Карбиды
Что такое карбиды: чем они отличаются и в каких отраслях используются
Карбиды — это соединения металлов и неметаллов с углеродом. Обычно в таких соединениях углерод имеет большую электроотрицательность, чем второй элемент, что позволяет исключить из группы оксиды, галогены и другие углеродные соединения.
Это твердые тугоплавкие вещества, нелетучие и нерастворимые. В основном они обладают разнообразными свойствами: некоторые, например, карбид золота, может взорваться при попытке пересыпать его, а некоторые из соединений, например, бора, циркония, титана, кремния и вольфрама, по твердости превосходят алмаз и не поддаются действию кислот и растворителей.
Историческая справка
Первое необычное углеродное соединение, похожее на карбид, было получено в начале XIX века англичанином Дэви. Это был карбид калия. Далее в 1863 году был найден неустойчивый карбид меди, через 15 лет — карбид железа.
Официально соединения «появились» только в конце XIX века — к ним приложил руку француз Анри Муассон. Он получал соединения при помощи вольтовой дуги в электрической печи, которую он сам и придумал. Для этого использовались нагретый до раскаленного состояния древесный уголь, чистые металлы и их оксиды.
Однако за несколько лет до Муассона в метеоритах был обнаружен минерал когенит — смесь карбидов кобальта, железа и никеля. В некотором смысле эта находка помогла ответить на вопрос «Что такое карбиды?».
Свойства соединений
Как и другие элементы, карбиды обладают определенным набором свойств, которые делают их популярным материалом на рынке строительства и машиностроения.
- Высокая твердость — в отличие от чистого металла соединения являются наиболее твердыми, что позволяет использовать их в самых разных областях;
- Высокая температура плавления — они существенно выше, чем температуры плавления аналогичных металлов;
- Устойчивость к коррозиям. Некоторые варианты довольно устойчивы к кислотам и внешним факторам.
- Хорошая теплопроводимость и термостойкость, позволяющие использовать смесь и при высоких, и при низких температурах;
- Повышенная износоустойчивость не дает деталям из материала испортиться раньше времени.
В зависимости от металла и неметалла элементы обладают разнообразными свойствами, которые меняются в зависимости от начальных данных.
Виды карбидов
Все вещества можно разделить на три группы:
- Ковалентные образуют бромом и кремнием; химически инертны, атомы углерода находится в состоянии sp-, sp2-, sp3 -гибридизации. Образуется путем частичного замещения в алмазе атомов углерода на атомы брома и кремния. Обладают прочной межатомной связью, высокими температурой плавления, жаропрочностью, химической инертностью, являются полупроводниками. Карбид брома при этом довольно тверд, может даже поцарапать алмаз. Карбид кремния получается более хрупким, но химически стойким, окисляется при воздействии кислорода только при температуре больше 1000 градусов Цельсия, растворяется в царской водке и концентрированных азотной кислоте и плавиковой.
- Солеобразные или ионные — это соединения, образованные металлами I и II групп, а также алюминием, РЗЭ и актиноидами. Их получают непосредственно из элементов или путем восстановления оксидов углерода Обычно они разлагаются водой и кислотами, при этом происходит выделение углеводорода и остается гидроксид металла. Обладают высокой температурой плавления.
- Металлоподобные или ионно-ковалентно-металлические — это соединения, которые образуются переходными металлами IV–VII групп, а также никелем, железом и кобальтом; имеют промежуточную химическую активность. В таких соединениях небольшие атомы углерода расположены в пустотах между атомами металлов. Отсюда пошло название карбиды внедрения. Они отличаются высокими прочностью и температурой плавления.
В свою очередь ионные соединения делятся на:
- Метаниды — обычно прозрачны, не имеют цвета, в разбавленных кислотах и воде разлагаются и образуют метан. К ним относятся карбид магния, алюминия и бериллия.
- Ацетилениды — активно гидролизируются и образуют ацетилен или этин. Наиболее известен карбид кальция.
Применение
Элементы используют, чтобы придать чугуну и разного вида сталям твердость, повысить их износоустойчивость.
Карбиды вольфрама и титана, как наиболее твердые и тугоплавкие варианты, применяют для изготовление режущих инструментов, а также для получения сверхтвердых материалов.
Благодаря хорошим химическим и физическим свойствам, вещества используют в качестве компонента огнеупорных материалов, стержней сопротивления электронагревательных приборов и в качестве абразивного материала.
Карбид кальция также называют карбидом для сварки. Это идеальное вещество для сварочных работ: при контакте с водой оно выделяет ацетилен — летучий газ, являющийся основой кислородной сварки, металлизации, резки и напайки.
Иначе говоря, при обработке металла соединение вступает в реакцию и начинает выделять огромное количество тепла и ацетилена, который поддерживает горение.
Температура при этом может достигать 3150 градусов Цельсия.
При работе с веществом необходимо строго придерживаться правил безопасности: правильно хранить смесь, помнить о том, что он легко загорается, стараться не контактировать с ядовитой полью.
Вывод
В зависимости от металла соединения обладают внушительным рядом свойств, которые используют в разных видах производства, в основном, в машиностроении, металлообработке и тому подобных отраслях.
- Николай Иванович Матвеев
- Распечатать
Что такое карбид? Описание, особенности, применение и цена карбида
Самодельные бомбы. Вот, что приходит на ум первым делом, когда слышим слово карбид. И нет, занимались производством этих опасных игрушек не предприятия оборонной промышленности, а, как правило, мальчишки, лет так десяти.
Лет двадцать назад это было излюбленное развлечение у подростков. Это сейчас все сидят за своими планшетами, а тогда миром правил пытливый ум ребенка, который норовил все испробовать на практике.
Для того, чтобы почувствовать себя Рембо, требовалось раздобыть один чудо-камешек. Находили их дети чаще всего на стройках. А дальше все было просто: пластиковый сосуд, камень, вода, плотно закрученный колпачок. Все это рьяно трясли, и в лучшем случае, отбрасывали куда подальше. А в худшем «снаряд» разрывало прямо в руках, тогда травм было не избежать.
Карбид кальция
Были и более безопасные пути использовать находку, к примеру, просто бросить в лужицу, тогда можно было наблюдать нечто похожее на действие современных бомбочек для ванны. Так что это за популярная «игрушка». Большинство из нас считали, что таким, как мы его знаем, карбид произвела природа. Но на самом деле это не так. И сегодня Вы в этом убедитесь.
Итак, вещество это всегда очень твердое, плюс ко всему, чтобы его расплавить, нужно приложить недюжинные усилия. На вид это темные, светлые, зеленоватые камни, либо порошок, все зависит от состава. Срок его годности недолог, как правило это полгода. Уложить емкости в общий склад не получится, у таких потенциально опасных веществ должен быть свой отсек.
Как Вы уже знаете, карбид постоянно норовит взорваться. Причем, некоторым соединениям даже особых условий не надо. Достаточно просто пересыпать порошок из тары в тару, как он может неожиданно рвануть.
Свойства и состав
Чтобы получить этот камень, нужно, как минимум, два элемента. Во-первых, это углерод. Его наличие обязательно. А дальше уже есть выбор: металл, или неметалл. Главное, чтобы выполнялось правило: электроотрицательность (сила, с которой атомы элемента притягивают к себе чужие электроны) обязательного компонента выше, чем его «партнера». Иначе получатся совсем другие соединения.
Формула карбида кальция
Впервые об этом соединении заговорили в Англии еще в 19-м веке. Однако, слава первооткрывателя досталась французу, благодаря опытам которого вещество официально признали, случилось это лишь к концу столетия. А теперь от том, какие качества присущи этому соединению:
- Материал необычайно твердый. По этому показателю он почти догнал алмаз. Среди рекордсменов – карбид вольфрама (9 из 10 возможных баллов). Это открывает сотни путей его применения.
- Чтобы расплавить камень, нужно будет приложить немало усилий. Ведь для этого необходимо нагреть его до 2-х, или даже 3-х тысяч градусов Цельсия. Эта цифра будет выше значений, необходимых для того, чтобы изменить состояние металлических веществ, до того, как они оказались в составе карбида.
- Это очень «не контактное» соединение. Так, реакция карбида на очень многие вещества будет нулевой. Для этого нужны особые условия. Потому кислоты, и прочие вещества, способствующие коррозии, им не страшны.
- Но предыдущий пункт не касается воды. Как Вы уже поняли из рассказа выше, карбид и вода – часто идут рука об руку. В случае, к примеру, когда задействован карбид кальция, для этого подойдет абсолютно любая влага, не нужно никаких условностей. Если же в работе карбид кремния, то без нагрева никак – нужен раскаленный пар (1800 градусов).
Виды
Науке известны три разновидности таких соединений:
Что их отличает, так это очень прочные связи между атомами. Когда упоминается такой тип, то речь лишь о двух элементах, соседствующих с углеродом: первый – это бром, второй – кремний.
Все вышеперечисленные свойства в этих соединениях «выставлены» на максимум. Это и небывалая твердость, и стойкость. Захотите растворить – не получится без участия едких кислот огромной концентрации. Тоже самое касается и взаимодействия с кислородом.
Просто так не получится, нужен нагрев, и не хилый – до 1000 градусов.
- Солеобразные, либо ионные
Здесь в контакт с углеродом вступает либо алюминий, или металл, но не абы какой, а только из 1-2 групп хим. таблицы. Придать такому соединению жидкую форму все еще не очень просто, нужен предельный нагрев. А вот кислота незамеченной не останется, в результате такой «встречи» карбид распадется.
Получаются они из металлов, относящихся к 4-8 группе, сюда же идут кобальт, а также никель, ну и, конечно, железо.
Если рассматривать их химическое строение, увидим, что атомы углерода буквально разбросаны, между ними нет связей, они словно вкрапления в образовавшихся в металле пробелах.
Потому то они весьма тугоплавкие, можно даже сказать, чемпионы в этом деле. Это позволяет применять их при изготовлении сверл (победитовые сверла).
Как получают карбид?
Сначала о карбиде кальция. Его производство – дело востребованное. И хотя такие заводы требуют больших трат, особенно когда речь заходит об электроэнергии, предприятия от привычного способа изготовления не отказываются.
Потому как спрос на такую продукцию не спешит падать. Ведь без ацетилена вряд ли можно представить хоть одну стройку.
Чтобы экономить на электричестве, подобные предприятия открывают в странах с большим количеством ГЭС, в Канаде, например.
Почему же не перейти на работу с метаном, ведь из него тоже можно получить такой летучий газ? Да потому, что карбид кальция дает практически чистый продукт, довести до ума 98-ми процентный газ несложно. И перевозить его гораздо проще, чем тот, что получен при участии метана.Главным объектом на таких производствах выступают электрические печи. В них загружают твердый уголь, который еще зовут коксом, и оксид кальция (известь, причем абы какая не подойдет, нужна очищенная и однородная). Все это раскаляется до 2-х тысяч градусов. И вуаля, реакция пошла.
Как результат жидкая субстанция, которая и станет потом привычным нам соединением. Но сначала ей нужно охладится в формах. После того, как градус снижен, эти пласты дробят на более удобные в использовании куски.
Теперь о кремниевом варианте. Получили его абсолютно случайно, как это по обыкновению бывает. Американский ученый пытался создать искусственный алмаз. В результате экспериментов произошло получение карбидов кремния (они, кстати, на втором месте по твёрдости после не ограненного бриллианта).
Он его запатентовал и открыл первый завод по производству материала. Сказать, что технология с тех пор сильно изменилась – нельзя. Разве что из нее исключили песок и соль, остался углерод и кремнезём, которые все так же накаляют до максимальных температур в печах.
Цена
Если говорить о соединении с кальцием, то за один килограмм придется выложить около 80-ти рублей. Когда речь идет о кремнии в составе, накидывайте сверху еще пару рублей. Алюминиевая производная также доступна по цене, потратиться придется в пределах сотни. В такую же сумму обойдется карбид титана, молибдена и хрома.
Теперь о более затратных вариантах, к примеру, карбид вольфрама – покупка не из дешевых. Приготовьте около полутора тысяч рублей, с которыми придется распрощаться, приобретая 1000 граммов сырья.
Есть еще один «приятный» бонус, изготовитель может ограничить Вас в выборе количества приобретаемого товара, ведь многие указывают, что Вы обязаны купить минимум 10 килограммов. А если намерены приобрести состав с бором, то и того не легче – меньше 30-ти кило Вам вряд ли кто-то продаст, в то время как 1 кг. вылетит аж в 2 тысячи рублей.
Карбид: формула, применение и свойства
На свете известно очень много разных химических соединений: порядка сотни миллионов. И все они, как люди, индивидуальны. Нельзя найти два вещества, у которых совпадали бы химические и физические свойства при разном составе.
Одними из интереснейших неорганических веществ, существующих на белом свете, являются карбиды. В данной статье мы обсудим их строение, физические и химические свойства, применение и разберём тонкости их получения. Но для начала немного об истории открытия.
История
Карбиды металлов, формулы которых мы приведём ниже, не являются природными соединениями. Это обусловлено тем, что их молекулы склонны распадаться при взаимодействии с водой. Поэтому здесь стоит говорить о первых попытках синтеза карбидов.
Начиная с 1849 имеются упоминания о синтезе карбида кремния, однако некоторые из этих попыток остаются непризнанными. Крупномасштабное производство начал в 1893 году американский химик Эдвард Ачесон по способу, который был затем назван его именем.
История синтеза карбида кальция также не отличается большим количеством сведений. В 1862 году его получил немецкий химик Фридрих Вёлер, нагревая сплавленный цинк и кальций с углём.
Теперь перейдём к более интересным разделам: химическим и физическим свойствам. Ведь именно в них заключена вся суть применения данного класса веществ.
Физические свойства
Абсолютно все карбиды отличаются своей твёрдостью. Например, одним из самых твёрдых веществ по шкале Мооса является карбид вольфрама (9 из 10 возможных баллов). К тому же эти вещества очень тугоплавкие: температура плавления некоторых из них достигает двух тысяч градусов.
Большинство карбидов химически инертны и взаимодействуют с небольшим количеством веществ. Они не растворимы ни в каких растворителях. Однако растворением можно считать взаимодействие с водой с разрушением связей и образованием гидроксида металла и углеводорода.
О последней реакции и многих других интересных химических превращениях с участием карбидов мы поговорим в следующем разделе.
Химические свойства
Почти все карбиды взаимодействуют с водой. Какие-то — легко и без нагревания (например, карбид кальция), а какие-то (например, карбид кремния) — при нагревании водяного пара до 1800 градусов. Реакционная способность при этом зависит от характера связи в соединении, о котором мы поговорим позже.
В реакции с водой образуются разные углеводороды. Происходит это потому, что водород, содержащийся в воде, соединяется с углеродом, находящимся в карбиде.
Понять, какой углеводород получится (а может получиться как предельное, так и непредельное соединение), можно, исходя из валентности содержащегося в исходном веществе углерода. Например, если у нас есть карбид кальция, формула которого CaC2, мы видим, что он содержит ион C22-.
Значит, к нему можно присоединить два иона водорода с зарядом +. Таким образом, получаем соединение C2H2 — ацетилен. Таким же образом из такого соединения, как карбид алюминия, формула которого Al4C3, получаем CH4. Почему не C3H12, спросите вы? Ведь ион имеет заряд 12-.Дело в том, что максимальное количество атомов водорода определяется формулой 2n+2, где n — количество атомов углерода. Значит, может существовать только соединение с формулой C3H8 (пропан), а тот ион с зарядом 12- распадается на три иона с зарядом 4-, которые и дают при соединении с протонами молекулы метана.
Интересными представляются реакции окисления карбидов. Они могут происходить как при воздействии сильных смесей окислителей, так и при обыкновенном горении в атмосфере кислорода. Если с кислородом всё понятно: получаются два окисда, то с другими окислителями интереснее. Всё зависит от природы металла, входящего в состав карбида, а также от природы окислителя.
Например, карбид кремния, формула которого SiC, при взаимодействии со смесью азотной и плавиковой кислот образует гексафторкремниевую кислоту с выделением углекислого газа. А при проведении той же реакции, но с одной только азотной кислотой, получаем оксид кремния и углекислый газ. К окислителям также можно отнести галогены и халькогены.
С ними взаимодействует любой карбид, формула реакции зависит только от его строения.
Карбиды металлов, формулы которых мы рассмотрели — далеко не единственные представители этого класса соединений. Сейчас мы подробнее рассмотрим каждое промышленно важное соединение этого класса и затем поговорим об их применении в нашей жизни.
Какие бывают карбиды?
Оказывается, карбид, формула которого, скажем, CaC2, существенно отличается по строению от SiC. И отличие это прежде всего в характере связи между атомами. В первом случае мы имеем дело с солеобразным карбидом.
Назван этот класс соединений так потому, что ведёт себя фактически как соль, то есть способен диссоциировать на ионы.
Такая ионная связь очень слабая, что и позволяет легко проводить реакцию гидролиза и многие другие превращения, включающие взаимодействия между ионами.Другим, наверное, более промышленно важным видом карбидов являются ковалентные карбиды: такие как, например, SiC или WC. Они отличаются высокой плотностью и прочностью. А также тугоплавки и инертны к разбавленным химическим веществам.
Существуют также металлоподобные карбиды. Их скорее можно рассматривать как сплавы металлов с углеродом. Среди таких можно выделить, например, цементит (карбид железа, формула которого бывает разной, но в среднем она примерно такая: Fe3C) или чугун. Они имеют химическую активность, промежуточную по своей степени между ионными и ковалентными карбидами.
Каждый из этих подвидов обсуждаемого нами класса химических соединений имеет своё практическое применение. О том, как и где применяется каждый из них, мы поговорим в следующем разделе.
Практическое применение карбидов
Как мы уже обсудили, ковалентные карбиды имеют самый большой диапазон практических применений.
Это и абразивные и режущие материалы, и композиционные материалы, используемые в разных областях (например, в качестве одного из материалов, входящих в состав бронежилета), и автодетали, и электронные приборы, и нагревательные элементы, и ядерная энергетика. И это далеко не полный список применений этих сверхтвёрдых карбидов.
Самое узкое применение имеют солеобразующие карбиды. Их реакцию с водой используют как лабораторный способ получения углеводородов. То, как это происходит, мы уже разобрали выше.
Наравне с ковалентными, металлоподобные карбиды имеют широчайшее применение в промышленности.
Как мы уже говорили, таким металлоподобным видом обсуждаемых нами соединений являются стали, чугуны и прочие соединения металлов с вкраплениями углерода.
Как правило, металл, находящийся в таких веществах, относится к классу d-металлов. Именно поэтому он склонен образовывать не ковалентные связи, а как бы внедряться в структуру металла.
На наш взгляд, практических применений у вышеперечисленных соединений более чем достаточно. Теперь взглянем на процесс их получения.
Получение карбидов
Первые два вида карбидов, которые мы рассмотрели, а именно ковалентные и солеобразные, получают чаще всего одним простым способом: реакцией оксида элемента и кокса при высокой температуре.
При этом часть кокса, состоящего из углерода, соединяется с атомом элемента в составе оксида, и образует карбид. Другая часть «забирает» кислород и образует угарный газ.
Такой способ очень энергозатратен, так как требует поддержания высокой температуры (порядка 1600-2500 градусов) в зоне реакции.
Для получения некоторых видов соединений используют альтернативные реакции. Например, разложение соединения, которое в конечном итоге даёт карбид. Формула реакции зависит от конкретного соединения, поэтому обсуждать её мы не будем.Прежде чем завершить нашу статью, обсудим несколько интересных карбидов и поговорим о них подробнее.
Карбид натрия. Формула этого соединения C2Na2. Это можно представить скорее как ацетиленид (то есть продукт замещения атомов водорода в ацетилене на атомы натрия), а не карбид.
Химическая формула полностью не отражает этих тонкостей, поэтому их надо искать в строении.
Это очень активное вещество и при любом контакте с водой очень активно взаимодействует с ней с образованием ацетилена и щёлочи.
Карбид магния. Формула: MgC2. Интересны способы получения этого достаточно активного соединения. Один из них предполагает спекание фторида магния с карбидом кальция при высокой температуре. В результате этого получаются два продукта: фторид кальция и нужный нам карбид. Формула этой реакции достаточно проста, и вы можете при желании ознакомиться с ней в специализированной литературе.
Если вы не уверены в полезности изложенного в статье материала, тогда следующий раздел для вас.
Как это может быть полезно в жизни?
Ну, во-первых, знание химических соединений никогда не может быть лишним. Всегда лучше быть вооружённым знанием, чем остаться без него. Во-вторых, чем больше вы знаете о существовании определённых соединений, тем лучше понимаете механизм их образования и законы, которые позволяют им существовать.
Перед тем как перейти к окончанию, хотелось бы дать несколько рекомендаций по изучению этого материала.
Как это изучать?
Очень просто. Это ведь всего лишь раздел химии. И изучать его следует по учебникам химии. Начните со школьных сведений и переходите к более углублённым, из университетских учебников и справочников.
Заключение
Эта тема не такая простая и скучная, как кажется на первый взгляд. Химия всегда может стать интересной, если вы найдёте в ней свою цель.
Карбид: что это такое. Свойства, производство, применение
instrument.guru > Металлообработка > Карбид: что это такое. Свойства, производство, применение
Карбиды металлов — это соединения, которые не являются природными, получают их только искусственным путем.
Первое упоминание о создании этого вещества относится к началу 19 века, его синтезировал англичанин Деви в своей лаборатории. Позже были созданы и другие соединения.
В детстве многие любили взрывать это вещество, но далеко не все понимают, что же представляет из себя это соединение.
- Состав и виды карбидов
- Свойства
- Производство карбида
- Применение в промышленности
- Хранение и транспортировка
- Стоимость
Состав и виды карбидов
Карбиды не являются отдельным веществом. Это соединение углерода с металлами и неметаллами. Причем, следует учитывать, что углерод должен обладать большей электроотрицательностью в получаемом веществе по сравнению с другими используемыми элементами. Это дает возможность избежать производства галогенов, оксидов и других углеродных соединений.
На сегодняшний день различают три вида карбида, состав которых отличен друг от друга:
- Ковалентные соединения. К данному виду относят два элемента — кремний и бром. Это соединения с прочной межатомной связью, что обеспечивает высокую температуру плавления и химическую инертность. Окисление веществ данной группы возможно только при их нагреве свыше 1000 градусов Цельсия. Твердость вещества с бромом настолько высока, что способна конкурировать даже с алмазами. Вещество с кремнием менее прочное, но 8 баллов по шкале Мооса имеет. При этом растворить данное вещество возможно только в царской водке или с помощью концентрированной азотной или плавиковой кислоты.
- Ионные соединения или солеобразные. Вещества данной группы образуются с помощью металлов 1 и 2 группы таблицы Менделеева, а также алюминием. Данные соединения характеризуются высокой температурой плавления. Карбиды ионного вида распадаются под воздействием воды и кислот. При протекании реакции выделяется углеводород и остается гидроксид металла.
- Ионно-ковалентно-металлические или металлоподобные соединения. Образуются с помощью металлов с 4 по 8 группу, а также кобальтом, никелем и железом. Отличительная особенность металлоподобных веществ — это высокая прочность и температура плавления. Данный вид соединений делится на два типа:
- Ацетилениды — при гидролизе образуют этин или ацетилен. Карбид кальция относится к данному типу соединений.
- Метаниды — при вступлении в реакцию с водой или разбавленными кислотами образуют метан. Чаще бесцветны. Сюда относят карбид алюминия, магния, бериллия.
Свойства
Благодаря своим свойствам, эти соединения нашли широкое применение в машиностроении, а также в строительстве.
- Высокая твердость материала. У различных соединений она варьируется, но всегда остается выше средней. Они являются самыми твердыми минералами.
- Температура плавления. Практически всегда она выше температуры плавления металла входящего в соединение и может превышать 2000 градусов.
- Устойчивость к коррозии. Многие соединения не вступают в реакцию с различными кислотами и довольно устойчивы к внешним агрессивным факторам.
- Взаимодействие с водой. Практически все карбидные соединения вступают в реакцию с водой, например, при взаимодействии с карбидом кальция можно его взрывать. Условия взаимодействия могут отличаться и зависят от характера связи в соединении.
Производство карбида
Ковалентные и солеобразные соединения получают простым методом. В электрическую печь помещают смесь из дробленого кокса и оксида металла и нагревают. При высоких температурах оксид элемента вступает в реакцию с коксом. При таком способе часть кокса, которая состоит из углерода, соединяется с атомами элемента, входящими в оксид.
В результате образуется требуемый карбид и угарный газ. Готовую расплавленную смесь разливают по специальным формам, а после застывания дробят и сортируют по размеру гранул.
Несмотря на простоту данного способа, получение карбида с его помощью является довольно энергозатратным, поскольку требует поддержания высоких температур (1600-2500 градусов) на всем протяжении реакции.Существуют и альтернативные способы получения некоторых видов веществ. Как правило, это разложение соединения в результате которого и получается требуемый элемент. Формула распада будет отличаться в зависимости от конкретного соединения.
Применение в промышленности
Карбид кальция является важным соединением для получения ацетилена, газа, который используется при кислородной сварке и обработке металлов. При горении с кислородом ацетилен способен достигать 3150 градусов Цельсия. Это позволяет работать с тугоплавкими металлами, требующими температуру вдвое большую,чем температура плавления самого металла.
Карбид бора используется как огнеупорный материал, поскольку температура плавления такого соединения выше 2400 градусов.
При этом он же встречается в бронежилетах,так как способен защитить не только от пуль и осколков, но и от радиации. Для покрытия промышленного и строительного инструмента используют карбид титана.
Его прочность позволяет повысить износостойкость деталей и обрабатывать даже самые прочные материалы.
Хранение и транспортировка
Поскольку карбид при вступлении в реакцию с влагой приводит к выделению большого количества тепла и взрывоопасного газа ацетилена, хранят данное вещество в герметичных баках или барабанах. Работа с такими баками требует особой осторожности.
Газ ацетилен легче воздуха и способен самовоспламеняться, при этом обладает наркотическим действием.
При вскрытии барабанов с карбидом используют специальный инструмент, исключающий возникновение искр, а при попадании вещества на кожу требуется немедленно промыть водой пораженный участок и смазать жирным кремом.
Помещения хранения должны хорошо проветриваться, а содержание других веществ по соседству — запрещено. Это может привести к опасным реакциям. Неправильное хранение может как взорвать карбид, так и привести его в негодное состояние.
Срок хранения доходит всего до полугода.
Перевозка осуществляется только крытым транспортом. Воздушная доставка запрещена.
Стоимость
На рынке карбид кальция можно приобрести по цене 80 рублей за килограмм. Продают данную смесь в бочках или специальных мешках. Ненамного дороже вещество с кремнием. Его стоимость составляет 82 рубля за килограмм.
А вот, карбид вольфрама обойдется в 1400 рублей за кило. Причем, может быть установлен минимальный вес покупки, например, от 10 кг. Карбид бора будет стоить еще дороже — от 2000 рублей, причем фасовка начинается от 35 килограмм.
Стоимость же соединений с гафнием или молибденом оговаривается с поставщиком отдельно.
Свойства карбидов металлов (гафния, хрома, титана, вольфрама и др.)
Представлены сведения о химических и физических свойствах карбидов металлов: таких, как гафний, хром, титан, вольфрам и других. Физические свойства карбидов сведены в отдельные таблицы, в которых указана их плотность, твердость, температура плавления и кипения, а также электрические и тепловые свойства.
Карбид гафния GfC
В таблице приведены свойства карбида металла гафния. Карбид гафния представляет собой соединение серого цвета с температурой плавления 3890°С и высокой плотностью, которая при комнатной температуре составляет 12600 кг/м3. Энергия кристаллической решетки GfC равна 117,2·105 кДж/кмоль.
Карбид гафния полностью растворяется в ортофосфорной, азотной и серной кислотах. При температуре около 2000°С он начинает взаимодействовать с тугоплавкими металлами — такими, как молибден, вольфрам, тантал и ниобий.
Молекулярная масса | 190,5 |
Тип решетки | Кубическая |
Плотность, кг/м3 | 12600 |
Температура плавления, °С | 3890±150 |
Температура кипения, °С | 4160 |
Средний ТКЛР в интервале 20-1200°С, α·106, град-1 | 6,1 |
Молярная теплоемкость при 20°С, кДж/(кмоль·град) | 35,3 |
Теплопроводность карбида гафния с нулевой пористостью при температуре 300°С равна 9,2 Вт/(м·град). При нагревании коэффициент теплопроводности GfC увеличивается. Удельная теплоемкость карбида гафния относительно невысока и при росте температуры слабо увеличивается.
Удельная массовая теплоемкость, Дж/(кг·град) | 251 | 251 | 255 | 268 | 281 | 297 |
Коэффициент теплопроводности, Вт/(м·град) | 9,2 | 10 | 11,7 | 13,8 | 15,9 | 17,2 |
Карбиды хрома
Таблица содержит физические свойства карбидов хрома различного состава. Соединения с формулой Cr23C6 и Cr3C2 имеют серый цвет; Cr7C3 — серебристый.
Карбиды хрома Cr23C6 и Cr7C3 нерастворимы в царской водке. После длительного нагрева при 730…870°С карбид Cr7C3 превращается в Cr23C6. Карбид Cr3C2 нерастворим в воде. Изделия из него также практически нерастворимы в кислотах, их смесях и растворах щелочей. Однако, он может взаимодействовать с цинком при температуре 940°С. Температура начала окисления Cr3C2 составляет 900…1000°С.
Молекулярная масса | 220 | 1265 | 400 | 180 |
Тип решетки | Кубическая | Кубическая | Гексагональная | Ромбическая |
Плотность, кг/м3 | — | 6970 | 6920 | 6680 |
Температура плавления, °С | 1520 | 1550 | 1700±50 | 1890 (разлаг.) |
Средний ТКЛР в интервале 20-800°С, α·106, град-1 | — | 10,1 | 10 | 10,3 |
Удельная массовая теплоемкость при 20°С, Дж/(кг·град) | — | 493 | 523 | 546 |
Молярная теплоемкость при 20°С, кДж/(кмоль·град) | — | 84 | 209 | 98 |
Коэффициент теплопроводности при 20°С, Вт/(м·град) | — | 18,7 | 16,6 | 16,2 |
Карбид титана TiC
Карбид титана TiC представляет собой соединение светло-серого цвета с металлическим блеском. Он химически инертен при комнатной температуре: плохо растворяется в кислотах, их смесях и некоторых щелочах в холодном и нагретом состояниях.
При высоких температурах (выше 2500°С) начинает реагировать с азотом. При взаимодействии с водородом обезуглероживается. Кроме того, окисляется углекислым газом при температурах выше 1200°С. Температура активного окисления карбида титана составляет 1100…1200°С.
Область температурной устойчивости TiC достигает 3140°С, он высокостоек в расплавленных легкоплавких металлах и металлах типа меди, алюминия, латунях, чугунах и сталях. Степень черноты карбида титана равна 0,9 (при длине волны 0,655 мкм).
Молекулярная масса | 59,9 |
Тип решетки | Кубическая |
Плотность, кг/м3 | 4930 |
Температура плавления, °С | 3147±50 |
Температура кипения, °С | 4305 |
Твердость по шкале Мооса | 8-9 |
Средний ТКЛР в интервале 20-2700°С, α·106, град-1 | 9,6 |
Молярная теплоемкость при 20°С, кДж/(кмоль·град) | 33,7 |
Удельная массовая теплоемкость при 25°С, Дж/(кг·град) | 842 |
Коэффициент теплопроводности при 20°С, Вт/(м·град) | 34…39 |
Удельное электрическое сопротивление при 20°С, ρ·108, Ом·м | 60 |
Карбиды вольфрама W2C и WC
Карбиды вольфрама W2C и WC представляют собой соединения серого цвета. Область температурной устойчивости для W2C составляет до 2750°С; для WC — до 2600°С.
Тонкий порошок WC быстро окисляется на воздухе при 500…520°С. Температура начала окисления грубого порошка WC составляет 595°С.
При 700°С изменение массы карбида вольфрама WC в результате часового окисления составляет 8,3 мг/(см2·ч).
При комнатной температуре порошок карбида вольфрама практически не растворяется в сильных концентрированных кислотах. Однако он почти полностью растворим в кипящих H2SO4 и HNO3. При температуре 940°С WC слабо взаимодействует с расплавом цинка.Молекулярная масса | 379,7 | 195,9 |
Тип решетки | Гексагональная | |
Плотность, кг/м3 | 1720 | 1560 |
Температура плавления, °С | 2730±15 | 2720 |
Температура кипения, °С | 6000 | |
Твердость по шкале Мооса | 9-10 | 9 |
Средний ТКЛР в интервале 20-2000°С, α·106, град-1 | 5,8 | |
Удельная массовая теплоемкость в интервале 0-100°С, Дж/(кг·град) | — | 184 |
Молярная теплоемкость при 25°С, кДж/(кмоль·град) | — | 36 |
Коэффициент теплопроводности при 20°С, Вт/(м·град) | 29,3 | 197 |
Карбид кальция CaC2
В таблице приведены физические свойства карбида кальция CaC2. По своим оптическим свойствам химически чистый карбид кальция — большие, почти бесцветные кристаллы с голубоватым оттенком. Технический CaC2 в зависимости от степени чистоты имеет серый, коричнево-желтый или черный цвет.
Предел температурной устойчивости для карбида кальция равен 2300°С. При температуре 20°С он полностью растворяется в воде (с выделением ацетилена) и концентрированной соляной кислоте.
Молекулярная масса | 64,1 |
Тип решетки | Тетрагональная, кубическая |
Плотность, кг/м3 | 2100 |
Температура плавления, °С | 2300 (разлаг.) |
Удельная массовая теплоемкость при 25°С, Дж/(кг·град) | 960 |
Молярная теплоемкость при 25°С, кДж/(кмоль·град) | 61,3 |
Карбид циркония ZrC
Карбид циркония представляет собой соединение серого цвета с металлическим блеском. Он химически инертен при комнатной температуре: плохо растворяется в концентрированных кислотах, их смесях и некоторых щелочах, как в холодном, так и нагретом состоянии. Карбид циркония нерастворим в воде, однако взаимодействует с азотом с образованием нитридов.
Температура активного окисления ZrC составляет 1100…1200°С, область температурной устойчивости — до 3530°С. Карбид циркония стоек в расплавах меди и медных сплавов, стали, чугуна и легкоплавких металлов.
Молекулярная масса | 103,2 |
Тип решетки | Кубическая |
Плотность, кг/м3 | 6730 |
Температура плавления, °С | 3530 |
Температура кипения, °С | 5100 |
Твердость по шкале Мооса | 8-9 |
Средний ТКЛР в интервале 20-1100°С, α·106, град-1 | 6,74 |
Молярная теплоемкость при 20°С, кДж/(кмоль·град) | 61,1 |
Удельная массовая теплоемкость при 25°С, Дж/(кг·град) | 456 |
Коэффициент теплопроводности при 0°С, Вт/(м·град) | 42 |
Удельное электрическое сопротивление при 20°С, ρ·108, Ом·м | 50 |
Карбиды ниобия Nb2C и NbC
В таблице даны физические свойства карбидов ниобия Nb2C и NbC. Плотный карбид ниобия NbC имеет серовато-коричневый или бледно-лиловый металлический цвет. Порошок NbC имеет фиолетовый оттенок.
Карбиды ниобия при комнатной температуре химически инертны, обладают высокой химической стойкостью к действию кислот и их смесей даже в нагретом состоянии. Однако, они растворимы в смеси плавиковой и азотной кислоты.
При нагревании на воздухе NbC слегка обезуглероживается. До температуры 2500°С он устойчив в атмосфере азота. Температура активного окисления карбида ниобия составляет 900…1000°С. Область температурной устойчивости — до 3890°С. Он стоек в расплавах металлов (Cu, Al), имеет высокую твердость по шкале Мооса.
Молекулярная масса | 197,8 | 105 |
Тип решетки | Гексагональная | Кубическая |
Плотность, кг/м3 | 7860 | 7560 |
Температура плавления, °С | 2927 | 3480 |
Температура кипения, °С | — | 4500 |
Твердость по шкале Мооса | — | 9-10 |
Средний ТКЛР в интервале 20-1100°С, α·106, град-1 | 6,5 | |
Удельная массовая теплоемкость при 20°С, Дж/(кг·град) | 315 | 355 |
Молярная теплоемкость при 25°С, кДж/(кмоль·град) | 30,36 | 37,35 |
Коэффициент теплопроводности при 20°С, Вт/(м·град) | — | 19 |
Удельное электрическое сопротивление при 20°С, ρ·108, Ом·м | 55 | 46 |
Источники: