающей среды и высоких температур со временем происходит помутнение материала и повышение его хрупкости.

Применение полиметилакрилата

Полиметилакрилат впервые был синтезирован в 1928 году, когда и получил свое торговое название «plexiglas».

В 30-х годах прошлого века материал широко применялся в авиационной промышленности из-за своих исключительных для тех лет свойств – прозрачности, устойчивости к статическим нагрузкам, нечувствительность к воздействию воды и отсутствие острых осколков при разбивании. Из него изготавливали остекление фонаря кабины пилота и турелей вооружения самолетов.

В дальнейшем полиметилакрилат находил все большее применение в самых различных отраслях промышленности.

В настоящее время полиметилакрилат применяется как в своем первоначальном состоянии, так и в составе композитных материалов и в эмульсионном виде:

  • Полимер используется в сетевых телекоммуникациях. Его оптическая проницаемость в совокупности с гибкостью материала обеспечили его незаменимость при производстве оптических волноводов. Для производства оптических кабелей используется полиметилакрилат без примесей, с минимальным содержанием стабилизирующих добавок. Это обеспечивает малый коэффициент затухания оптического сигнала и гибкость волновода, что позволяет его использовать для прокладки линий связи. Также из полиметилакрилата изготавливают другие компоненты оптических сетей – устройства спектрального уплотнения и разложения сигналов.
  • В автомобильной промышленности используют плексиглас в качестве составных частей осветительных приборов – остекление фар, фонарей. Также из него изготавливают стрелочные указатели, шкалы и защитные стекла панели приборов. При этом широко используется полиметилакрилат, окрашенный в различные цвета.
  • Из плексигласа изготавливается множество изделий бытового назначения – множество прозрачных деталей бытовой техники, элементов декора различных расцветок.
  • При производстве рекламы полиметилакрилат используется для изготовления вывесок, стендов, прозрачных освещаемых элементов конструкций.
  • В электротехнической промышленности полимер применяется в качестве защитных и декоративных частей остекления осветительной продукции – светильников дневного света, энергосберегающих люстр. Широкое применение этого материала ограничено его относительно невысокой теплостойкостью, поэтому его применяют только в элементах осветительных приборов с малым тепловыделением. Также полимер используется в качестве корпуса маломощных светодиодов.
  • В авиации полиметилакрилат используется в составе композитных материалов для остекления самолетов, например, для техники, производимой АО «РСК „МиГ“».
  • В медицине полимер применяется в виде эмульсии при создании зубных протезов, а также для производства многих медицинских приборов и инструментов – прозрачных элементов капельниц, глазных протезов, контактных линз, волноводов для оптических приборов видеозондирования, искусственных хрусталиков глаза.
  • В строительстве листы полиметилакрилата применяются при постройке теплиц и парников, акриловую дисперсию применяют при гидроизоляции бетонных конструкций.

Полиакрилаты, акриловые и стиролакриловые сополимеры

ПОЛИМЕТАКРИЛАТЫ

Лакокрасочные материалы строительного назначения

Полимерные акриловые дисперсии делятся на акриловые и стиролакриловые. Акриловые — дисперсии полимеров, полученных из акриловых или метакриловых мономеров, стиролакриловые — при сополимеризации производных акриловой (метакриловой) кислоты со стиролом. В табл.

3 приведены характеристики мономеров, используемых для получения дисперсий обоих типов. Так как акриловую кислоту и её производные получают из пропана, метакриловую и её эфиры — из 2-гидрокси-2-метилпропилонитрила, изобутана или изобутиральдегида в результате многостадийных процессов, эти мономеры более дороги, чем стирол и винилацетат.

Поэтому акриловые сополимеры дороже стиролакриловых и сополимеров винилацетата.

Таблица 3

Характеристики мономеров, используемых для получения дисперсий обоих типов

МономерРастворимость в воде при 25°С (г/100 см³)Tcт,°С
Метилакрилат (МА) 5,2 22
Этилакрилат (ЕА) 1,6 − 8
н-Бутилакрилат (н-ВА) 0,15 − 43
изо-Бутилакрилат (і-ВА) 0,18 − 17
трет-Бутилакрилат (t-BA) 0,15 55
2-Этилгексилакрилат (2-ЕНА) 0,04 −58
Лаурилакрилат (LA) < 0,001 − 17
Метилметакрилат (ММА) 1,5 105
н-Бутилметакрилат (н-ВМА) 0,08 32
изо-Бутилметакрилат (i-ВМА) 0,13 64
Стирол (S) 0,02 107
Акрилонитрил (AN) 8,3 105
Винилацетат (Vac) 2,4 — 2,5 42

В то же время поли (мет)акрилаты обладают высокой атмосферостойкостью, стойкостью к действию УФ-излучения, хорошей водостойкостью и устойчивостью к пожелтению покрытий на их основе, возможностью легко получать сополимеры с заданной жесткостью, гибкостью и твердостью. Высокий блеск покрытий и его сохранение при длительном атмосферном воздействии в сочетании со стойкостью покрытий к действию щелочей, кислот и воды делает этот класс сополимеров незаменимым в рецептурах ЛКМ для наружного применения.

Структура и свойства акриловых сополимеров

Основные свойства полимеров, такие, как температура стеклования (Тст), минимальная температура пленкообразования (МТП) и физико-механические свойства покрытий на их основе, зависят от структуры основной и боковых цепей полимерной макромолекулы.

Растворимость мономера в воде, приведенная в табл. 3, может быть мерой полярности гомополимера: при её увеличении возрастает полярность образующегося полимера. Свободные кислоты (акриловая и метакриловая) повышают растворимость полимера в воде, особенно в нейтрализованном состоянии.

С-С-связь в основной цепи химически инертна и позволяет получать химически и атмосферостойкие поли (мет)акрилаты. Вследствие низкой прочности связи, а-СН-групп, примыкающих к карбонильному центру (С = О), полиакрилаты менее стабильны, чем полиметакрилаты.

Гидролитическая устойчивость полиметакрилатов из-за стерических особенностей карбонильного центра, примыкающего к метальной группе, ниже, чем полиакрилатов.

Жесткость полиметакрилатов выше, чем соответствующих полиакрилатов, так как дополнительная метальная группа вызывает стерические затруднения при вращении цепи. Возрастание жесткости вызывает повышение Тст и твердости и снижение гибкости полиметакрилатов. При увеличении длины цепи макромолекулы повышаются Тст полимера (рис.

 2), увеличивается твердость и относительное удлинение пленок вследствие возрастания степени кристалличности поли (мет)акрилатов. В табл. 4 приведены деформационно-прочностные свойства пленок поли (мет)акрилатов с различной длиной боковой цепи макромолекулы, а в табл.

5 — значения Тст для поли (мет)акрилатов с различными заместителями в боковой цепи.

Таблица 4

Деформационно-прочностные свойства пленок поли (мет)акрилатов с различной длиной боковой цепи макромолекулы

ПолимерПрочность при разрыве, Н/мм²Удлинение при разрыве, %
Полиметилметакрилат 68970 1
Полиэтилметакрилат 37240 25
Полибутилметакрилат 3450 300
Полиметилакрилат 6930 750
Полиэтилакрилат 230 1800
Полибутилакрилат 20 2000

Таблица 5

Значения Тст для поли (мет)акрилатов с различными заместителями в боковой цепи

ЗаместительЗначение ,Тст, С
Акрилат Метакрилат
н-Бутил − 43 32
н-Бутил − 17 64
трет-Бутил 55 102

Эмульсионная сополимеризация различных мономеров дает возможность получать полиакриловые дисперсии с различными свойствами.

Температура стеклования получаемых сополимеров может быть приблизительно рассчитана при помощи эмпирического уравнения Фокса:
1/Тст (сополимера) = W1/Tст1+W2/Тст2+W3/Тст3, где W1, W2, W3 — массовые доли мономеров, причем W1+ W2+ W3 = 1; Тст1, Тст2, Тстз — температуры стеклования гомополимеров, К.

Для ЛКМ обычно используют продукты, полученные при сополи-меризации «мягких» мономеров с низким значением Тст (бутил- и этилгексилакрилат) с «твердыми» мономерами с высокой Тст (бутил- и метилметакрилат). Такое сочетание позволяет получать сополимеры с Тст 0–40°С.

Как отмечалось выше, производные метакриловой кислоты достаточно дороги. Стоимость пленкообразователей, а в конечном итоге ЛКМ может быть снижена, а их свойства оптимизированы при частичной или полной замене метилметакрилата, который обычно используют для достижения необходимой твердости, на стирол.

Получение сополимеров акрилатов со стиролом возможно благодаря способности этих мономеров легко сополимеризоваться с акрилатами и почти одинаковой температуре стеклования гомополимеров.

Использование неполярного мономера стирола взамен метилметакрилата приводит к улучшению водо- и щелочестойкости получаемых сополимеров, увеличению сродства к пигменту и повышению блеска покрытий.

Однако высокое содержание стирола может быть причиной снижения атмосферостойкости, что проявляется в мелении, потере блеска и пожелтении покрытия. В табл. 6 качественно охарактеризованы свойства сополимеров, содержащих либо метилметакрилат, либо стирол.

Таблица 6

Свойства сополимеров, содержащих либо метилметакрилат, либо стирол

ПоказательМономер
* ++ — очень хорошо; + — хорошо; +/ − — удовлетворительно; − — неудовлетворительно
Стирол Метилметакрилат
Твердость ++ ++
Светостойкость +/− до − ++
Водостойкость ++ +/−
Паропроницаемость +/− до − +
Меление +/− до − ++
Грязеустойчивость ++ +
Стойкость к омылению ++ + до +/−
Пигментоемкость ++ +/−
Блеск покрытия ++ +
Цена +

При сравнении свойств полиакрилатов с поливиниловыми эфирами следует отметить, что первые образуют более гидрофобные, устойчивые к действию воды и омылению покрытия с более высокой атмосферостойкостью. Благодаря более высокому коэффициенту преломления и однородности акриловых дисперсий блеск покрытий на их основе выше, чем при использовании поливинилацетата.

Чистые акрилаты применяют в основном для получения ЛКМ для наружной отделки, производства лаков, пропиточных составов, красок для глянцевых и полуглянцевых покрытий для внутренних работ, т.е. в материалах с низким содержанием пигментов и наполнителей или не содержащих их совсем.

Стиролакриловые дисперсии вследствие благоприятного соотношения цена/качество практически универсальны. Их использование следует ограничивать в рецептурах лаков, пропиточных составов и ЛКМ с небольшим содержанием пигментов.

Термоизоляционное покрытие «Акварелла ТМ-150» Сверхтонкое теплоизоляционное покрытие «Акварелла ТМ-150» ТУ 5768-001-99799327-2010 для нанесения на минеральные и металлические поверхности. Состав жидкой теплоизоляции «Акварелла ТМ-150»: вакуумированные алюмосиликатные микросферы, термостойкая стирол-акрилатная дисперсия, ингибиторы …

Явление фосфоресценции можно хорошо наблюдать на сульфидах щелочноземельных металлов. Оно заключается в том, что некоторые вещества, будучи предварительно подвергнуты освещению, продолжают затем некоторое время светиться в темноте. Сущность явления состоит …

Приготовление олифы. Так как варка олифы требует специального котла и опасна в пожарном отношении, приводим способ приготовления олифы без варки. На 20 весовых частей льняного масла берется 1 часть глета …

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть