Пропилен

Полимеризация пропилена: схема, уравнение, формула

Пропилен

Что представляет собой полимеризация пропилена? Каковы особенности протекания данной химической реакции? Попробуем найти развёрнутые ответы на эти вопросы.

Характеристика соединений

Схемы реакций полимеризации этилена и пропилена демонстрируют типичные химические свойства, которыми обладают все представители класса олефинов. Такое необычное название данный класс получил от старого названия масла, используемого в химическом производстве. В 18 веке был получен хлористый этилен, который представлял собой маслянистое жидкое вещество.

Среди особенностей всех представителей класса непредельных алифатических углеводородов отметим наличие в них одной двойной связи.

Радикальная полимеризация пропилена объясняется именно присутствием в структуре вещества двойной связи.

Общая формула

У всех представителей гомологического ряда алкенов общая формула имеет вид СпН2п. Недостаточное количество водородов в структуре объясняет особенность химических свойств этих углеводородов.

Уравнение реакции полимеризации пропилена является прямым подтверждением возможности разрыва по такой связи при использовании повышенной температуры и катализатора.

Непредельный радикал называется аллилом или пропенилом-2. Зачем проводится полимеризация пропилена? Продукт этого взаимодействия применяется для синтеза синтетического каучука, который, в свою очередь, востребован в современной химической промышленности.

Физические свойства

Уравнение полимеризации пропилена подтверждает не только химические, но и физические свойства данного вещества. Пропилен является газообразным веществом с невысокими температурами кипения и плавления. Данный представитель класса алкенов имеет незначительную растворимость воде.

Химические свойства

Уравнения реакции полимеризации пропилена и изобутилена показывают, что процессы протекают по двойной связи. В качестве мономеров выступают алкены, а конечными продуктами такого взаимодействия будут полипропилен и полиизобутилен. Именно углерод-углеродная связь при подобном взаимодействии будет разрушаться, и в конечном итоге будет образовываться соответствующие структуры.

По двойной связи происходит образование новых простых связей. Как протекает полимеризация пропилена? Механизм данного процесса аналогичен процессу, протекающему у всех остальных представителей данного класса непредельных углеводородов.

Реакция полимеризации пропилена предполагает несколько вариантов протекания. В первом случае процесс осуществляется в газовой фазе. По второму варианту реакция идет в жидкой фазе.

Кроме того, полимеризация пропилена протекает и по некоторым устаревшим процессам, предполагающим применение в качестве реакционной среды насыщенного жидкого углеводорода.

Современная технология

Полимеризация пропилена в массе по технологии Spheripol представляет собой совмещение суспензионного реактора для изготовления гомополимеров.

Процесс предполагает применение газофазного реактора с псевдожидкостным слоем для создания блок-сополимеров.

В подобном случае реакция полимеризации пропилена предполагает добавление в устройство дополнительных совместимых катализаторов, а также проведение предварительной полимеризации.

Особенности процесса

Технология предполагает перемешивание компонентов в специальном устройстве, предназначенном для предварительного превращения. Далее эту смесь добавляют в петлевые полимеризационные реакторы, туда поступает и водород, и отработанный пропилен.

Работа реакторов осуществляется при диапазоне температур от 65 до 80 градусов по Цельсию. Давление в системе не превышает 40 бар. Реакторы, которые располагаются последовательно, применяются на заводах, рассчитанных на большие объемы изготовления полимерной продукции.

Из второго реактора удаляют полимерный раствор. Полимеризация пропилена предполагает перенос раствора в дегазатор повышенного давления. Здесь осуществляется удаление порошкового гомополимера от жидкого мономера.

Производство блоксополимеров

Уравнение полимеризации пропилена CH2 = CH — CH3 в данной ситуации имеет стандартный механизм протекания, есть отличия только в условиях осуществления процесса. Вместе с пропиленом и этеном порошок из дегазатора идет в газофазный реактор, работающий при температуре около 70 градусов по Цельсия и давлении не больше 15 бар.

Блок сополимеры после выведения из реактора поступают в специальную систему отведения от мономера порошкообразного полимера.

Полимеризация пропилена и бутадиенов ударопрочного вида допускает использование второго газофазного реактора. Он позволяет увеличивать уровень пропилена в полимере. Кроме того, возможно добавление в готовый продукт добавок, использование гранулирования, способствует повышению качества получаемого продукта.

Специфика полимеризации алкенов

Между изготовлением полиэтилена и полипропилена есть некоторые отличия. Уравнение полимеризации пропилена позволяет понять, что предполагается применение иного температурного режима. Кроме того, некоторые различия существуют и в конечной стадии технологической цепочки, а также в областях использования конечных продуктов.

Пероксид используют для смол, которые обладают отличными реологическими свойствами. У них повышенный уровень текучести расплавов, сходные физические свойства с теми материалами, которые имеют низкий показатель текучести.

Смолы, имеющие отличные реологические свойства, применяют в процессе литьевого формования, а также в случае изготовления волокон.

Для повышения прозрачности и прочности полимерных материалов производители стараются добавлять в реакционную смесь специальные кристаллизирующие добавки. Часть полипропиленовых прозрачных материалов замещают постепенно иными материалами в области выдувного формования и создания литья.

Особенности полимеризации

Полимеризация пропилена в присутствии активированного угля протекает быстрее. В настоящее время применяется каталитический комплекс углерода с переходным металлом, основанный на адсорбционной способности углерода. В результате полимеризации получается продукт, имеющий отличные эксплуатационные характеристики.

В качестве основных параметров процесса полимеризации выступает скорость реакции, а также молекулярный вес и стереоизомерный состав полимера. Значение имеет и физическая и химическая природа катализатора, полимеризационная среда, степень чистоты составных частей реакционной системы.

Линейный полимер получается и в гомогенной, и в гетерогенной фазе, если идет речь об этилене. Причина заключается в отсутствии у данного вещества пространственных изомеров. Чтобы получить изотактический полипропилен, стараются использовать твердые хлориды титана, а также алюминийорганические соединения.

При применении комплекса, адсорбированного на кристаллическом хлориде титана (3), можно получать продукт с заданными характеристиками. Регулярность решетки носителя не является достаточным фактором для приобретения катализатором высокой стереоспецифичности. Например, в случае выбора иодида титана (3) наблюдается получение большего количества атактического полимера.

Рассмотренные каталитические компоненты имеют льюисовский характер, поэтому связаны с подбором среды. Самой выгодной средой является применение инертных углеводородов.

Так как хлорид титана (5) является активным адсорбентом, в основном выбирают алифатические углеводороды. Как протекает полимеризация пропилена? Формула продукта имеет вид (-СН2-СН2-СН2-)п.

Сам алгоритм реакции аналогичен протеканию реакции у остальных представителей данного гомологического ряда.

Химическое взаимодействие

Проанализируем основные варианты взаимодействия для пропилена. Учитывая, что в его структуре есть двойная связь, основные реакции протекают именно с ее разрушением.

Галогенирование протекает при обычной температуре. По месту разрыва сложной связи происходит беспрепятственное присоединение галогена. В результате данного взаимодействия образуется дигалогенпроизводное соединение. Труднее всего происходит йодирование. Бромирование и хлорирование протекает без дополнительных условий и энергетических затрат. Фторирование пропилена протекает со взрывом.

Реакция гидрирования предполагает использование дополнительного ускорителя. В качестве катализатора выступает платина, никель. В результате химического взаимодействия пропилена с водородом, образуется пропан – представитель класса предельных углеводородов.

Гидратация (присоединение воды) осуществляется по правилу В. В. Марковникова. Суть его состоит в присоединении по двойной связи атома водорода к тому углероду пропилена, который имеет его максимальное количество. При этом галоген будет прикрепляться к тому С, который имеет минимальное число водорода.

Для пропилена характерно горение в кислороде воздуха. В результате этого взаимодействия будет получаться два основных продукта: углекислого газа, водяного пара.

При действии на данное химическое вещество сильных окислителей, например, перманганата калия, наблюдается его обесцвечивание. Среди продуктов химической реакции будет двухатомный спирт (гликоль).

Получение пропилена

Все способы можно разделить на две основные группы: лабораторные, промышленные. В лабораторных условиях можно получить пропилен при отщеплении галогеноводорода от исходного галогеналкила при воздействии на них спиртового раствора гидроксида натрия.

Пропилен образуется при каталитическом гидрировании пропина. В лабораторных условиях данное вещество можно получить при дегидратации пропанола-1. В данной химической реакции применяют в качестве катализаторов фосфорную либо серную кислоту, оксид алюминия.

Как получают пропилен в больших объемах? В связи с тем, что в природе данное химическое вещество встречается редко, были разработаны промышленные варианты его получения. Самым распространенным является выделение алкена из продуктов нефтепереработки.

Например, осуществляется крекинг сырой нефти в специальном кипящем слое. Пропилен получают путем пиролиза бензиново фракции. В настоящее время выделяют алкен и из попутного газа, газообразны продуктов коксования угля.

Есть разнообразные варианты пиролиза пропилена:

  • в трубчатых печах;
  • в реакторе с применением кварцевого теплоносителя;
  • процесс Лавровского;
  • автотермический пиролиз по методу Бартломе.

Среди отработанных промышленных технологий необходимо отметить и каталитическое дегидрирование насыщенных углеводородов.

Применение

Пропилен имеет различные области применения, поэтому и производится в больших масштабах в промышленности. Своим появлением данный непредельный углеводород обязан работам Натты. В середине двадцатого века он, пользуясь каталитической системой Циглера, разработал технологию полимеризации.

Натта сумел получить стереорегулярный продукт, который был им назван изотактическим, поскольку в структуре метильные группы были расположены с одной стороны цепочки.

Благодаря такому варианту «упаковки» полимерных молекул, получаемое полимерное вещество имеет отличные механические характеристики.

Полипропилен используется для изготовления синтетического волокна, востребован в качестве пластической массы.

Примерно десять процентов нефтяного пропилена потребляется для производства его оксида. До середины прошлого века данное органическое вещество получали хлоргидринным методом. Реакция протекала через образование промежуточного продукта пропиленхлоргидрина. У такой технологии есть определенные недостатки, которые связаны с использованием дорогостоящего хлора и гашеной извести.

В наше время на смену этой технологии пришел халкон-процесс. Он основывается на химическом взаимодействии пропена с гидропероксидами.

Применяют оксид пропилена в синтезе пропиленглиголя, идущий на изготовление пенополиуретанов.

Они считаются отличными амортизирующими материалами, поэтому идут на создание упаковок, ковриков, мебели, теплоизоляционных материалов, сорбирующих жидкостей и фильтрующих материалов.

Кроме того, среди основных сфер применения пропилена необходимо упомянуть синтез ацетона и изопропилового спирта. Изопропиловый спирт, являясь отличным растворителем, считается ценным химическим продуктом. В начале двадцатого века этот органический продукт получали сернокислотным методом.

Кроме того, отработана технология прямой гидратации пропена с введением в реакционную смесь кислых катализаторов. Около половины всего производимого пропанола уходит на синтез ацетона. Данная реакция предполагает отщепление водорода, проводится при 380 градусах по Цельсия. Катализаторами в этом процессе выступают цинк и медь.

Среди важных отраслей применения пропилена особое место занимает гидроформилирование. Пропен идет на производство альдегидов. Оксисинтез в нашей стране стали использовать с середины прошлого века. В настоящее время эта реакция занимает важное место в нефтехимии.

Химическое взаимодействие пропилена с синтез-газом (смесью угарного газа и водорода) при температуре 180 градусов, катализаторе оксиде кобальта и давлении в 250 атмосфер наблюдается образование двух альдегидов.

Один имеет нормальное строение, у второго – изогнутая углеродная цепочка.

Сразу после открытия данного технологического процесса, именно эта реакция стала объектом исследований для многих ученых. Они искали способы смягчения условий ее протекания, старались снизить процентное содержание в получаемой смеси альдегида разветвленного строения.

Для этого были придуманы экономичные процессы, предполагающие применение иных катализаторов. Удалось снизить температуру, давление, увеличить выход альдегида линейного строения.

Эфиры акриловой кислоты, которые также связаны с полимеризацией пропилена, применяют в качестве сополимеров. Около 15 процентов нефтехимического пропена применяют в качестве исходного вещества для создания акрионитрила. Этот органический компонент необходим для изготовления ценного химического волокна – нитрона, создания пластических масс, производства каучуков.

Заключение

Полипропилен считают в настоящее время крупнейшим производством нефтехимии. Спрос на этот качественный и недорогой полимер растет, поэтому он постепенно вытесняет полиэтилен.

Он незаменим при создании жесткой упаковки, пластин, пленок, автомобильных деталей, синтетической бумаги, канатов, ковровых деталей, а также для создания разнообразного бытового оборудования. В начале двадцать первого века производство полипропилена занимало второе место в полимерной промышленности.

Учитывая запросы различных отраслей промышленности, можно сделать вывод: в ближайшее время сохранится тенденция масштабного производства пропилена и этилена.

Пропилен

Пропилен

Пропилен (пропен) СН2=СН-СН3 — непредельный (ненасыщенный) углеводород ряда этилена, горючий газ.

Присоединение галогенов (галогенирование)

Реакцию галогенирования обычно проводят в растворителе при обычной температуре.Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных. Легче идет присоединение хлора и брома, труднее — иода. Фтор взаимодействует со взрывом.

Присоединение водорода (реакция гидрирования)

Присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), пропен переходит в предельный углеводород — пропан.

Присоединение галогеноводородов (HHal)

Происходит по правилу В. В. Марковникова. Водород кислоты HHal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом С, при котором находится меньшее число атомов водорода.

Горение на воздухе

При поджигании горит на воздухе:2СН2=СНСН3 + 9О2 6СО2 + 6Н2О.С кислородом воздуха газообразный пропилен образует взрывчатые смеси.Пропилен окисляется перманганатом калия в водной среде, что сопровождается обесцвечиванием раствора KMnO4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах С).

Полимеризация

Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных π-cвязей и образования новых межмолекулярных σ-cвязей.

Окисление кислородом воздуха в пропиленоксид

При нагревании в присутствии серебряных катализаторов:

В лаборатории

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

H2C—CH – CH3 → H2C=CH–CH3 + KCl + H2O | | Cl H K — ОH

2. Гидрирование пропина в присутствии катализатора (Pd):

H—C≡C—CH3 + H2 → H2C=CH—CH3

3. Дегидратация пропилового спирта (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или Аl2O3:

Н2С—СН2 — CH3 → Н2С=СН — CH3 + Н2О | | H -OH

4. Отщепление двух атомов галогена от дигалогеноалканов, содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

H2C-CH-CH3+Zn → H2C=CH-CH3+ZnBr2 | | Br Br

В промышленности

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти в кипящем слое (процесс фирмы BASF), пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля. Существует несколько видов пиролиза пропилена: пиролиз в трубчатых печах, пиролиз в реакторе с кварцевым теплоносителем (процесс фирмы Phillips Petroleum Co.

), пиролиз в реакторе с коксовым теплоносителем (процесс фирмы Farbewerke Hoechst), пиролиз в реакторе с песком в качестве теплоносителя (процесс фирмы Lurgi), пиролиз в трубчатой печи (процесс фирмы Kellogg), процесс Лавровского — Бродского, автотермический пиролиз по Бартоломе.

В промышленности пропилен получают также дегидрированием алканов в присутствии катализатора (Сr2О3, Аl2О3).

Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Производство

Большая часть производственных мощностей по пропилену сосредоточена в Европе, Северной Америке и Азии. В настоящее время за год в мире производится более 50 миллионов тонн пропилена полимерного и химического сортов (PG/CG).

Большая часть выпуска пропилена этих сортов приходится на долю установок пиролиза, где пропилен — побочный продукт производства этилена. Установками термического крекинга вырабатывается более 60 % такого пропилена. Нефтеперерабатывающими FCC-предприятиями выпускается 34 %.

При дегидрогенизации или метатезисе пропана производится 3 % пропилена (в данном случае пропилен является целевым продуктом).

Файл:Raspred2006.gif Файл:StuchPW.gif

[attention type=green]
Пропилен нефтехимической чистоты (RG) производится на нефтеперерабатывающих предприятиях мира в количестве, равном 31,2 миллионам тонн.
[/attention]

Большая часть такого пропилена вырабатывается на FCC-предприятиях, где пропилен — побочный продукт производства бензина и дистиллятов.

Половина этих пропиленовых мощностей интегрирована с нефтехимическими предприятиями, на которых происходит алкилирование пропилена или смешивание LPG и пропана.

Ссылки

  • http://www.xumuk.ru
  • http://chemindustry.ru

План:

    Введение

  • 1 Физические свойства
  • 2 Химические свойства
    • 2.1 Присоединение галогенов (галогенирование)
    • 2.2 Присоединение водорода (реакция гидрирования)
    • 2.3 Присоединение воды (реакция гидратации)
    • 2.4 Присоединение галогеноводородов (HHal)
    • 2.5 Горение на воздухе
    • 2.6 Полимеризация
    • 2.7 Окисление кислородом воздуха в пропиленоксид
  • 3 Получение
    • 3.1 В лаборатории
    • 3.2 В промышленности
  • 4 Применение
  • 5 Производство
  • Источники
    Примечания

Пропиле́н (пропен) СН2=СН-СН3 — непредельный (ненасыщенный) углеводород ряда этилена, горючий газ.

Наркотик с наркотическим действием более сильным, чем у этилена. Класс опасности — четвертый.[1].

1. Физические свойства

Пропилен представляет из себя газообразное вещество с низкой температурой кипения tкип= -47,7 °C и температурой плавления tпл= −187,6 °C, оптическая плотность d204=0,5193.

2. Химические свойства

Обладает значительной реакционной способностью. Его химические свойства определяются двойной углерод-углеродной связью.

p-связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента.

Все реакции присоединения протекают по двойной связи и состоят в расщеплении π-связи алкена и образовании на месте разрыва двух новых σ-связей.

Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.

2.1. Присоединение галогенов (галогенирование)

Реакцию галогенирования обычно проводят в растворителе при обычной температуре. Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных. Легче идет присоединение хлора и брома, труднее — йода. Фтор взаимодействует со взрывом.

2.2. Присоединение водорода (реакция гидрирования)

Присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), пропен переходит в предельный углеводород — пропан.

2.3. Присоединение воды (реакция гидратации)

Пропилен реагирует с водой с образованием одноатомного спирта изопропанола, при этом двойная связь раскрывается.

2.4. Присоединение галогеноводородов (HHal)

Происходит по правилу Марковникова. Водород кислоты HHal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом углерода, при котором находится меньшее число атомов водорода.

Пример гидрогалогенирования — получение бромпроизводного пропана при реакции бромоводорода и пропилена.

2.5. Горение на воздухе

При поджигании горит на воздухе: 2СН2=СНСН3 + 9О2 → 6СО2 + 6Н2О.

С кислородом воздуха газообразный пропилен образует взрывчатые смеси.

В слабощелочной или нейтральной водной среде пропилен окисляется перманганатом калия, что сопровождается обесцвечиванием раствора KMnO4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах углерода). Эта реакция получила название реакции Вагнера.

2.6. Полимеризация

Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных π-cвязей и образования новых межмолекулярных σ-cвязей.

2.7. Окисление кислородом воздуха в пропиленоксид

При нагревании в присутствии серебряных катализаторов:

3.1. В лаборатории

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

H2C—CH – CH3 → H2C=CH–CH3 + KCl + H2O | | Cl H K — ОH

2. Гидрирование пропина в присутствии катализатора (Pd):

H—C≡C—CH3 + H2 → H2C=CH—CH3

3. Дегидратация изопропилового спирта (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или Аl2O3:

Н2С—СН2 — CH3 → Н2С=СН — CH3 + Н2О | | H -OH

4. Отщепление двух атомов галогена от дигалогеноалканов, содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

H2C-CH-CH3+Zn → H2C=CH-CH3+ZnBr2 | | Br Br

3.2. В промышленности

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти в кипящем слое (процесс фирмы BASF), пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля. Существует несколько видов пиролиза пропилена: пиролиз в трубчатых печах, пиролиз в реакторе с кварцевым теплоносителем (процесс фирмы Phillips Petroleum Co.

), пиролиз в реакторе с коксовым теплоносителем (процесс фирмы Farbewerke Hoechst), пиролиз в реакторе с песком в качестве теплоносителя (процесс фирмы Lurgi), пиролиз в трубчатой печи (процесс фирмы Kellogg), процесс Лавровского — Бродского, автотермический пиролиз по Бартоломе.

В промышленности пропилен получают также дегидрированием алканов в присутствии катализатора (Сr2О3, Аl2О3).

Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

4. Применение

Для производства оксида пропилена, получения изопропилового спирта и ацетона, для синтеза альдегидов, для получения акриловой кислоты и акрилонитрила, полипропилена, пластмасс, каучуков, моющих средств, компонентов моторных топлив, растворителей.

5. Производство

Большая часть производственных мощностей по пропилену сосредоточена в Европе, Северной Америке и Азии. В настоящее время за год в мире производится более 50 миллионов тонн пропилена полимерного и химического сортов (PG/CG).

Большая часть выпуска пропилена этих сортов приходится на долю установок пиролиза, где пропилен — побочный продукт производства этилена. Установками термического крекинга вырабатывается более 60 % такого пропилена. Нефтеперерабатывающими FCC-предприятиями выпускается 34 %.

При дегидрогенизации или метатезисе пропана производится 3 % пропилена (в данном случае пропилен является целевым продуктом).

[attention type=green]
Пропилен нефтехимической чистоты (RG) производится на нефтеперерабатывающих предприятиях мира в количестве, равном 31,2 миллионам тонн.
[/attention]

Большая часть такого пропилена вырабатывается на FCC-предприятиях, где пропилен — побочный продукт производства бензина и дистиллятов.

Половина этих пропиленовых мощностей интегрирована с нефтехимическими предприятиями, на которых происходит алкилирование пропилена или смешивание LPG и пропана.

Источники

  • http://www.ssa.ru
  • http://chem.edu.ru
  • А. И. Артеменко, Органическая химия, М.:Высшая школа — 1998
  • Б. Д. Степин, А. А. Цветков, Органическая химия, М.:Высшая школа — 1994

Примечания

Физико-химические свойства полипропилена

Пропилен

Полипропилен является одним из наиболее востребованных полимеров. Это связано с его характеристиками, разнообразными способами получения и обработки. Прежде чем разобраться со способами изменения свойств этого материала, нужно обратить внимание на природу этого вещества, понять основу его получения.

Физико-химическая основа полипропилена

Полипропилен непосредственно получают из газообразного пропилена путем полимеризации. Этот процесс происходит в присутствии металлоценовых катализаторов. В исходном состоянии полипропилен представляет собой вещество белого цвета.

Начало активного производства этого полимера связывают с использованием катализаторных установок Циглера и Натта, когда в 1957 году стало возможным получение изотактического полипропилена. Его получают при температуре 80 °С под давлением в 10 атм.

Различают несколько видов полипропилена, применяемых в производстве конечных продуктов:

  • Изотактический.
  • Атактический.
  • Синдиотактический.

Наиболее востребованным в производстве стал изотактический пропилен.

Это произошло благодаря особенностям этого вида, где особое положение получили боковые группы СН3, которые располагаются необычно по отношению к основной цепи. Такая структура полипропилена определила целый ряд его основных качеств: высокая кристалличность и прочность, твердость, способность сохранять форму при высоких температурах.

В некоторых готовых изделиях успешно применяется сочетание нескольких различных типов полипропилена. Например, при добавлении в состав атактического полипропилена, можно наделить изготавливаемую деталь гибкостью и мягкостью.

Основные физико-химические свойства полипропилена можно представить в виде таблицы:

№ п/пСвойство полипропиленаЗначение показателя
1 Плотность, г/см3 0,90-0,92
2 Предел прочности на разрыв, кг/см2 260-400
3 Относительное удлинение при растяжении на разрыв, % 200-700
4 Температура плавления, °С Около 170
5 Температура наступления хрупкости материала, °С -10…-20
6 Диэлектрическая проницаемость, при 106 Гц 2,2
7 Удельное электрическое сопротивление, Ом 1016
8 Коэффициент объемного расширения при нагреве 0,00033 при 20 °С
9 Морозостойкость, °С -20…-25
10 Удельная теплоёмкость, кал/(г×град) 0,4…0,5

Таким образом, если проанализировать табличные показатели, полипропилен проявляет себя как стабильный нейтральный материал. Он не меняет значительно своих свойств при положительных температурах. При этом остается нейтральным веществом по отношению к электрическому току, излишней влажности воздуха и высоким температурам.

Особенностью пропилена является его нейтральность по отношению ко многим химическим веществам. Так, этот материал стойко переносит воздействие кислотных и щелочных растворов, спиртов, а также многих неорганических соединений, включая растворы солей.

Исключение может составить взаимодействие с некоторыми растворителями. Так, полипропилен при помещении в бензол, эфир способен к набуханию и последующему растворению.

Примечательно, что в случае своевременного удаления источника набухания, например, бензола, полипропилен полностью восстанавливает свою структуру с сохранением первоначальных свойств.

Наиболее разрушительно на полипропилен действуют концентрированные кислоты – серная и азотная, хлорсульфановая.

Среди недостатков полипропилена можно отметить сразу несколько характерных особенностей:

  • низкая морозостойкость. Возникающая под воздействием отрицательных температур хрупкость, тем не менее, ликвидируется путём введения в состав материала звеньев этилена. На практике также активно используются такие материалы как этиленпропиленовый каучук и бутилкаучук;
  • чувствительность к внешнему световому воздействию, а также к взаимодействию с кислородом. Этот недостаток проявляется в виде протекающего процесса разложения, внешнем помутнении материала, потери им блеска и даже появлением небольших трещин. Для того, чтобы предотвратить активное старение материала, производители вынуждены несколько сглаживать этот эффект путем введения в состав специальных полимерных добавок-стабилизаторов.

Предпосылки к широкому использованию пропилена

Вышеназванные основные свойства указывают на самые широкие возможности полипропилена. Однако прежде чем приступать к перечислению разнообразных способов и сфер применения этого материала, следует более детально рассмотреть некоторые его особенности.

1. Нейтральность полипропилена. Это качества полимера следует учитывать при использовании в самых разных отраслях промышленности. Полипропилен активно применяется в качестве упаковки пищевых продуктов.

Изготовленная из него пищевая плёнка не только не влияет на продукты питания, но и сохраняет их свойства длительное время. Полипропилен не оказывает вредных воздействий на медицинские препараты, поэтому его можно встретить в медицинской сфере.

Поскольку не наблюдается активного взаимодействия с химическими соединениями, то тара, изготовленная из полипропилена, также будет служить исправно и долго.

2. Высокая температура плавления. Учитывая, что этот показатель для полипропилена изотактического типа составляет 176 °С, его активное использование ограничено температурным диапазоном 120-140 °С.

Этого показателя будет достаточно, чтобы произвести температурную обработку изделий из полипропилена, например, кипячением. Это не только позволить производить очистку тары от загрязнений, но и обеззараживание, стерилизацию.

Помимо кипячения активно применяется обработка паром, который способен оказать большее воздействие, учитывая возможность использования его при более высокой температуре.

3. Возможность наделения направленными свойствами. Особенностью полипропилена является гибкость в наделении его определёнными свойствами с учётом последующего применения в различных областях. К примеру, такая разновидность полимера, как гомополимер, обладает повышенной жёсткостью.

Блок-сополимер характеризуется большой ударопрочностью. Это качество сохраняется и при отрицательных температурах.
Еще на стадии выпуска гранул полипропилен может получить как необходимую прозрачность, так и быть окрашен в самые разнообразные цвета.

Это позволяет ещё больше расширить сферу в производстве.

Конечно, приобретая готовый продукт из полипропилена, не каждый задумывается о свойствах материала. Однако то влияние, которое может оказывать тара, упаковка на произведенный конечный продукт, нельзя недооценить.

В некоторых случаях необходимо прибегнуть к заказу продукции из пропилена с индивидуальными свойствами. Поэтому следует представлять себе те широкие возможности, которые открывает перед вами использование полипропилена.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть