Стронций

Стронций – в каких продуктах содержится, суточная норма и дефицит, чем опасен элемент

Стронций

Стронций (лат. Strontium) представляет собой металл, которому в периодической таблице химических элементов присвоен атомный номер 38. В контексте данной статьи попробуем предоставить больше информации об этом металле для тех, кто интересуется составляющими стронция, какую важную роль играет элемент для человека, область его применения и не только.

По своей структуре данный элемент напоминает металл 2-й группы щелочноземельного происхождения. Само вещество имеет серебристо-белый оттенок (см. фото). Описываемый элемент очень мягкий и пластичный, который можно довольно легко разрезать с помощью кухонного ножа. Вещество очень активно, поэтому может легко воспламеняться в соприкосновении с воздухом.

Кроме этого, элемент может вступать в химическое взаимодействие с жидкостью. В природе данный элемент в чистом виде не встречался. Как правило, его обнаруживают в числе составляющих иных полезных ископаемых, в основном вместе с Ca.

Стронций используют в качестве составляющего для производства сигнальных огней и люминофоров, которые могут нанести серьезный вред здоровью в результате радиоактивного заражения.

Данный элемент обнаружили в конце 18 столетия в Шотландском городке Строншиан. По этой причине минерал и получил название «стронцианит». По прошествии 30 лет данную находку ученому из Англии сэру Х. Дэви удалось отделить от других минералов и получить элемент в самостоятельной форме.

Сегодня без оксида стронция не обходится металлургическое производство, пищевая промышленность и медицина. Благодаря интересной и своеобразной форме горения, при которой выделяются красные огоньки, описываемым элементом заинтересовалась пиротехническая индустрия еще в начале прошлого века.

Строение и свойства стронция

Многих интересует вопрос о том, каково строение стронция, и какими он обладает свойствами. В данном разделе остановимся на этой теме более подробно.

Описываемый химический элемент – это мягкий металл, который по своей структуре схож со свинцом. Если минерал разрезать, то будет видно, что место среза блестит подобно серебру.

Кроме этого, в атмосфере вещество за короткое время может вступить в реакцию с озоном, а также с атмосферными явлениями. В результате такого взаимодействия цвет элемента становится желтым.

По этой причине желательно держать химический элемент подальше от воздуха. Его можно хранить в герметично упакованной таре под слоем нефтепродукта, коим является керосин.

Стронций-90 является чистым бета-излучателем, период полураспада которого − 29 лет.

Составляющие данного химического элемента в таблице Менделеева:

НаименованиеОбозначениеНомер атомаГруппаМасса атомов (г/моль)Плотность (г/см³)Температура кипения и плавления (°С)
Стронций Sr 38 2 87,62 2,64 777

Описываемый щелочной металл в основном не вступает в реакцию с азотом при температуре меньше 380°С. При комнатном температурном режиме образуется лишь оксид стронция. В порошкообразном состоянии элемент способен беспричинно загореться, распадаясь на оксид и нитрид.

При повышенной температуре вещество может вступить в реакцию с азотом, серой, фосфором, водородом и другими элементами. Соли стронция (галогениды, нитраты, хлораты и ацетаты) имеют красноватый цвет и хорошо растворяются в водной среде. Исключение составляет фторид. Плохо растворимыми элементами являются фосфат, карбонад и оксалат.

Действие элемента и биологическое значение связывают с его токсичностью и радиоактивностью.

Хотя данная точка зрения может быть ошибочной, так как это вещество почти не наделено указанными характеристиками и его можно встретить в клетках и тканях живых организмов.

Элемент выполняет важные биологические функции, являясь спутником кальция. Вследствие указанных свойств элемента его стали применять в медицине.

Местом наибольшего накопления стронция в человеческом теле являются соединительные ткани.

Это случается из-за того, что описываемое вещество по химическому составу схоже с кальцием, который, как известно, является основой для формирования скелета.

Мышечная ткань содержит 1% от общей массы описываемого вещества в теле человека. Кроме этого, данный элемент может присутствовать в желчевыводящих путях и мочевых камнях с присутствием все того же кальция.

Тело человека впитывает описываемый элемент каким же образом, как и кальций. Оба вещества практически схожи по своему составу и поэтому стронций неспособен нанести существенный вред здоровью человека.

Исключение составляет лишь изотоп стронций 90, который является радиоактивным элементом.

Если радионуклид попадет внутрь организма, он может спровоцировать нарушения в костной ткани и различные заболевания, в числе которых − рак костей.

Описываемый устойчивый элемент играет очень важную роль в жизненных функциях фауны и флоры и постоянно в них присутствует. Вещество является постоянным попутчиком кальция, отчасти заменяя его собой. Некоторые разновидности морских организмов накапливают из морской воды описываемый элемент, который содержится в воде в количестве 0,13%.

Норма потребления в сутки

По результатам проведенных многочисленных исследований была определена норма потребления в сутки данного минерала. В этом разделе мы расскажем, какое количество макроэлемента в течение суток человеку достаточно принимать.

Суточная норма стронция такова: при среднем весе до 70 килограммов дневная порция препарата на основе стронция составляет приблизительно 320 миллиграммов.

Местом наибольшего накопления макроэлемента являются зубы и костная ткань. Избыток элемента может привести к нарушению целостности костей. Это сопровождается увеличением хрупкости костной ткани и стремительно разрушающимися зубами. В результате этого может пострадать кровеносная система и печень.

В мышечной ткани стронция содержится приблизительно 0,12-0,35%, а в системе кровотока – 0,031 мг/л.

Суточная норма потребления препаратов на основе стронция составляет от 3 до 5 миллиграммов элемента.

Показатель ПДК макроэлемента в воде составляет 8 мг/л, в атмосфере для оксида, гидроксида, а также нитрата стронция – 1 мг/м³. Дневная норма дигидрофосфата, сульфата, карбоната, фосфата – 6 мг/м³.

Стоит помнить о том, что человеческий организм за сутки может усвоить не боле 10% поступившего макроэлемента, в то время как получить он должен до 5 миллиграммов препарата.

Дефицит стронция

Точных сведений о дефиците стронция в человеческом организме пока нет. Ученые ставят опыты на животных и получают подтверждения, касающиеся влияния недостаточного количества остеотропа на органы. Недостаточное количество элемента может привести к отставанию в развитии, приостановке роста, порче зубов, а также кальфикации костной ткани.

Если человек проживает в радиоактивной зоне и у него возникает дефицит кальция, то организму ничего другого не остается, как скапливать радионуклид в костной ткани. В дальнейшем подобные «залежи» очень сложно вывести из человеческих органов. Например, 50% накопленного радионуклида можно освободить лишь через 200 дней.

Радиоактивный макроэлемент, скапливаемый в костях, может вызвать облучение костного мозга. В результате этого у человека могут возникнуть соответствующие недуги.

Природный остеотроп может довольно быстро скапливаться в организме ребенка, не достигшего 4-летнего возраста. Обстоятельство объясняется тем, что в этот период взросления малыша активно формируется костная ткань.

Чем опасно вещество для человека и какой наносит вред?

В данном разделе разберем подробнее вопрос, чем может быть опасно описываемое вещество для человека и какой вред оно способно нанести.

Стронций без дополнительных примесей обладает высокой как химической, так и физической активностью. Если металл размельчить до порошкообразного состояния, то элемент может легко воспламениться. По этой причине макроэлемент причисляют к пожароопасным веществам.

Избыток стронция приводит к возникновению заболевания, называемого в простонародье «уровская болезнь». В медицине данный недуг называют стронцевым рахитом или болезнью Кашина-Бека. Довольно длительное время доктора никак не могли понять, почему возникает данное эндемическое заболевание.

После ряда исследований было установлено, вследствие чего образуется недуг. Ионы данного макроэлемента, поступая в организм в огромном количестве, выталкивают из костной ткани довольно внушительную часть кальция. Данное обстоятельство приводит к нехватке этого элемента.

Из-за этого весь организм терпит такие неудобства, и ему ничего не остается, как развить дистрофические изменения в суставах и костях. Но это еще не все. Кроме этого, происходят изменения в фосфорно-кальциевом соотношении в кровеносной системе, образуется расстройство кишечника, а также заболевание легких.

Чтобы избавиться от избыточного количества макроэлемента в организме, необходимо воспользоваться пищевыми волокнами, магниевыми и кальциевыми соединениями, а также сульфатом бария и натрия.

Серьезный вред может также нанести упомянутый ранее радионуклид стронций 90. Скопления в костной ткани подобного элемента может не только поразить костный мозг, но и стать на пути выполнения организмом функции кровообращения. Более того, у человека может развиться лучевая болезнь, поражающая головной мозг и печень, что в разы увеличивает риск образования онкологии, в частности, рака крови.

Усугубить ситуацию может также и то, что у указанного радионуклида имеется очень длительный период полураспада, который составляет около 28,9 лет, что составляет среднестатистический период поколения людей.

По этой причине в зоне радиоактивного заражения территории необходимо ждать очень много лет, чтобы данная местность как следует деактивировалась.

Прямым тому доказательством являются последствия аварии на ЧАЭС, которые до сих пор приходится терпеть экологии и жителям, не покинувшим окрестности Чернобыля.

Но на этом неприятности не заканчиваются. Стронций 90 в результате попадания в грунт способен вытеснить кальций, а затем поразить растения и животных, которые будут питаться полученным в данной почве урожаем и пить зараженную воду.

Соответственно, двигаясь по пищевой цепи, этот радионуклид дойдет и к человеку, после чего последствия могут быть самыми печальными. Больше всего накапливаются данные элементы в корнеплодах и зеленой части растений и овощных культур.

Пораженные сельскохозяйственные насаждения и почва остаются непригодными около 100 лет.

В каких продуктах находится стронций?

Многих интересует вопрос о том, в каких продуктах может находиться стронций. Чтобы ответить на данный вопрос, осветим эту тему более подробно.

Описываемый макроэлемент находится в составе различных микроорганизмов, бактерий, растений, а также животных. В организм братьев наших меньших металл может попасть вместе с едой и водой, впрочем, как и в человеческие органы. При таком способе поступления тело человека способно усваивать элемент всего на 5%-10%.

Наибольшее количество стронция находится в продуктах растительного происхождения, таких как рожь, пшеница, ячмень, капуста, редис, лук, петрушка, редька, укроп, томаты, свекла, а также в хрящах и костях. В последних соединительных тканях данный элемент скапливается довольно часто.

Чтобы организм как можно лучше усваивал стронций, необходимо принимать витамин D, аминокислоты, лактозу, лизин и аргинин. Кроме того. в рационе должна обязательно присутствовать клетчатка, сульфат бария и натрия, которые помогают снизить всасывание стронция системой пищеварения.

В каких еще продуктах содержится данный элемент:

  • бобовых культурах (горох, бобы, фасоль);
  • зерновых (пшеница, пшено, греча, овес);
  • твердых сортах (рожь и дикий рис);
  • растениях, образующих клубни, и корнеплодах (картошка, репа, свекла, морковь);
  • фруктах (айва, абрикос, виноград, ананас, киви, груша);
  • морской капусте;
  • орехах (арахис, фундук, фисташки, кешью);
  • мясных продуктах.

Относительно воды можно сказать следующее. На территории России разрешенное количество описываемого элемента уже превысило в 2 раза допустимую норму.

Лечение препаратами на основе стронция

На основе стронция фармацевтическая промышленность изготавливает различные препараты, благодаря которым можно вылечить некоторые заболевания.

На основании активного изотопа 89Sr, который является составляющим медикамента Metastron, можно лечить боли в костной ткани, вызванные раком предстательной железы. Данный макроэлемент оказывает такое же действие, как и кальций.

Другой препарат, который называется изотоп 90Sr, используют с целью оказания терапевтического лечения при раковых заболеваниях. Его компоненты в виде бета-излучения в совокупности с длительным периодом полураспада наилучшим образом подходят для общей лучевой терапии.

Новейший препарат Stronium ranelate, который изготовлен на экспериментальной основе, получили за счет соединения стронция и ранелиновой кислоты.

В результате получился препарат, который может способствовать росту костной ткани, комфортному ее срастанию после полученных переломов и травм. Данное медикаментозное средство зарегистрировано в Европе как препарат для лечения заболевания костной ткани.

Без хлорида стронция не обходится большое количество зубных паст, в которые добавляют данный элемент. Количество вещества в пасте составляет приблизительно 10%.

Не глядя на то, что данный макроэлемент весьма токсичен, его все-таки назначают доктора и существуют показания к его применению. Как это ни странно звучит, но и радиоактивному изотопу нашлось применение в сфере медицины. Небольшое количество излучения, которое выделяет препарат, способно оказать терапевтическое воздействие на различные опухоли, эрозии на кожном покрове и слизистой.

Помимо этого, спектр влияния стронция на человека очень обширен. С его помощью можно лечить нефрит, эпилепсию и многие другие заболевания.

Стронций в организме человека

Стронций

Стронций (Sr) — химический элемент, занимающий в Периодической системе Д.И. Менделеева 38-е место. В простом виде при нормальных условиях представляет собой щелочноземельный серебристо-белый металл, очень пластичный, мягкий и ковкий (легко режется ножом). На воздухе очень быстро окисляется кислородом и влагой, покрываясь окисью желтого цвета. Химически очень активен.

Стронций был открыт ы 1787 году двумя химиками У. Крюйкшенком и А. Кроуфордом, впервые в чистом виде выделен Х. Дэви в 1808 году. Свое название получил благодаря шотландской деревне Строншиан, где в 1764 году был обнаружен не известный ранее минерал, также в честь деревни названный стронциатом.

Из-за высокой химической активности в чистом виде в природе стронций не встречается.

В природе довольно распространен, входит в состав около 40 минералов, из которых самыми распространенными являются целестин (сульфат стронция) и стронцианит (карбонат стронция).

Именно из этих минералов стронций добывают в промышленных масштабах. Самые крупные месторождения стронциевых руд обнаружены в США (Аризона и Калифорния), России и некоторых других странах.

Стронций и его соединения нашли широкое применение в радиоэлектронной промышленности, металлургии, пищевой промышленности и пиротехнике.

Стронцию очень часто в минералах сопутствует кальцию и он является довольно распространенным химическим элементом. Его массовая доля в земной коре около 0,014%, концентрация в морской воде около 8 мг/л.

Роль стронция в организме человека

Очень часто, когда говорят о влиянии стронция на организм человека, имеют негативный подтекст. Это весьма распространенное заблуждение связано с тем, что его радиоактивный изотоп 90Sr действительно крайне опасен для здоровья.

Он образуется при ядерных реакциях в реакторах и во время ядерных взрывов, а при попадании в организм человека откладывается в костном мозге и очень часто приводит к весьма трагическим последствиям, поскольку буквально блокирует кроветворение.

Но обычный, нерадиоактивный, стронций в разумных дозах не только не опасен, а просто необходим человеческому организму. Стронций даже применяется в лечении остеопороза.

Вообще, стронций обнаруживается почти во всех живых организмах, как в растениях, так и в животных. Он является аналогом кальция и может легко его замещать в костной ткани без особых последствий для здоровья.

Кстати, именно это химическое свойство стронция делает крайне опасным его упомянутый радиоактивный изотоп. Почти весь (99%) стронций откладывается в костной ткани, и менее 1% стронция задерживается в остальных тканях организма.

Концентрация стронция в крови составляет около 0,02 мкг/мл, в лимфатических узлах 0,30 мкг/г, легких 0,2 мкг/г, яичниках 0,14 мкг/г, почках и печени 0,10 мкг/г.

У маленьких детей (в возрасте до 4-х лет) стронций накапливается в организме, поскольку в этот период активно формируется костная ткань. В организме взрослого человека содержится около 300-400 мг стронция, что довольно много по сравнению с другими микроэлементами.

Стронций предотвращает развитие остеопороза и кариеса зубов.

Синергистом и одновременно антагонистом стронция является кальций, который по своим химическим свойствам весьма близок к нему.

Источники стронция в организме человека

Точно суточная потребность человека в стронции не установлена, по некоторым из имеющихся сведений она составляет до 3-4 мг. Подсчитано, что в среднем в сутки человек с пищей потребляет 0,8-3,0 мг стронция.

Поступающий с пищей стронций усваивается только на 5-10%. Его всасывание происходит преимущественно в двенадцатиперстной и подвздошной кишках. Выводится стронций в основном через почки, значительно в меньшей степени с желчью. В кале обнаруживается только неабсорбированный стронций.

Улучшает усвоение стронция витамин D, лактоза, аминокислоты аргинин и лизин. В свою очередь растительный рацион с высоким содержанием клетчатки, а также сульфаты натрия и бария, уменьшают абсорбцию стронция в пищеварительном тракте.

Продукты питания, содержащие стронций:

  • бобовые культуры (бобы, горох, фасоль, соя);
  • зерновые (греча, овес, пшено, пшеница мягких и твердых сортов, дикий рис, рожь);
  • растения, образующие клубни, а также корнеплоды (картофель, свекла, репа, морковь, имбирь);
  • фрукты (абрикос, айва, ананас, виноград, груша, киви);
  • зелень (сельдерей, укроп, руккола);
  • морская капуста (ламинария);
  • орехи (арахис, бразильский орех, кешью, макадамия, фисташки, фундук);
  • мясные продукты, в особенности кости и хрящи.

Нехватка стронция в организме человека

Сведения о дефиците стронция в организме человека в специальной литературе отсутствуют. Проведенные на животных эксперименты показывают, что недостаток стронция приводит к отсталости в развитии, угнетению роста, разрушению зубов (кариес), кальцификации костей и зубов.

Избыток стронция в организме человека

При избытке стронция может развиться заболевание, которое в народе называется как «уровская болезнь», а на медицинском языке — «стронциевый рахит» или болезнь Кашина-Бека.

Данное заболевание впервые было выявлено среди населения, которое проживало в бассейне р. Урал и в Восточной Сибири. Житель г. Нерченска И.М.

Юренский в 1849 году в журнале «Труды вольного экономического общества» написал статью «Об уродливости жителей берегов Урова в Восточной Сибири».

Долгое время лекари не могли объяснить природу этого эндемического заболевания. Проведенные позже исследования объяснили природу данного феномена.

Оказалось, что это заболевание возникает из-за того, что ионы стронция при поступлении в организм в избыточном количестве вытесняют из костей существенную долю кальция, что приводит к дефициту последнего.

В результате страдает весь организм, но наиболее типичным проявлением данного заболевания оказывается развитие дистрофических изменений костей и суставов, в особенности в период интенсивного роста (у детей). Помимо этого нарушается фосфорно-кальциевое соотношение в крови, развивается дисбактериоз кишечника, фиброз легких.

Чтобы вывести избыток стронция из организма, используют пищевые волокна, соединения магния и кальция, сульфаты натрия и бария.

Однако особую опасность представляет упоминавшийся выше радиоактивный стронций-90. Накапливаясь в костях он не только поражает костный мозг, препятствуя выполнению организмом кроветворной функции, но и вызывает лучевую болезнь, поражает мозг и печень, в тысячи раз увеличивает риск развития онкологических заболеваний, в особенности рака крови.

Усугубляет ситуацию еще то обстоятельство, что стронций-90 имеет среднедлительный период полураспада (28,9 лет) — как раз средняя продолжительность генерации людей.

Поэтому при радиоактивном заражении местности ждать его быстрой дезактивации не приходится, но в то же время его радиоактивность очень высока.

Другие радиоактивные элементы распадаются либо очень быстро, например многие изотопы йода имеют период полураспада, исчисляемый часами и сутками, либо очень медленно, поэтому имеют низкую лучевую активность. Ни того, ни другого не сказать о стронции-90.

Стронций № 38 химический элемент

Стронций

Еще задолго до открытия стронция его нерасшифрованные соединения применяли в пиротехнике для получения красных огней. И до середины 40-х годов прошлого века стронций был прежде всего металлом фейерверков, потех и салютов. Атомный век заставил взглянуть на него по-иному.

Во-первых, как на серьезную угрозу всему живому на Земле; во-вторых, как на материал, могущий быть очень полезным при решении серьезных проблем медицины и техники.

Но об этом позже, а начнем с истории «потешного» металла, с истории, в которой встречаются имена многих больших ученых.

Четырежды открытая «земля»

В 1764 г. в свинцовом руднике близ шотландской деревни Стронциан был найден минерал, который назвали стронцианитом. Долгое время его считали разновидностью флюорита CaF2 или витерита BaCO3, но в 1790 г. английские минералоги Кроуфорд и Крюикшенк проанализировали этот минерал и установили, что в нем содержится новая «земля», а говоря нынешним языком, окисел.

Независимо от них тот же минерал изучал другой английский химик — Хоп. Придя к таким же результатам, он объявил, что в стронцианите есть новый элемент — металл стронций.

Видимо, открытие уже «витало в воздухе», потому что почти одновременно сообщил об обнаружении новой «земли» и видный немецкий химик Клапрот.

В те же годы на следы «стронциановой земли» натолкнулся и известный русский химик — академик Товий Егорович Ловиц. Его издавна интересовал минерал, известный под названием тяжелого шпата. В этом минерале (его состав BaSO4) Карл Шееле открыл в 1774 г. окись нового элемента бария.

Не знаем, отчего Ловиц был неравнодушен именно к тяжелому шпату; известно только, что ученый, открывший адсорбционные свойства угля и сделавший еще много в области общей и органической химии, коллекционировал образцы этого минерала. Но Ловиц не был просто собирателем, вскоре он начал систематически исследовать тяжелый шпат и в 1792 г.

пришел к выводу, что в этом минерале содержится неизвестная примесь. Он сумел извлечь из своей коллекции довольно много — больше 100 г новой «земли» и продолжал исследовать ее свойства. Результаты исследования были опубликованы в 1795 г. Ловиц писал тогда: «Я был приятно поражен, когда прочел…

прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление. Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей. Мне оставалось только проверить.

замечательное свойство стронциановой земли — окрашивать спиртовое пламя в карминовокрасный цвет, и, действительно, моя соль. обладала в полной мере этим свойством».

Так почти одновременно несколько исследователей в разных странах вплотную подошли к открытию стронция. Но в элементном виде его выделили лишь в 1808 г.

Выдающийся ученый своего времени Хэмфри Дэви понимал уже, что элемент стронциановой земли должен быть, по-видимому, щелочноземельным металлом, и получил его электролизом, т. е. тем же способом, что и кальций, магний, барий.

Л если говорить конкретнее, то первый в мире металлический стронций был получен при электролизе его увлажненной гидроокиси. Выделявшийся на катоде стронций мгновенно соединялся с ртутью, образуя амальгаму.

Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Металл этот белого цвета, не тяжелый (плотность 2,6 г/см3), довольно мягкий, плавящийся при 770°C. По химическим свойствам он типичный представитель семейства щелочноземельных металлов. Сходство с кальцием, магнием, барием настолько велико, что в монографиях и учебниках индивидуальные свойства стронция, как правило, не рассматриваются — их разбирают на примере кальция или магния.

И в области практических применений эти металлы не раз заступали дорогу стронцию, потому что они более доступны и дешевы. Так произошло, например, в сахарном производстве.

Когда-то один химик обнаружил, что с помощью дисахарата стронция (C12H22O4*2SrO), нерастворимого в воде, можно выделять сахар из мелассы. Внимание к стронцию сразу же возросло, получать его стали больше, особенно в Германии и Англии.

Но скоро другой химик нашел, что аналогичный сахарат кальция тоже нерастворим. И интерес к стронцию тут же пропал. Выгоднее ведь использовать дешевый, чаще встречающийся кальций.

Это не значит, конечно, что стронций совсем «потерял свое лицо». Есть качества, которые отличают и выделяют его среди других щелочноземельных металлов. О них-то мы и расскажем подробнее.

Стронций металл красных огней

Так называл стронций академик А. Е. Ферсман. Действительно, стоит бросить в пламя щепотку одной из летучих солей стронция, как пламя тотчас окрасится в яркий карминово-красный цвет. В спектре пламени появятся линии стронция.

Попробуем разобраться в сущности этого простейшего опыта. На пяти электронных оболочках атома стронция 38 электронов. Заполнены целиком три ближайшие к ядру оболочки, а на двух последних есть «вакансии».

В пламени горелки электроны термически возбуждаются и, приобретая более высокую энергию, переходят с нижних энергетических уровней на верхние. Но такое возбужденное состояние неустойчиво, и электроны возвращаются на более выгодные нижние уровни, выделяя при этом энергию в виде световых квантов.

Атом (или ион) стронция излучает преимущественно кванты с такими частотами, которые соответствуют длине красных и оранжевых световых волн. Отсюда карминово-красный цвет пламени.

Это свойство летучих солей стронция сделало их незаменимыми компонентами различных пиротехнических составов. Красные фигуры фейерверков, красные огни сигнальных и осветительных ракет — «дело рук» стронция.

Чаще всего в пиротехнике используют нитрат Sr(NO3)2, оксалат SrC2O4 и карбонат SrCO3 стронция. Нитрату стронция отдают предпочтение: он не только окрашивает пламя, но и одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород:

Sr(NO3)2  → SrO + N2 + 2,502

Окись стронция SrO окрашивает пламя лишь в розовый цвет. Поэтому в пиротехнические составы вводят хлор в том или ином виде (обычно в виде хлорорганических соединений), чтобы его избыток сдвинул равновесие реакции вправо:

2SrO + CI2   →   2SrCl + O2.

Излучение монохлорида стронция SrCl интенсивнее и ярче излучения SrO. Кроме этих компонентов, в пиротехнические составы входят органические и неорганические горючие вещества, назначение которых — давать большое неокрашенное пламя.

Рецептов красных огней довольно много. Приведем для примера два из них. Первый: Sr(NO3)2 — 30%, Mg — 40%, смолы — 5%,

гексахлорбензола — 5%, перхлората калия KClO4 — 20%. Второй: хлората калия KClO3 — 60%, SrC2O4 — 25%, смолы — 15%. Такие составы приготовить несложно, но следует помнить, что любые, даже самые проверенные, пиротехнические составы требуют «обращения на вы». Самодеятельная пиротехника опасна…

Стронций, глазурь и эмаль

Первые глазури появились чуть ли не на заре гончарного производства. Известно, что еще в IV тысячелетии до н.э. ими покрывали изделия из глины.

Заметили, что если покрыть гончарные изделия взвесью тонкоизмельченных песка, поташа и мела в воде, а затем высушить их и отжечь в печи, то грубый глиняный порошок покроется тонкой пленкой стекловидного вещества и станет гладким, блестящим.

Стекловидное покрытие закрывает поры и делает сосуд непроницаемым для воздуха и влаги. Это стекловидное вещество и есть глазурь. Позже изделия из глины стали сначала покрывать красками, а затем глазурью. Оказалось, что глазурь довольно долго не дает краскам тускнеть и блекнуть.

Еще позже глазури пришли в фаянсовое и фарфоровое производство. В наши дни глазурью покрывают керамику и металл, фарфор и фаянс, различные строительные изделия.

Какова же здесь роль стронция?

Чтобы ответить на этот вопрос, придется еще раз обратиться к истории. Основу глазурей составляют различные окислы. Издавна известны щелочные (поташные) и свинцовые глазури.

Основу первых составляют окислы кремния, щелочных металлов (К и Na) и кальция. Во вторых присутствует еще и окись свинца. Позже стали широко использовать глазури, содержащие бор.

Добавки свинца и бора придают глазурям зеркальный блеск, лучше сохраняют подглазурные краски. Однако соединения свинца ядовиты, а бор дефицитен.

В 1920 г. американец Хилл впервые применил матовую глазурь, в состав который входили окислы стронция (система Sr-Ca-Zn).

Однако этот факт остался незамеченным, и только в годы второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. И хлынула лавина исследований: в разных странах появились десятки (!) рецептур стронциевых глазурей.

Предпринимались попытки и здесь заменить стронций кальцием, но кальциевые глазури оказались неконкуренто способными.

Стронциевые глазури не только безвредны, но и доступны (карбонат стронция SrCO3 в 3,5 раза дешевле свинцового сурика). Все положительные качества свинцовых глазурей свойственны и им. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе окислов кремния и стронция готовят также эмали — непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин.

Основа технологии «кракле» — разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280-1300°C, затем температуру снижают до 150-220°C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку).

Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800-850°C — соли плавятся в трещинах и герметизируют их. Глазурь «кракле» популярна и широко распространена во многих странах мира. Произведения декоративно-прикладного искусства, выполненные в этой манере, ценят любители.

Остается добавить, что использование стронциевых безборных глазурей дает большой экономический эффект.

Стронций радиоактивный

Еще одна особенность стронция, резко выделяющая его среди щелочноземельных металлов, — существование радиоактивного изотопа стронция-90, который волнует биофизиков, физиологов, радиобиологов, биохимиков и просто химиков уже давно.

В результате цепной ядерной реакции из атомов плутония и урана образуются около 200 радиоактивных изотопов. Большинство из них короткоживущие. Но в тех же процессах рождаются и ядра стронция-90, период полураспада которого 27,7 года.

Стронций-90 — чистый бета-излучатель. Это значит, что он испускает потоки энергичных электронов, которые действуют на все живое на сравнительно небольших расстояниях, но очень активно.

Стронций как аналог кальция активно участвует в обмене веществ и вместе с кальцием откладывается в костной ткани.

Стронций-90, а также образующийся при его распаде дочерний изотоп иттрий-90 (с периодом полураспада 64 часа, излучает бета-частицы) поражают костную ткань и, самое главное, особо чувствительный к действию радиации костный мозг. Под действием облучения в живом веществе происходят химические изменения.

Нарушаются нормальная структура и функции клеток. Это приводит к серьезным нарушениям обмена веществ в тканях. А в итоге развитие смертельно опасных болезней — рака крови (лейкемия) и костей. Кроме того, излучение действует на молекулы ДНК и, следовательно, влияет на наследственность. Влияет пагубно.

стронция-90 в человеческом организме находится в прямой зависимости от общей мощности взорванного атомного оружия. Он попадает в организм при вдыхании радиоактивной пыли, образующейся в процессе взрыва и разносимой ветром на большие расстояния. Другим источником заражения служат питьевая вода, растительная и молочная пища.

Но и в том и в другом случаях природа ставит естественные препоны на пути стронция-90 в организм. В тончайшие структуры дыхательных органов могут попасть лишь частицы величиной до 5 мкм, а таких частиц при взрыве образуется немного. Во-вторых, стронций при взрыве выделяется в виде окиси SrO, растворимость которой в жидкостях организма весьма ограничена.

Проникновению стронция через пищевую систему препятствует фактор, который называют «дискриминацией стронция в пользу кальция». Он выражается в том, что при одновременном присутствии кальция и стронция организм предпочитает кальций. Соотношение Ca : Sr в растениях вдвое больше, чем в почвах.

Далее, в молоке и сыре содержание стронция в 5-10 раз меньше, чем в траве, идущей на корм скоту.

Однако целиком полагаться на эти благоприятные факторы не приходится — они способны лишь в какой-то степени предохранить от стронция-90.

Не случайно до тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от стронция росло из года в год.

Но те же страшные свойства стронция-90 — и мощную ионизацию, и большой период полураспада — удалось обратить на благо человека.

Радиоактивный стронций нашел применение в качестве изотопного индикатора при исследовании кинетики различных процессов. Именно этим методом в опытах с животными установили, как ведет себя стронций в живом организме: где преимущественно он локализуется, каким образом участвует в обмене веществ и так далее. Тот же изотоп применяют в качестве источника излучения при лучевой терапии.

Аппликаторами со стронцием-90 пользуются при лечении глазных и кожных болезней. Препараты стронция-90 применяют также в дефектоскопах, в устройствах для борьбы со статическим электричеством, в некоторых исследовательских приборах, в атомных батареях. Нет открытий принципиально вредных — все дело в том, в чьих руках окажется открытие. История радиоактивного стронция — тому подтверждение.

Химический элемент стронций — описание, свойства и формула

Стронций

Стронций (Sr) – химический элемент, щелочноземельный металл 2-й группы периодической таблицы. Используется в красных сигнальных огнях и люминофорах, представляет основную угрозу здоровью при радиоактивном заражении.

История открытия

Минерал из свинцового рудника близ деревни Стронтиан в Шотландии. Первоначально он был распознан, как разновидность карбоната бария, но Адэр Кроуфорд и Уильям Крюйкшэнк в 1789 году предположили, что это другое вещество.

Химик Томас Чарльз Хоуп назвал новый минерал стронтитом по имени деревни, а соответствующий оксид стронция SrO – стронцией. Металл был выделен в 1808 г.

сэром Хэмфри Дэви, который подверг электролизу смесь влажного гидроксида или хлорида с оксидом ртути, используя ртутный катод, а затем из полученной амальгамы испарил ртуть. Новый элемент он назвал, воспользовавшись корнем слова «стронция».

Нахождение в природе

Относительная распространенность стронция, тридцать восьмого элемента таблицы Менделеева, в космосе оценивается, как 18,9 атомов на каждые 106 атомов кремния. Он составляет около 0,04% массы земной коры. Средняя концентрация элемента в морской воде равна 8 мг/л.

Химический элемент стронций широко встречается в природе, и, по оценкам специалистов, является 15-м наиболее распространенным веществом на Земле, достигая концентрации 360 частей на миллион. Учитывая его экстремальную реактивность, существует только в форме соединений.

Его главными минералами являются целестин (сульфат SrSO4) и стронцианит (карбонат SrCO3). Из них в достаточных для рентабельной добычи количествах встречается целестит, более 2/3 мирового предложения которого поступает из Китая, а Испания и Мексика поставляют большую часть остатка.

Однако выгоднее добывать стронцианит, потому что стронций чаще используется в карбонатной форме, но известных его месторождений относительно мало.

Стронций является мягким металлом, подобным свинцу, который в месте разреза блестит как серебро. На воздухе он быстро вступает в реакцию с кислородом и присутствующей в атмосфере влагой, приобретая желтоватый оттенок.

Поэтому хранить его нужно в изоляции от воздушных масс. Чаще всего его хранят в керосине. В свободном состоянии в природе не встречается.

Сопутствуя кальцию, стронций входит в состав только 2 основных руд: целестина (SrSO4) и стронцианита (SrCO3).

В ряду химических элементов магний–кальций–стронций (щелочноземельных металлов) Sr находится в группе 2 (бывшей 2А) периодической таблицы между Ca и Ba. Кроме того, он расположен в 5-м периоде между рубидием и иттрием.

Поскольку атомный радиус стронция аналогичен радиусу кальция, он легко заменяет последний в минералах. Но он мягче и более реактивный в воде. При контакте с ней образует гидроксид и газообразный водород.

Известны 3 аллотропа стронция с точками перехода 235°C и 540°C.

Щелочноземельный металл обычно не реагирует с азотом ниже 380°С и при комнатной температуре образует только оксид. Однако в виде порошка стронций самопроизвольно воспламеняется с образованием оксида и нитрида.

Характеристика химического элемента стронция по плану:

  • Название, символ, атомный номер: стронций, Sr, 38.
  • Группа, период, блок: 2, 5, s.
  • Атомная масса: 87,62 г/моль.
  • Электронная конфигурация: [Kr]5s2.
  • Распределение электронов по оболочкам: 2, 8, 18, 8, 2.
  • Плотность: 2,64 г/см3.
  • Температуры плавления и кипения: 777 °C, 1382°C.
  • Степень окисления: 2.

Изотопы

Естественный стронций представляет собой смесь 4-х стабильных изотопов: 88Sr (82,6%), 86Sr (9,9%), 87Sr (7,0%) и 84Sr (0,56%). Из них только 87Sr является радиогенным – он образуется при распаде радиоактивного изотопа рубидия 87Rb с периодом полураспада 4,88 × 1010 лет.

Считается, что 87Sr продуцировался во время «первичного нуклеосинтеза» (ранней стадии Большого взрыва) наряду с изотопами 84Sr, 86Sr и 88Sr. В зависимости от местоположения, соотношение 87Sr и 86Sr могут отличаться более чем в 5 раз.

Это используется в датировании геологических проб и в определении происхождения скелетов и глиняных артефактов.

В результате ядерных реакций были получены около 16 синтетических радиоактивных изотопов стронция, из которых наиболее долговечным является 90Sr (период полураспада 28,9 года).

Этот изотоп, образующийся при ядерном взрыве, считается наиболее опасным продуктом распада.

Из-за его химического сходства с кальцием он усваивается в костях и зубах, где продолжает выталкивать электроны, вызывая радиационное поражение, повреждая костный мозг, нарушая процесс образования новых клеток крови и вызывая рак.

Однако в контролируемых медиками условиях стронций используется для лечения некоторых поверхностных злокачественных новообразований и рака костной ткани.

Он также применяется в форме фторида стронция в химических источниках тока и в радиоизотопных термоэлектрических генераторах, в которых тепло его радиоактивного распада преобразуется в электричество, служащих долгоживущими, легкими источниками энергии в навигационных буях, удаленных метеостанциях и космических аппаратах.

89Sr используется для лечения рака, поскольку атакует костные ткани, производит бета-облучение и через несколько месяцев распадается (период полураспада 51 день).

Химический элемент стронций не является необходимым для высших форм жизни, его соли обычно нетоксичны. То, что делает 90Sr опасным, используется для увеличения плотности костей и их роста.

Соединения

Свойства химического элемента стронция очень похожи на свойства кальция. В соединениях Sr имеет исключительное состояние окисления +2 в виде иона Sr2+. Металл является активным восстановителем и легко реагирует с галогенами, кислородом и серой с получением галогенидов, окиси и сульфида.

Соединения стронция имеют довольно ограниченную коммерческую ценность, поскольку соответствующие соединения кальция и бария, как правило, выполняют то же, но более дешевы. Однако некоторые из них нашли применение в промышленности.

Пока еще не придумали, с помощью каких веществ добиться малинового цвета в фейерверках и сигнальных огнях. В настоящее время с целью получения этого цвета используются лишь соли стронция, такие как нитрат Sr(NO3)2 и хлорат Sr(ClO3)2 .

Около 5-10% всего производства данного химического элемента потребляет пиротехника. Гидроксид стронция Sr(OH)2 иногда используется для извлечения сахара из мелассы, потому что он образует растворимый сахарид, из которого сахар может быть легко регенерирован под действием двуокиси углерода.

Моносульфид SrS применяется как депилятор и ингредиент в люминофорах электролюминесцентных устройств и светящихся красок.

Ферриты стронция образуют семейство соединений с общей формулой SrFeхOу, получаемых в результате высокотемпературной (1000-1300 °C) реакции SrCO3 и Fe2O3. Из них изготавливают керамические магниты, которые находят широкое применение в динамиках, двигателях автомобильных стеклоочистителей и детских игрушках.

Производство

Большая часть минерализованного целестина SrSO4 превращается в карбонат двумя способами: либо целестин непосредственно выщелачивается раствором карбоната натрия, либо нагревается с углем, образуя сульфид.

На второй стадии получается вещество темного цвета, содержащее, в основном, сульфид стронция. Эта «черная зола» растворяется в воде и фильтруется. Карбонат стронция осаждается из раствора сульфида путем введения диоксида углерода.

Сульфат восстанавливается до сульфида путем карботермического восстановления SrSO4 + 2C → SrS + 2CO2.

Элемент может быть получен методом катодного электрохимического контакта, в котором охлажденный железный стержень, действующий как катод, касается поверхности смеси хлоридов калия и стронция, и поднимается, когда стронций затвердевает на нем. Реакции на электродах могут быть представлены следующим образом: Sr2+ + 2e- → Sr (катод); 2Cl- → Cl2 + 2e- (анод).

Металлический Sr также можно восстановить из его оксида алюминием. Он ковкий и пластичный, хороший проводник электричества, но используется относительно мало.

Одно из его применений – легирующий агент для алюминия или магния при литье блоков цилиндров. Стронций улучшает обрабатываемость и устойчивость к ползучести металла.

Альтернативным способом получения стронция является восстановление его оксида с алюминием в вакууме при температуре перегонки.

Химический элемент стронций широко используется в стекле электронно-лучевых трубок цветных телевизоров для предотвращения проникновения рентгеновского излучения.

Также он может входить в состав аэрозольных красок. Это, по-видимому, является одним из наиболее вероятных источников воздействия стронция на население.

Кроме того, элемент используется для производства ферритовых магнитов и очистки цинка.

Соли стронция применяются в пиротехнике, поскольку при сгорании окрашивают пламя в красный свет. А сплав солей стронция с магнием применяется в составе зажигательных и сигнальных смесей.

Титанат обладает чрезвычайно высоким показателем преломления и оптической дисперсией, что делает его полезным в оптике. Он может использоваться, как замена бриллиантов, но редко используется с этой целью из-за крайней мягкости и уязвимости к царапинам.

Алюминат стронция является ярким люминофором с длительной устойчивостью фосфоресценции. Оксид иногда применяется для улучшения качества керамических глазурей. Изотоп 90Sr является одним из лучших долгоживущих высокоэнергетических бета-излучателей.

Он используется в качестве источника питания для радиоизотопных термоэлектрических генераторов (РИТЭГ), преобразующих в электричество тепло, выделяемое при распаде радиоактивных элементов. Эти устройства применяются в космических аппаратах, удаленных метеостанциях, навигационных буях и т. д.

– там, где требуется легкий и долгоживущий ядерно-электрический источник энергии.

Медицинское использование стронция: характеристика свойств, лечение препаратами

Изотоп 89Sr является активным ингредиентом радиоактивного препарата Metastron, применяемого для лечения болей в костях, вызванных метастатическим раком предстательной железы. Химический элемент стронций действует, как кальций, преимущественно включается в кость в местах с повышенным остеогенезом. Эта локализация фокусирует радиационное воздействие на раковое поражение.

Радиоизотоп 90Sr также используется в терапии рака. Его бета-излучение и длительный период полураспада идеально подходят для поверхностной лучевой терапии.

Экспериментальный препарат, полученный путем объединения стронция с ранелиновой кислотой, способствует росту кости, увеличению плотности костной ткани и уменьшению переломов. Stronium ranelate зарегистрирован в Европе, как средство лечения остеопороза.

Хлорид стронция иногда используется в зубных пастах для чувствительных зубов. Его содержание достигает 10%.

Меры предосторожности

У чистого стронция высокая химическая активность, а в измельченном состоянии металл спонтанно загорается. Поэтому этот химический элемент считается пожароопасным.

Воздействие на организм человека

Человеческое тело поглощает стронций так же, как кальций. Эти два элемента химически настолько похожи, что устойчивые формы Sr не представляют значительную угрозу для здоровья.

В отличии от этого, радиоактивный изотоп 90Sr может привести к различным костным нарушениям и заболеваниям, в том числе к раку костной ткани.

Для измерения излучения поглощенного 90Sr используется стронциевая единица.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть