Валентность элемента
Определяем валентность химических элементов
Уровень знаний о строении атомов и молекул в XIX веке не позволял объяснить причину, по которой атомы образуют определенное число связей с другими частицами. Но идеи ученых опередили свое время, а валентность до сих пор изучается как один из основных принципов химии.
Из истории возникновения понятия «валентность химических элементов»
Выдающийся английский химик XIX века Эдвард Франкленд ввел термин «связь» в научный обиход для описания процесса взаимодействия атомов друг с другом. Ученый заметил, что некоторые химические элементы образуют соединения с одним и тем же количеством других атомов. Например, азот присоединяет три атома водорода в молекуле аммиака.
В мае 1852 года Франкленд выдвинул гипотезу о том, что существует конкретное число химических связей, которые атом может образовывать с другими мельчайшими частицами вещества.
Франкленд использовал фразу «соединительная сила» для описания того, что позже будет названо валентностью. Британский химик установил, сколько химических связей формируют атомы отдельных элементов, известных в середине XIX столетия.
Работа Франкленда стала важным вкладом в современную структурную химию.
Развитие взглядов
Немецкий химик Ф.А. Кекуле доказал в 1857 году, что углерод является четырехосновным. В его простейшем соединении — метане — возникают связи с 4 атомами водорода. Термин «основность» ученый применял для обозначения свойства элементов присоединять строго определенное количество других частиц. В России данные о строении вещества систематизировал А.
М. Бутлеров (1861). Дальнейшее развитие теория химической связи получила благодаря учению о периодическом изменении свойств элементов. Его автор — другой выдающийся русский химик, Д. И. Менделеев. Он доказал, что валентность химических элементов в соединениях и другие свойства обусловлены тем положением, которое они занимают в периодической системе.
Графическое изображение валентности и химической связи
Возможность наглядного изображения молекул — одно из несомненных достоинств теории валентности. Первые модели появились в 1860-х, а с 1864 года используются структурные формулы, представляющие собой окружности с химическим знаком внутри.
Между символами атомов черточкой обозначается химическая связь, а количество этих линий равно значению валентности. В те же годы были изготовлены первые шаростержневые модели (см. фото слева).
В 1866 году Кекуле предложил стереохимический рисунок атома углерода в форме тетраэдра, который он и включил в свой учебник «Органическая химия».Валентность химических элементов и возникновение связей изучал Г. Льюис, опубликовавший свои труды в 1923 году после открытия электрона. Так называются отрицательно заряженные мельчайшие частицы, которые входят в состав оболочек атомов. В своей книге Льюис применил точки вокруг четырех сторон символа химического элемента для отображения валентных электронов.
Валентность по водороду и кислороду
До создания периодической системы валентность химических элементов в соединениях принято было сравнивать с теми атомами, для которых она известна. В качестве эталонов были выбраны водород и кислород. Другой химический элемент притягивал либо замещал определенное количество атомов H и O.
Таким способом определяли свойства в соединениях с одновалентным водородом (валентность второго элемента обозначена римской цифрой):
- HCl — хлор (I):
- H2O — кислород (II);
- NH3 — азот (III);
- CH4 — углерод (IV).
В оксидах K2O, CO, N2O3, SiO2, SO3 определяли валентность по кислороду металлов и неметаллов, удвоив число присоединяемых атомов O. Получали следующие значения: K (I), C (II), N (III), Si (IV), S (VI).
Как определять валентность химических элементов
Существуют закономерности образования химической связи с участием общих электронных пар:
- Типичная валентность водорода — I.
- Обычная валентность кислорода — II.
- Для элементов-неметаллов низшую валентность можно определить по формуле 8 — № группы, в которой они находятся в периодической системе. Высшая, если она возможна, определяется по номеру группы.
- Для элементов побочных подгрупп максимально возможная валентность такая же, как номер их группы в периодической таблице.
Определение валентности химических элементов по формуле соединения проводится с использованием следующего алгоритма:
- Запишите сверху над химическим знаком известное значение для одного из элементов. Например, в Mn2O7 валентность кислорода равна II.
- Вычислите суммарную величину, для чего необходимо умножить валентность на количество атомов того же химического элемента в молекуле: 2*7 = 14.
- Определите валентность второго элемента, для которого она неизвестна. Разделите полученную в п. 2 величину на количество атомов Mn в молекуле.
- 14 : 2 = 7. Валентность марганца в его высшем оксиде — VII.
Постоянная и переменная валентность
Значения валентности по водороду и кислороду различаются. Например, сера в соединении H2S двухвалентна, а в формуле SO3 — шестивалентна. Углерод образует с кислородом монооксид CO и диоксид CO2. В первом соединении валентность C равна II, а во втором — IV. Такое же значение в метане CH4.
Большинство элементов проявляет не постоянную, а переменную валентность, например, фосфор, азот, сера. Поиски основных причин этого явления привели к возникновению теорий химическй связи, представлений о валентной оболочке электронов, молекулярных орбиталях. Существование разных значений одного и того же свойства получило объяснение с позиций строения атомов и молекул.
Современные представления о валентности
Все атомы состоят из положительного ядра, окруженного отрицательно заряженными электронами. Наружная оболочка, которую они образуют, бывает недостроенной. Завершенная структура наиболее устойчива, она содержит 8 электронов (октет). Возникновение химической связи благодаря общим электронным парам приводит к энергетически выгодному состоянию атомов.
Правилом для формирования соединений является завершение оболочки путем приема электронов либо отдачи неспаренных — в зависимости от того, какой процесс легче проходит. Если атом предоставляет для образования химической связи отрицательные частицы, не имеющие пары, то связей он образует столько, сколько у него неспаренных электронов.
По современным представлениям, валентность атомов химических элементов — это способность к образованию определенного числа ковалентных связей. Например, в молекуле сероводорода H2S сера приобретает валентность II (–), поскольку каждый атом принимает участие в образовании двух электронных пар. Знак «–» указывает на притяжение электронной пары к более электроотрицательному элементу.
У менее электроотрицательного к значению валентности дописывают «+».
При донорно-акцепторном механизме в процессе принимают участие электронные пары одного элемента и свободные валентные орбитали другого.
Рассмотрим на примере углерода и кислорода, как зависит от строения вещества валентность химических элементов. Таблица Менделеева дает представление об основных характеристиках атома углерода:
- химический знак — C;
- номер элемента — 6;
- заряд ядра — +6;
- протонов в ядре — 6;
- электронов — 6, в том числе 4 внешних, из которых 2 образуют пару, 2 — неспаренных.
Если атом углерода в моноооксиде CO образует две связи, то в его пользование поступает только 6 отрицательных частиц. Для приобретения октета необходимо, чтобы пары образовали 4 внешние отрицательные частицы. Углерод имеет валентность IV (+) в диоксиде и IV (–) в метане.
Порядковый номер кислорода — 8, валентная оболочка состоит из шести электронов, 2 из них не образуют пары и принимают участие в химической связи и взаимодействии с другими атомами. Типичная валентность кислорода — II (–).
Валентность и степень окисления
В очень многих случаях удобнее использовать понятие «степень окисления». Так называют заряд атома, который он приобрел бы, если бы все связывающие электроны перешли к элементу, который имеет выше значение электрооотрицательности (ЭО).
Окислительное число в простом веществе равно нулю. К степени окисления более ЭО элемента добавляется знак «–», менее электроотрицательного — «+». Например, для металлов главных подгрупп типичны степени окисления и заряды ионов, равные номеру группы со знаком «+».
В большинстве случаев валентность и степень окисления атомов в одном и том же соединении численно совпадают. Только при взаимодействии с более электроотрицательными атомами степень окисления положительная, с элементами, у которых ЭО ниже, — отрицательная.
Понятие «валентность» зачастую применяется только к веществам молекулярного строения.Как определить валентность элемента?
Существует несколько определений понятия «валентность». Чаще всего этим термином называют способность атомов одного элемента присоединять определённое число атомов других элементов. Часто у тех, кто только начинает изучать химию, возникает вопрос: Как определить валентность элемента?. Сделать это несложно, зная несколько правил.
Валентности постоянные и переменные
Рассмотрим соединения HF, H2S и CaH2. В каждом из этих примеров один атом водорода присоединяет к себе только один атом другого химического элемента, значит его валентность равна одному. Значение валентности записывают над символом химического элемента римскими цифрами.
В приведённом примере атом фтора связан только с одним одновалентным атомом H, значит валентность его тоже равна 1. Атом серы в H2S присоединяет к себе уже два атома H, поэтому она в данном соединении двухвалентна. С двумя водородными атомами связан и кальций в его гидриде CaH2, а значит, и его валентность равна двум.
Кислород в подавляющем большинстве своих соединений двухвалентен, то есть образует две химические связи с другими атомами.
Атом серы в первом случае присоединяет к себе два кислородных атома, то есть всего образует 4 химические связи (один кислород образует две связи, значит сера — два раза по 2), то есть валентность ее равна 4.
В соединении SO3 сера присоединяет уже три атома O, поэтому и валентность ее равна 6 (три раза образует по две связи с каждым атомом кислорода). Атом кальция же присоединяет только один атом кислорода, образуя с ним две связи, значит, его валентность такая же, как и у O, то есть равна 2.
Обратите внимание на то, что атом H одновалентен в любом соединении. Всегда (кроме иона гидроксония H3O(+)) равна 2 валентность кислорода. По две химические связи как с водородом, так и с кислородом образует кальций. Это элементы с постоянной валентностью. Кроме уже указанных, постоянную валентность имеют:
- Li, Na, K, F — одновалентны;
- Be, Mg, Ca, Zn, Cd — обладают валентностью, равной II;
- B, Al и Ga — трехвалентны.
Атом серы, в отличие от рассмотренных случаев, в соединении с водородом имеет валентность, равную II, а с кислородом может быть и четырех- и шестивалентна. Про атомы таких элементов говорят, что они имеют переменную валентность. При этом максимальное ее значение в большинстве случаев совпадает с номером группы, в которой находится элемент в Периодической системе (правило 1).
Из этого правила есть много исключений. Так, элемент 1 группы медь, проявляет валентности и I, и II. Железо, кобальт, никель, азот, фтор, напротив, имеют максимальную валентность, меньшую, чем номер группы. Так, для Fe, Co, Ni это II и III, для N — IV, а для фтора — I.
Минимальное значение валентности всегда соответствует разнице между числом 8 и номером группы (правило 2).Однозначно определить, какова же валентность элементов, у которых она переменная, можно только по формуле определенного вещества.
Определение валентности в бинарном соединении
Рассмотрим, как определить валентность элемента в бинарном (из двух элементов) соединении. Здесь возможны два варианта: в соединении валентность атомов одного элемента известна точно или же обе частицы с переменной валентностью.
Случай первый:
- Fe2O3 — валентность кислорода постоянна и равна II. Три атома О имеют 2 × 3 = 6 единиц валентности.
- Далее работаем по правилу: суммарное число единиц валентности для атомов одного элемента совпадает с числом единиц валентности для атомов другого вида (правило 3).
- Согласно этому правилу, общее число единиц валентности для железа тоже равно 6.
- Разделим общее число валентных единиц на количество атомов железа, то есть на 2, и получим валентность железа, равную III.
Случай второй:
- SnCI4 — оба атома с переменной валентностью. Применяем ещё одно правило: в бинарном соединении элемент, стоящий на втором месте, имеет минимальную валентность. В соединениях металлов с неметаллами на втором месте записывают неметалл. В формуле вещества, состоящего только из неметаллов, на втором месте пишут символ того элемента, который в ПСХЭ находится правее или выше.
- В приведённом примере Sn (олово) — металл, CI — неметалл, соответственно он и будет иметь минимальную валентность. Её определим, исходя из правила 2: 8 — 7 = 1
- Далее определим суммарное число единиц валентности у хлора: 4 × 1= 4
- Воспользуемся правилом 3. Суммарное количество валентных единиц олова тоже будет равно 4. Все они приходятся на один атом Sn, значит, это и есть его валентность.
Определение валентности по формуле трехэлементной частицы
Далеко не все химические вещества состоят из двухатомных молекул. Как определить валентность элемента в трёхэлементной частице? Рассмотрим этот вопрос на примере формул двух соединения K2Cr2O7.
- Cr здесь называют центральным атомом. Необходимо помнить, что все остальные атомы связаны с ним через кислородные мостики. Исходя из этого, и будем производить вычисления.
- Кислород — элемент с постоянной валентностью, равной двум. Калий всегда одновалентен.
- Всего атомы O образуют 7 × 2 = 14 единиц валентности, а атомы калия 1 × 2 = 2.
- Из 14 валентных единиц атом серы два расходует на присоединение калия, следовательно, на хром их остаётся 14 — 2 = 12.
- Это число единиц валентности приходится на 2 атома Cr, значит, на один атом приходится 12÷2=6.
Если же вместо калия в формуле будет присутствовать железо, или другой элемент с переменной валентностью, нам потребуется знать, какова же валентность кислотного остатка. Например, нужно вычислить валентности атомов всех элементов в соединении с формулой FeSO4.
- Атом кислорода двухвалентен, всего на кислород приходится II × 4 = 8 единиц валентности.
- Валентность кислотного остатка SO4 равна II (как ее определить, написано в статье «Формулы кислот»).
- По правилу 3 валентность железа в этом случае тоже равна II.
- Центральный атом здесь S. Кислород присоединяет один атом железа, расходуя на него две валентные единицы, следовательно, на серу их остаётся 8 — 2 = 6 единиц валентности. Так как в формуле FeSO4 один атом серы, то это и есть ее валентность.
Следует отметить, что термин «валентность» чаще использую в органической химии. При составлении формул неорганических соединений чаще используют понятие «степень окисления».
Как определять валентность химических элементов? | We are students — Мы студенты!
Как определять валентность химических элементов? С этим вопросом сталкивается каждый, кто только начинает знакомиться с химией. Сначала выясним, что же это такое. Валентность можно рассматривать как свойство атомов одного элемента удерживать определенное количество атомов другого элемента.
Элементы с постоянной и переменной валентностью
Например, из формулы Н-О-Н видно, что каждый атом Н соединен только с одним атомом (в данном случае с кислородом). Отсюда следует, что его валентность равна 1. Атом О в молекуле воды связан с двумя одновалентными атомами Н, значит он двухвалентен. Значения валентностей записывают римскими цифрами над символами элементов:
Валентности водорода и кислорода постоянны. Впрочем, для кислорода существуют и исключения. Например, в ионе гидроксония Н3О+ кислород трехвалентен. Существуют и другие элементы с постоянной валентностью.
- Li, Na, K, F – одновалентны;
- Be, Mg, Ca, Sr, Ba, Cd, Zn – обладают валентностью, равной II;
- Al, B – трехвалентны.
Теперь определим валентность серы в соединениях H2S, SO2 и SO3.
В первом случае один атом серы связан с двумя одновалентными атомами Н, значит его валентность равна двум.
Во втором примере на один атом серы приходится два атома кислорода, который, как известно, двухвалентен. Получаем валентность серы, равную IV.
В третьем случае один атом S присоединяет три атома О, значит, валентность серы равна VI (валентность атомов одного элемента помноженная на их количество).
Как видим, сера может быть двух-, четырёх- и шестивалентной:
Про такие элементы говорят, что они обладают переменной валентностью.
Правила определения валентностей
- Максимальная валентность для атомов данного элемента совпадает с номером группы, в которой он находится в Периодической системе. Например, для Са это 2, для серы – 6, для хлора – 7.
Исключений из этого правила тоже немало:-элемент 6 группы, О, имеет валентность II (в H3O+ – III);-одновалентен F (вместо 7);-двух- и трехвалентно обычно железо, элемент VIII группы;-N может удержать возле себя только 4 атома, а не 5, как следует из номера группы;
-одно- и двухвалентна медь, расположенная в I группе.
- Минимальное значение валентности для элементов, у которых она переменная, определяется по формуле: № группы в ПС – 8. Так, низшая валентность серы 8 – 6 = 2, фтора и других галогенов – (8 – 7) = 1, азота и фосфора – (8 – 5)= 3 и так далее.
- В соединении сумма единиц валентности атомов одного элемента должна соответствовать суммарной валентности другого.
- В молекуле воды Н-О-Н валентность Н равна I, таких атомов 2, значит, всего единиц валентности у водорода 2 (1×2=2). Такое же значение имеет и валентность кислорода.
- В соединении, состоящем из атомов двух видов, элемент, расположенный на втором месте, обладает низшей валентностью.
- Валентность кислотного остатка совпадает с количеством атомов Н в формуле кислоты, валентность группы OH равна I.
- В соединении, образованном атомами трех элементов, тот атом, который находится в середине формулы, называют центральным. Непосредственно с ним связаны атомы О, а с кислородом образуют связи остальные атомы.
Используем эти правила для выполнения заданий:
- Определим валентности Cr и О в веществе, формула которого Cr2O3.Точно известно, что кислород двухвалентен. Всего он образует 2×3=6 единиц валентности.По правилу 3 два атома хрома образуют столько же валентных связей, что и кислород, то есть 6.Разделим полученное значение на количество атомов хрома: 6÷2=3.
- Рассмотрим, как определить валентность элементов в соединении CS2.Здесь и S, и C обладают переменной валентностью. По правилу 4 валентность серы будет 8 – 6 = 2 (элемент, расположенный на втором месте, имеет низшую валентность). Теперь умножим полученное значение на индекс 2 (количество ат. S), получим: 2×2=4. Разделим результат на количество атомов С: 4÷1=4. Это и будет его валентность.
- Определим валентность серы в сульфате натрия – Na2SO4.Здесь вспоминаем правило 6. Сера – центральный атом, непосредственно с ней соединяется кислород, а уже с ним – атомы Na. Валентность О равна II, всего таких атомов 4, вместе они образуют 8 единиц валентности. Na одновалентен. Из 8 единиц валентности кислород с натрием образует 2, остальные валентные единицы приходятся на серу: 8 – 2= 6.
Теперь вы знаете, как определять валентность химических элементов в разных случаях.
Валентность – видео
правила, формулы, элементы
Валентность. Определение валентности. Элементы с постоянной валентностью
Валентность — это способность атома данного элемента образовывать определенное количество химических связей.
Образно говоря, валентность — это число «рук», которыми атом цепляется за другие атомы. Естественно, никаких «рук» у атомов нет; их роль играют т. н. валентные электроны.
Можно сказать иначе: валентность — это способность атома данного элемента присоединять определенное число других атомов.
Необходимо четко усвоить следующие принципы:
Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство)
Элементы с постоянной валентностью необходимо запомнить:
Элементы | Постоянная валентность |
щелочные металлы (Li, Na, K, Rb , Cs, Fr) | I |
металлы II группы, главной подгруппы (Be, Mg, Ca, Sr, Ba, Ra) | II |
алюминий (Al) | III |
кислород (О) | II |
фтор (F) | I |
Остальные элементы могут проявлять разную валентность.
Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент
Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.
Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.
Важно запомнить несколько исключений: максимальная (и единственная) валентность фтора равна I (а не VII), кислорода — II (а не VI), азота — IV (способность азота проявлять валентность V — популярный миф, который встречается даже в некоторых школьных учебниках).
Валентность и степень окисления — это не тождественные понятия
Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность — нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.
Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого
Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента.
В соединении AxBy: валентность (А) • x = валентность (В) • y
Пример 1. Найти валентности всех элементов в соединении NH3.
Решение. Валентность водорода нам известна — она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 • 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).
Пример 2. Найти валентности всех элементов в молекуле Cl2O5.
Решение. У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 • 2 = 2 • Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).
Пример 3. Найти валентность хлора в молекуле SCl2, если известно, что валентность серы равна II.
Решение. Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl — элементы с переменной валентностью. С учетом дополнительной информации, решение строится по схеме примеров 1 и 2. Ответ: Cl(I).
В примерах 1 — 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.
Пример 4. Составьте формулу соединения кальция с водородом.
Решение. Валентности кальция и водорода известны — II и I соответственно. Пусть формула искомого соединения — CaxHy. Вновь составляем известное уравнение: 2 • x = 1 • у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH2.
«А почему именно CaH2? — спросите вы. — Ведь варианты Ca2H4 и Ca4H8 и даже Ca10H20 не противоречат нашему правилу!»
Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.«Значит, соединения типа N2O4 или C6H6 невозможны? — спросите вы. — Следует заменить эти формулы на NO2 и CH?»
Нет, возможны. Более того, N2O4 и NO2 — это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С6Н6).
Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.
Пример 5. Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.
Решение. Пусть формула соединения — SxFy. Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 • x = 1 • y. Несложно понять, что наименьшие возможные значения переменных — это 1 и 6. Ответ: SF6.
Вот, собственно, и все основные моменты.
А теперь проверьте себя! Предлагаю пройти небольшой тест по теме «Валентность».
Хотите узнать, почему «классическое» определение валентности часто не «работает»? Почему валентность железа в FeO не равна двум? Почему для описания комплексных веществ используется понятие «координационное число»?
Смотрите продолжение этой статьи →
Валентность. Определение валентности. — Ида Тен
До сих пор вы пользовались химическими формулами веществ, приведенными в учебнике, или теми, которые вам называл учитель. Как же правильно составлять химические формулы?
Химические формулы веществ составляются на основе знания качественного и количественного состава вещества. Веществ существует гигантское количество, естественно запомнить все формулы невозможно.
Это и не нужно! Важно знать определенную закономерность, согласно которой атомы способны соединяться друг с другом с образованием новых химических соединений. Такая способность называется валентностью.
Валентность – свойство атомов элементов присоединять определенное число атомов других элементов
Рассмотрим модели молекул некоторых веществ, таких, как вода, метан и углекислый газ.
Видно, что в молекуле воды атом кислорода присоединяет два атома водорода. Следовательно, его валентность равна двум. В молекуле метана атом углерода присоединяет четыре атома водорода, его валентность в данном веществе равна четырем.
Валентность водорода в обоих случаях равна одному. Такую же валентность углерод проявляет и в углекислом газе, но в отличие от метана, атом углерода присоединяет два атома кислорода, так как валентность кислорода равна двум.
Существуют элементы, валентность которых не меняется в соединениях. О таких элементах говорят, что они обладают постоянной валентностью. Если же валентность элемента может быть различной – это элементы с переменной валентностью. Валентность некоторых химических элементов приведена в таблице 2. Валентность принято обозначать римскими числами.
Таблица 2. Валентность некоторых химических элементов
Символ элемента | Валентность | Символ элемента | Валентность |
H, Li, Na, K, F, Ag | I | C, Si, Sn, Pb | II, IV |
Be, Mg, Ca, Ba, Zn, O | II | N | I, II, III, IV |
Al, B | III | P, As, Sb | III, V |
S | II, IV, VI | Cl | I, II,III, IV,V, VII |
Br, I | I, III, V | Ti | II, III, IV |
Стоит отметить, что высшая валентность элемента численно совпадает с порядковым номером группы Периодической Системы, в которой он находится. Например, углерод находиться в IV группе, его высшая валентность равна IV.
Исключение составляют три элемента:
- азот – находится в V группе, но его высшая валентность IV;
- кислород – находится в VI группе, но его высшая валентность II;
- фтор – находится в VII группе, но его высшая валентность – I.
Исходя из того, что все элементы расположены в восьми группах Периодической Системы, валентность может принимать значения от I до VIII.
Составление формул веществ при помощи валентности
Для составления формул веществ при помощи валентности воспользуемся определенным алгоритмом:
Алгоритм | Пример |
Записать химические формулы элементов | |
Вверху, над символами элементов записать значение их валентности. Для элементов с переменной валентностью конкретная валентность указана в условии | |
Найти наименьшее общее кратное (НОК) значений валентности, записать его вверху | |
Поделить НОК на значения валентностей элементов – это индексы, выражающие число атомов | 10:V=2(P)10:II=5(O)P2O5 |
Определение валентности по формуле вещества
Чтобы определить валентность элементов по формуле вещества, необходим обратный порядок действий. Рассмотрим его также при помощи алгоритма:
Алгоритм | Пример |
Записать формулу вещества | |
Указать известную валентность элемента (для элементов с постоянной валентностью) | |
Найти наименьшее общее кратное (НОК) валентности и индекса элемента | |
Поделить значение НОК на индекс элемента, валентность которого неизвестна |
При изучении данного параграфа были рассмотрены сложные вещества, в состав которых входят только два вида атомов химических элементов. Формулы более сложных веществ составляются иначе.
Бинарные соединения – соединения, в состав которых входит два вида атомов элементов
Для определения порядка последовательности соединения атомов используют структурные (графические) формулы веществ. В таких формулах валентности элементов обозначают валентными штрихами (черточками). Например, молекулу воды можно изобразить как
Н─О─Н
Графическая формула изображает только порядок соединения атомов, но не структуру молекул. В пространстве такие молекулы могут выглядеть иначе. Так, молекула воды имеет угловую структурную формулу:
- Валентность – способность атомов элементов присоединять определенное число атомов других химических элементов
- Существуют элементы с постоянной и переменной валентностью
- Высшая валентность химического элемента совпадает с его номером группы в Периодической Системе химических элементов Д.И. Менделеева. Исключения: азот, кислород, фтор
- Бинарные соединения – соединения, в состав которых входит два вида атомов химических элементов
- Графические формулы отражают порядок связей атомов в молекуле при помощи валентных штрихов
- Структурная формула отражает реальную форму молекулы в пространстве
Как определить валентность по таблице Менделеева и как она изменяется
Различные химические элементы отличаются по своей способности создавать химические связи, то есть соединяться с другими атомами. Поэтому в сложных веществах они могут находиться только в определенных соотношениях. Разберемся, как определить валентность по таблице Менделеева.
Что такое валентность?
Существует такое определение валентности: это способность атома к образованию определенного числа химических связей. В отличие от степени окисления, эта величина всегда только положительная и обозначается римскими цифрами.
В качестве единицы используется эта характеристика для водорода, которая принята равной I. Это свойство показывает, с каким числом одновалентных атомов может соединиться данный элемент. Для кислорода эта величина всегда равна II.
Знать эту характеристику необходимо, чтобы верно записывать химические формулы веществ и уравнения реакций. Знание этой величины поможет установить соотношение между числом атомов различных типов в молекуле.
Данное понятие возникло в химии в XIX веке. Начало теории, объясняющей соединение атомов в различных соотношениях, положил Франкленд, но его идеи о «связывающей силе» не были очень распространены. Решающая роль в развитии теории принадлежала Кекуле.
Он называл свойство образовывать некоторое количество связей основностью. Кекуле считал, что это фундаментальное и неизменное свойство каждого вида атомов. Важные дополнения к теории сделал Бутлеров. С развитием этой теории стало возможным наглядно изображать молекулы.Это очень помогло в изучении строения различных веществ.
Чем поможет периодическая таблица?
Находить валентность можно, посмотрев на номер группы в короткопериодном варианте. Для большинства элементов, у которых эта характеристика постоянная (принимает только одно значение), она совпадает с номером группы.
Такие свойства имеют металлы главных подгрупп. Почему? Номер группы соответствует числу электронов на внешней оболочке. Эти электроны называются валентными. Именно они отвечают за возможность соединяться с другими атомами.
Группу составляют элементы с похожим устройством электронной оболочки, а сверху вниз возрастает заряд ядра. В короткопериодной форме каждая группа делится на главную и побочную подгруппы. Представители главных подгрупп — это s и p-элементы, представители побочных подгрупп имеют электроны на d и f-орбиталях.
Как определить валентность химических элементов, если она меняется? Она может совпадать с номером группы или равняться номеру группы минус восемь, а также принимать другие значения.
Важно! Чем выше и правее элемент, тем его свойство образовывать взаимосвязи меньше. Чем он более смещен вниз и влево, тем она больше.
То, как изменяется валентность в таблице Менделеева для конкретного вида атома, зависит от структуры его электронной оболочки. Сера, например, может быть двух-, четырех- и шестивалентной.
В основном (невозбужденном) состоянии у серы два неспаренных электрона находятся на подуровне 3р. В таком состоянии она может соединиться с двумя атомами водорода и образовать сероводород. Если сера перейдет в более возбужденное состояние, то один электрон перейдет на свободный 3d-подуровень, и неспаренных электронов станет 4.
Сера станет четырехвалентной. Если сообщить ей еще больше энергии, то еще один электрон перейдет с подуровня 3s на 3d. Сера перейдет в еще более возбужденное состояние и станет шестивалентной.
Постоянная и переменная
Иногда способность к образованию химических связей может меняться. Она зависит от того, в какое соединение входит элемент. Например, сера в составе H2S двухвалентна, в составе SO2 — четырехвалентна, а в SO3 — шестивалентна.
Наибольшее из этих значений называется высшим, а наименьшая — низшим. Высшую и низшую валентности по таблице Менделеева можно установить так: высшая совпадает с номером группы, а низшая равняется 8 минус номер группы.
Как определить валентность химических элементов и то, изменяется ли она? Нужно установить, имеем мы дело с металлом или неметаллом. Если это металл, нужно установить, относится он к главной или побочной подгруппе.
- У металлов главных подгрупп способность к образованию химических взаимосвязей постоянная.
- У металлов побочных подгрупп — переменная.
- У неметаллов — также переменная. В большинстве случаев она принимает два значения — высшее и низшее, но иногда может быть и большее число вариантов. Примеры — сера, хлор, бром, йод, хром и другие.
! Что такое алканы: строение и химические свойства
В соединениях низшую валентность проявляет тот элемент, который находится выше и правее в периодической таблице, соответственно, высшую — тот, который левее и ниже.
Часто способность образовывать химические связи принимает больше двух значений. Тогда по таблице узнать их не получится, а нужно будет выучить. Примеры таких веществ:
- углерод;
- сера;
- хлор;
- бром.
Как определить валентность элемента в формуле соединения? Если она известна для других составляющих вещества, это несложно. Например, требуется рассчитать это свойство для хлора в NaCl. Натрий — элемент главной подгруппы первой группы, поэтому он одновалентен. Следовательно, хлор в этом веществе тоже может создать только одну связь и тоже одновалентен.
Важно! Однако так не всегда можно узнать это свойство для всех атомов в сложном веществе. Для примера возьмем HClO4. Зная свойства водорода, можно только установить, что ClO4 — одновалентный остаток.
Как еще узнать эту величину?
Способность образовывать определенное количество связей не всегда совпадает с номером группы, и в некоторых случаях ее придется просто заучить.
Здесь на помощь придет таблица валентности химических элементов, где приведены значения этой величины.
В учебнике химии за 8 класс приведены значения способности соединяться с другими атомами наиболее распространенных видов атомов.
Н, F, Li, Na, K | 1 |
O, Mg, Ca, Ba, Sr, Zn | 2 |
B, Al | 3 |
C, Si | 4 |
Cu | 1, 2 |
Fe | 2, 3 |
Cr | 2, 3, 6 |
S | 2, 4, 6 |
N | 3, 4 |
P | 3, 5 |
Sn, Pb | 2, 4 |
Cl, Br, I | 1, 3, 5, 7 |
Применение
Стоит сказать, что ученые-химики в настоящее время понятие валентности по таблице Менделеева почти не используют. Вместо него для способности вещества образовывать определенное число взаимосвязей применяют понятие степени окисления, для веществ с ковалентной структурой — ковалентность, а для веществ ионного строения — заряд иона.
Однако рассматриваемое понятие применяют в методических целях. С его помощью легко объяснить, почему атомы разных видов соединяются в тех соотношениях, которые мы наблюдаем, и почему эти соотношения для разных соединений различны.
На данный момент подход, согласно которому соединение элементов в новые вещества всегда объяснялось с помощью валентности по таблице Менделеева независимо от типа связи в соединении, устарел. Сейчас мы знаем, что для ионной, ковалентной, металлической связей существуют разные механизмы объединения атомов в молекулы.
Подведем итоги
По таблице Менделеева определить способность к образованию химических связей возможно не для всех элементов.
Для тех, которые проявляют одну валентность по таблице Менделеева, она в большинстве случаев равна номеру группы.
Если есть два варианта этой величины, то она может быть равна номеру группы или восемь минус номер группы. Существуют также специальные таблицы, по которым можно узнать эту характеристику.