ФЕРМИЙ

Фермий

ФЕРМИЙ

фермийн тоног төхөөрөмж, фермий
Фермий/Fermium (Fm), 100

Атомная масса(молярная масса)

257,0951 а. е. м. (г/моль) Электронная конфигурация

5f12 7s2 Радиус атома

290 пм Химические свойства Электроотрицательность

1,3 (шкала Полинга) Электродный потенциал

Fm←Fm3+ −1,96 ВFm←Fm2+ −2,37 В Степени окисления

3 Энергия ионизации(первый электрон)

 627 кДж/моль (эВ) Термодинамические свойства простого вещества Температура плавления

1800 K
100 Фермий
Fm257,095
5f127s2

Фе́рмий (лат. Fermium) — радиоактивный трансурановый химический элемент с порядковым номером 100, относящийся к группе актиноидов.

  • 1 История
  • 2 Происхождение названия
  • 3 Получение
  • 4 Свойства
  • 5 Применение
  • 6 Биологическая роль
  • 7 Примечания
  • 8 Ссылки

История

Впервые фермий получен в конце 1952 года американцем А.

Гиорсо и другими учеными Лос-Аламосской лаборатории в виде изотопа 255Fm с периодом полураспада Т1/2 = 20,1 ч, который содержался в пыли после первого термоядерного взрыва, произведённого США на атолле Эниветок 1 ноября 1952 года.

Обнаруженный изотоп — продукт последовательного захвата 17 нейтронов ядрами 238U и восьми β−-распадов, превращающих нейтроны в протоны и увеличивающих атомный номер нуклида.

Происхождение названия

Назван по имени итало-американского физика Энрико Ферми.

Получение

Фермий получают в ходе облучения на циклотроне мишеней из тория, урана или плутония ионами неона, кислорода или углерода. Другим способом получения фермия является облучение в ядерном реакторе нейтронами смеси изотопов плутония, кюрия или калифорния. В наибольших количествах, около 109 атомов в год, получают изотоп 257Fm.

Свойства

Так как в весовых количествах фермий не был получен, основные исследования его свойств выполнены с использованием малых концентраций 257Fm (T1/2 = 100,5 дня) и менее устойчивого радионуклида 255Fm (T1/2 = 20,07 часа). Наиболее устойчив Fm+3 (валентность III), но под действием сильных восстановителей в водных растворах получают Fm+2. По химическим свойствам фермий во многом подобен другим трёхвалентным актиноидам.

Применение

Мишени из атомов Fm используются в ядерной физике для получения ядер более тяжёлых элементов.

Примечания

  1. Химическая энциклопедия / Под ред. Н.С. Зефирова. — М.: Большая российская энциклопедия, 1998. — Т. 5. — С. 84. — 783 с. — ISBN 5-85270-310-9.

Ссылки

  • Фермий на Webelements
  • Фермий в Популярной библиотеке химических элементов
Периодическая система химических элементов Д. И. Менделеева
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 H He
2 Li Be B C N O F Ne
3 Na Mg Al Si P S Cl Ar
4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
6 Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
7 Fr Ra Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
8 Uue Ubn Ubu Ubb Ubt Ubq Ubp Ubh
Щелочные металлы Щёлочноземельные металлы Лантаноиды Актиноиды Суперактиноиды Переходные металлы Другие металлы Полуметаллы Другие неметаллы Галогены Благородные газы Свойства неизвестны

фермий, фермийн, фермийн аж ахуй, фермийн ангилал, фермийн тоног төхөөрөмж, фермийн тооцоо

Фермий Информацию О

Фермий

Фермий
Фермий Вы просматриваете субъект
Фермий что, Фермий кто, Фермий описание

There are excerpts from wikipedia on this article and video

Наш сайт имеет систему в функции поисковой системы. Выше: «что вы искали?»вы можете запросить все в системе с коробкой. Добро пожаловать в нашу простую, стильную и быструю поисковую систему, которую мы подготовили, чтобы предоставить вам самую точную и актуальную информацию.

Поисковая система, разработанная для вас, доставляет вам самую актуальную и точную информацию с простым дизайном и системой быстрого функционирования. Вы можете найти почти любую информацию, которую вы ищете на нашем сайте.

На данный момент мы служим только на английском, турецком, русском, украинском, казахском и белорусском языках.
Очень скоро в систему будут добавлены новые языки.

Жизнь известных людей дает вам информацию, изображения и видео о сотнях тем, таких как политики, правительственные деятели, врачи, интернет-сайты, растения, технологические транспортные средства, автомобили и т. д.

Популярная библиотека химических элементов

ФЕРМИЙ

100
Fm 2 9 29 32 18 8 2
ФЕРМИЙ
[257]
5f127s2

Элемент №100 назван в честь одного из крупнейших физиков нашего столетия – Энрико Ферми.

Академик Бруно Понтекорво, ныне работающий в Дубне, а в молодости имевший счастье сотрудничать с Ферми, пишет в своих воспоминаниях: «Награждение Нобелевской премией считается признаком достижения вершин в науке.

Невольно спрашиваешь: если бы исследования Ферми публиковались различными авторами, скольких Нобелевских премий они могли быть удостоены? Мне кажется, что не менее шести, а именно: за статистику, теорию бета-распада, исследования по свойствам нейтронов, совокупность теоретических работ о структуре атомов и молекул, создание первого атомного реактора, работы по физике высоких энергий».

Напомним, что за работы в одной области науки (физике, химии, биологии и т.д.), согласно положению о Нобелевских премиях, один человек лишь один раз в жизни может быть удостоен этой награды*. Ферми стал лауреатом Нобелевской премии в 1938 г., в возрасте 37 лет, за исследования процессов с нейтронами. В ходе этих исследований в 1934 г.

Ферми первым высказал идею о возможности создания элементов с атомными номерами, большими, чем у урана, путем облучения ядер урана нейтронами. Присоединившись к ядру урана, один или несколько нейтронов делают его способным испустить одну или несколько бета-частиц. При этом заряд ядра увеличивается ровно на столько единиц, сколько было испущено бета-частиц.

А именно зарядом ядра определяется, как известно, порядковый номер элемента. Самому Ферми не удалось доказать, что в его опытах происходил синтез трансурановых элементов. Но предложенный им способ широко использовался для синтеза новых элементов и изотопов.

Элемент №100, носящий имя Ферми, впервые получен именно при многократном захвате нейтронов ураном-238 с последующей цепочкой бета-распадов.

Сделано лишь одно исключение из этого правила. Американский ученый Дж. Бардин дважды – в 1957 и 1972 гг. – входил в группы ученых, удостоенных Нобелевской премии по физике.

Кроме него дважды лауреатами (за работы в разных областях науки) стали Мария Склодовская-Кюри и Лайнус Полинг.
На момент издания книги (1977 г.) авторам не было известно о втором случае.

Английский биохимик Фредерик Сенгер был дважды удостоен Нобелевской премии по химии – в 1958 и 1980 гг. (Прим. редакции НиТ).

Элемент – понятие прежде всего химическое, но на нынешнем этапе все науки, даже гуманитарные, так или иначе используют достижения физики и математики. Особенно тесно физика и химия переплелись в открытии и исследовании свойств трансурановых элементов.

Поэтому совершенно справедливо, что имя Ферми, многократно увековеченное физиками в таких понятиях, как ферми (единица длины – 10–13 см; в таких единицах измеряются размеры ядер и элементарных частиц), фермион, уровень Ферми и т.д.

, заняло почетное место и в таблице Менделеева.

Открытие

Если большинство трансурановых элементов было открыто в результате тщательно спланированных экспериментов, то элемент №100 – фермий, так же как и предыдущий элемент – эйнштейний, был открыт совершенно неожиданно в продуктах термоядерного взрыва в ноябре 1952 г.

Три группы химиков и физиков из разных лабораторий США переработали сотни килограммов пород с места взрыва и выделили первые в мире сотни атомов 99-го и 100-го элементов. Некоторые ядра урана-238, входившего во взрывное устройство, захватили при взрыве по 17 нейтронов.

Образовавшийся нейтроноизбыточный изотоп уран-255, пройдя цепочку из восьми бета-распадов, превратился в фермий-255, который и был зарегистрирован по испускавшимся его ядрами альфа-частицам. Период полураспада фермия-255 – около 20 часов.

Методика выделения фермия и эйнштейния из продуктов термоядерного взрыва описана в статье об эйнштейнии, поэтому не станем повторяться. Напомним лишь, что в течение трех лет открытие новых элементов было засекречено, как и все связанное с созданием самого мощного за всю историю человечества оружия.

Еще до того, как данные по элементам №99 и 100 были рассекречены, эти элементы были получены и в мощном ядерном реакторе, работавшем в штате Айдахо в США.

Процессы, приводящие к образованию новых элементов в реакторе и термоядерном взрыве, в принципе одни и те же. Разница во времени.

Захват нейтронов при термоядерном взрыве происходит за миллионную долю секунды, в реакторе же насыщение исходного плутония нейтронами потребовало более двух лет.

Лишь в 1955 г. в журнале «Physical Review» в статье шестнадцати ученых, в том числе лауреата Нобелевской премии Г. Сиборга, были опубликованы результаты выполненных в 1952…1953 гг.

опытов по выделению 99-го и 100-го элементов. Авторы статьи предложили назвать эти элементы в честь Альберта Эйнштейна и Энрико Ферми, скончавшихся за несколько месяцев до публикации.

Предложенные названия были приняты.

Из более поздних публикаций стал известен и день рождения 100-го элемента – 16 января 1953 г., когда на ионообменной колонке были выделены его первые 200 атомов.

Радиоактивные свойства фермия

Синтезировано 15 изотопов фермия с массовыми числами от 244 до 258. Самый долгоживущий из них – фермий-257 с периодом полураспада 94 дня; он испускает альфа-частицы с энергией 6,5 МэВ.

А самый короткоживущий изотоп – фермий-258, испытывающий спонтанное деление с периодом полураспада 380 миллионных долей секунды. Спонтанное деление оказалось основным видом распада еще для двух изотопов элемента №100 – фермия-244 и фермия-256.

Напомним, что для изотопов урана вероятность спонтанного деления по отношению к вероятности альфа-распада составляет меньше 1:1 000000.

Пока наибольшее когда-либо полученное человеком «в один присест» количество фермия составляет 5 млрд атомов, т.е. около двух миллионных долей миллионной доли грамма. Это атомы изотопа фермий-257, выделенные из 10 кг породы с места взрыва термоядерного устройства под кодовым названием «Хатч» на подземном полигоне в штате Невада в июле 1969 г.

Весь этот фермий исследователи Радиационной лаборатории имени Лоуренса (город Беркли) поместили в кружок диаметром 2 мм на бериллиевой фольге толщиной 0,01 мм и облучили мощным потоком дейтронов. Нейтроны из дейтронов захватывались фермием-257, образуя фермий-258.

В ходе этих опытов и было установлено, что фермий-258 почти моментально распадается путем спонтанного деления. Стала очевидна причина, по которой в продуктах термоядерных взрывов не смогли найти изотопов тяжелее фермия-257.

После захвата нейтронов цепочка бета-распадов доходила до фермия-258, а тот вместо превращения в 101-й элемент распадался на осколки, «Тупиковый» изотоп перечеркнул надежды физиков открыть элементы второй сотни в термоядерных взрывах. И в нейтронных потоках ядерных реакторов – тоже.

Единственным реальным путем к новым, еще более далеким трансурановым элементам остался метод ядерных реакций с участием тяжелых ионов.

Рис. 9. Радиоактивные свойства изотопов фермия. Высота полоски соответствует периоду полураспада в логарифмическом масштабе. Двойная штриховка означает, что основной для этого изотопа вид распада – спонтанное деление, а одинарная – электронный захват. Не заштрихованы колонки альфа-активных изотопов

Между прочим, большинство известных сейчас изотопов фермия получено именно этим методом: при бомбардировке урана, плутония, калифорния ионами кислорода, углерода и альфа-частицами.

В частности, в опытах, выполненных при участии автора этой статьи в Дубне, в Лаборатории ядерных реакций, был впервые получен фермий-247.

Удалось установить, что этот альфа-активный изотоп существует в двух состояниях с периодами полураспада 35 и 9 секунд.

Химия фермия

По химическим свойствам фермий сходен с другими актиноидами. Его основное валентное состояние 3+. Лучше всего изучено поведение фермия в ионообменных колонках. Все опыты по химии фермия выполнены на невесомых и невидимых глазу количествах, обнаруживаемых лишь по радиоактивности.

Типичный для работы с ультрамалыми количествами веществ опыт по химии фермия был выполнен в 1971 г.

В нем участвовали сотрудники Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне и сотрудники Института физической химии АН СССР под руководством доктора химических наук Н.Б. Михеева.

Несколько десятков миллиграммов окиси-закиси урана-238 в течение пяти часов облучали на циклотроне ионами кислорода-18. Пучок ионов был настолько мощен (около 100 тыс.

миллиардов частиц в секунду), что, не будь непрерывной циркуляции воды через массивную медную подложку мишени, последняя расплавилась и испарилась бы в считанные минуты. Ядра кислорода, сталкиваясь с ядрами урана, в небольшой доле случаев полностью сливались с ними, сбрасывая избыточную энергию испусканием четырех нейтронов. В результате получался фермий-252, излучавший альфа-частицы с периодом полураспада 23 часа.

Прежде всего считанные атомы фермия надо было отделить от массы атомов урана. В боксе с толстыми стенками из стали и стекла облученный уран со всеми образовавшимися продуктами смывался с подложки азотной кислотой. При химических манипуляциях немногочисленные атомы фермия могли быть потеряны из-за адсорбции на стенках сосудов, осадках, коллоидных частицах.

Чтобы этого не произошло, в полученный раствор добавили редкоземельный элемент самарий, по химическим свойствам близкий к фермию. Умышленно создавали большую концентрацию самария, чтобы всякого рода центры адсорбции «насыщались» именно самарием. А при химических превращениях атомы самария играли роль носителя, увлекая за собой считанные атомы родственного фермия.

Далее в полученную смесь элементов добавляли плавиковую кислоту. Образующиеся при этом фториды актиноидов начиная с плутония и самарий выпадали в осадок, а уран оставался в растворе.

В ходе дальнейших химических процедур было установлено, что хлориды самария и фермия в водно-спиртовых растворах восстанавливаются магнием до двухвалентного состояния и фермий сокристаллизуется с самарием в кристаллах SmCl2. Это было первое в мире доказательство существования у фермия еще одной валентности – 2+.

Разделить самарий и фермий для дальнейших исследований помогли процессы экстракции и реэкстракции. В конечном счете на платиновом диске был осажден фермий с очень небольшим количеством примесей.

Стоит ли изучать?

Мы уже упоминали о самой большой из когда-либо полученных порции элементарного фермия. За три года, к июлю 1972 г., она уменьшилась более чем в 3 тыс. раз в результате радиоактивного распада. Очевидно, делать из фермия что-либо, рассчитанное даже на годичный срок службы, вряд ли целесообразно. Так зачем он вообще нужен?

Казалось бы, фермий – элемент бесполезный. Но, как мы уже знаем, определение радиоактивных свойств фермия-258 позволило сделать вывод о неперспективности термоядерных взрывов для синтеза новых элементов. Разве это не практический выход?

В науке вообще опасно отмахиваться от возможности глубокого изучения чего-либо, будь это объекты физические, биологические или какие-либо другие. Даже самые талантливые и самые прозорливые ученые не всегда могут предвидеть последствия той или иной работы, того пли иного открытия.

Известно, что всего за пять лет до пуска первого ядерного реактора Эрнест Резерфорд (сам Резерфорд!) в своей лекции заявил: «Перспектива получения полезной энергии при искусственных процессах превращения не выглядит обещающей». А изобретатель циклотрона Э. Лоуренс еще в 1938 г.

считал, что, «хотя мы знаем, что материя может быть превращена в энергию, мы ясно осознаем, что разрушение ядерного вещества для получения энергии не сулит больших перспектив, чем охлаждение океана и использование его тепла для производства полезной работы…

» Открытие фермия было необходимым шагом для науки, а даст ли практический выход дальнейшее изучение этого элемента, покажет будущее.

• Менделевий

• Оглавление

Фермий химический элемент

ФЕРМИЙ

Элемент № 100 фермий назван в честь одного из крупнейших физиков нашего столетия — Энрико Ферми. Академик Бруно Понтекорво, ныне работающий в Дубне, а в молодости имевший счастье сотрудничать с Ферми, пишет в своих воспоминаниях: «Награждение Нобелевской премией считается признаком достижения вершин в науке.

Невольно бы исследования Ферми публиковались различными авторами, скольких Нобелевских премий они могли быть удостоены? Мне кажется, что не менее шести, а именно: за статистику, теорию бета-распада, исследования по свойствам нейтронов, совокупность теоретических работ о структуре атомов и молекул, создание первого атомного реактора, работы по физике высоких энергий».

Напомним, что за работы в одной области науки (физике, химии, биологии и т. д.), согласно положению о Нобелевских премиях, один человек лишь один раз в жизни может быть удостоен этой награды. Ферми стал лауреатом Нобелевской премии в 1938 г., в возрасте 37 лет, за исследования процессов с нейтронами. В ходе этих исследований в 1934 г.

Ферми первым высказал идею о возможности создания элементов с атомными номерами, большими, чем у урана, путем облучения ядер урана нейтронами. Присоединившись к ядру урана, один или несколько нейтронов делают его способным испустить одну или несколько бета-частиц. При этом заряд ядра увеличивается ровно на столько единиц, сколько было испущено бета-частиц.

А именно зарядом ядра определяется, как известно, порядковый номер элемента. Самому Ферми не удалось доказать, что в его опытах происходил синтез трансурановых элементов. Но предложенный им способ широко использовался для синтеза новых элементов и изотопов.

Элемент № 100, носящий имя Ферми, впервые получен именно при многократном захвате нейтронов ураном-238 с последующей цепочкой бета-распадов.

Элемент — понятие прежде всего химическое, но на нынешнем этапе все науки, даже гуманитарные, так или иначе используют достижения физики и математики. Особенно тесно физика и химия переплелись в открытии и исследовании свойств трансурановых элементов.

Поэтому совершенно справедливо, что имя Ферми, многократно увековеченное физиками в таких понятиях, как ферми (единица длины — 10-13 см; в таких единицах измеряются размеры ядер и элементарных частиц), фермион, уровень Ферми и т. д.

, заняло почетное место и в таблице Менделеева.

Открытие фермия

Если большинство трансурановых элементов было открыто в результате тщательно спланированных экспериментов, то элемент № 100 — фермий, так же как и предыдущий элемент — эйнштейний, был открыт совершенно неожиданно в продуктах термоядерного взрыва в ноябре 1952 г.

Три группы химиков и физиков из разных лабораторий США переработали сотни килограммов пород с места взрыва и выделили первые в мире сотни атомов 99-го и 100-го элементов. Некоторые ядра урана-238, входившего во взрывное устройство, захватили при взрыве по 17 нейтронов.

Образовавшийся нейтроноизбыточный изотоп уран-255, пройдя цепочку из восьми бета-распадов, превратился в фермий-255, который и был зарегистрирован по испускавшимся его ядрами альфа-частицам. Период полураспада фермия-255 — около 20 часов.

Методика выделения фермия и эйнштейния из продуктов термоядерного взрыва описана в статье об эйнштейнии, поэтому не станем повторяться. Напомним лишь, что в течение трех лет открытие новых элементов было засекречено, как и все связанное с созданием самого мощного за всю историю человечества оружия.

Еще до того, как данные по элементам № 99 и 100 были рассекречены, эти элементы были получены и в мощном ядерном реакторе, работавшем в штате Айдахо в США.

Процессы, приводящие к образованию новых элементов в реакторе и термоядерном взрыве, в принципе одни и те же. Разница во времени.

Захват нейтронов при термоядерном взрыве происходит за миллионную долю секунды, в реакторе же насыщение исходного плутония нейтронами потребовало более двух лет.

Лишь в 1955 г. в журнале «Physical Review» в статье шестнадцати ученых, в том числе лауреата Нобелевской премии Г. Сиборга, были опубликованы результаты выполненных в 1952-1953 гг. опытов по выделению 99-го и 100-го элементов.

Авторы статьи предложили назвать эти элементы в честь Альберта Эйнштейна и Энрико Ферми, скончавшихся за несколько месяцев до публикации. Предложенные названия были приняты. Из более поздних публикаций стал известен и день рождения 100-го элемента — 16 января 1953 г.

, когда на ионообменной колонке были выделены его первые 200 атомов.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть