Карбоновые кислоты

Химические свойства карбоновых кислот, формула одноосновной предельной кислоты, реакции получения

Карбоновые кислоты

Химические соединения, основу которых составляет одна и более групп СООН, получили определение карбоновые кислоты.

В основу соединений входит группа СООН, имеющая два составляющих – карбонил и гидроксил. Группу атомов СООН называют карбоксильной группой (карбоксилом). Взаимодействие элементов обеспечивается сочетанием двух атомов кислорода и атома углерода.

  • Строение карбоновых кислот
  • Номенклатура
  • Классификация карбоновых кислот
  • Физические свойства
  • Получение карбоновых кислот
  • Химические свойства карбоновых кислот
  • Применение карбоновых кислот

Строение карбоновых кислот

Углеводородный радикал в одноосновных предельных кислотах соединяется с одной группой СООН. Общая формула карбоновых кислот выглядит так: R-COOH.

Строение карбоновой группы влияет на химические свойства.

: анионы и катионы в химии, таблица растворимости.

Номенклатура

В названии карбоновых соединений сначала нумеруют атом углерода группы COOH. Количество карбоксильных групп обозначают приставками ди-; три-; тетра-.

Например,СН3-СН2-СООН – формула пропановой кислоты.

У карбоновых соединений существуют и привычные слуху названия: муравьиная, уксусная, лимонная…Все это названия карбоновых кислот.

Названия солей карбоновых соединений получаются из названий углеводорода с добавлением суффикса “-оат” (СООК)2- этандиот калия.

: типы кристаллических решёток, таблица.

Классификация карбоновых кислот

Карбоновые кислоты классификация.

По характеру углеводорода:

  • предельные;
  • непредельные;
  • ароматические.

По количеству групп СООН бывают:

  • одноосновные (уксусная кислота);
  • двуосновные (щавелевая кислота);
  • многоосновные (лимонная кислота).

Предельные карбоновые кислоты – соединения, в которых радикал соединен с одним карбонилом.

Классификация карбоновых кислот разделяет их еще и по строению радикала, с которым связан карбонил. По этому признаку соединения бывают алифатические и алициклические.

: водородная связь образуется между молекулами, химический механизм.

Физические свойства

Рассмотрим карбоновые кислоты физические свойства.

Карбоновые соединения имеют различное число атомов углерода. В зависимости от этого числа физические свойства этих соединений различаются.

Соединения, имеющие в составе от одного до трех углеродных атомов, считаются низшими. Это жидкости без цвета с резким запахом. Низшие соединения с легкостью растворяются в воде.

Соединения, имеющие в составе от четырех до девяти углеродных атомов – маслянистые жидкости, имеющие неприятный запах.

Соединения, имеющие в составе более девяти углеродных атомов, считаются высшими и физические свойства этих соединений таковы: они являются твердыми веществами, их невозможно растворить в воде.

Температура кипения и плавления зависит от молекулярной массы вещества. Чем больше молекулярная масса, тем выше температура кипения. Для закипания и плавления нужна более высокая температура , чем спиртам.

Получение карбоновых кислот

Существует несколько способов получения карбоновых кислот.

  1. Получение карбоновых соединений при помощи окисления спиртов. Спирты взаимодействуют с оксидом хрома и разбавленной серной кислотой с добавлением ацетона или марганцовки.
  2. При помощи окисления альдегидов (оксид хрома вступает в реакцию с оксидом серебра).
  3. При помощи окисления алкенов. Используют смесь перманганата калия и периодат натрия в водном растворе в нейтральной среде.
  4. При помощи окисления алкилбензолов получают ароматические кислоты.
  5. При помощи гидролиза.
  6. При помощи карбоксилирования металлсодержащих соединений.
  7. С помощью синтеза ароматических соединений.
  8. Выделение из природных веществ (например, из жиров).
  9. Получение карбоновых соединений возможно при омылении или гидролизе эфиров и спирта.
  10. Получение карбоновых соединений происходит и из цианидов при помощи нагревания.

Химические свойства карбоновых кислот

При химических реакциях проявляются следующие свойства:

  • диссоциация. Окрашивают лакмусовую бумажку в красный цвет, поскольку обладают кислыми свойствами;
  • вступая в реакции с металлами, солями, оксидами и гидроксидами водород замещается на активные металлы;
  • при реакциях со спиртами гидроксил замещается на остаток спирта. Таким образом получается сложный эфир;
  • всегда происходит замещение водорода на галогены;
  • при взаимодействии с основными оксидами образуются соль и вода;
  • при взаимодействии с гидроксидами образуются соли и вода;

Применение карбоновых кислот

Карбоновые соединения распространены в природе.Поэтому их применяют во многих областях: в промышленности (легкой и тяжелой), в медицине и сельском хозяйстве, а также в пищевой промышленности и косметологии.

Ароматические в большом количестве содержатся в ягодах и фруктах.

В медицине используют молочную, винную и аскорбиновую кислоту. Молочную применяют в качестве прижигания, а винную – как легкое слабительное. Аскорбиновая укрепляет иммунитет.

В косметологии используются фруктовые и ароматические. Благодаря им клетки быстрее обновляются. Аромат цитрусовых способен оказать тонизирующее и успокаивающее действие на организм. Бензойная встречается в бальзамах и эфирных маслах, она хорошо растворяется в спирте.

Высокомолекулярные непредельные соединения встречаются в диетологии. Олеиновая в этой области наиболее распространена.

Полиненасыщенные с двойными связями (линолевая и другие) обладают биологической активностью. Их еще называют активными жирными кислотами. Они участвуют в обмене веществ, влияют на зрительную функцию и иммунитет, а также на нервную систему. Отсутствие этих веществ в пище или недостаточное их употребление затормаживает рост животных и оказывает негативное влияние на их репродуктивную функцию.

Сорбиновая получается из ягод рябины. Она является отличным консервантом.

Акриловая имеет едкий запах. Она применяется для получения стекла и синтетических волокон.

На основе реакции этирификации происходит синтез жира, который применяют при изготовлении мыла, а также моющих средств.

Муравьиная используется в медицине, в пчеловодстве, а также в качестве консервантов.

Уксусная – жидкость без цвета с резким запахом; легко смешивается с водой. Ее широко применяют в пищевой промышленности в качестве приправы. Также она используется при консервации. Еще она обладает свойствами растворителя. Поэтому широко применяется в производстве лаков и красок, при крашении. На ее основе изготавливают сырье для борьбы с насекомыми и сорняками.

Стеариновая и пальмитиновая (высшие одноосновные соединения) являются твердыми веществами и не растворяются в воде. Но их соли применяются в производстве мыла. Они делают брикеты мыла твердыми.

Поскольку соединения способны придавать однородность массам, то они широко используются в изготовлении лекарств.

Растения и животные также вырабатывают карбоновые соединения. Поэтому употреблять их внутрь безопасно. Главное, – соблюдать дозировку. Превышение дозы и концентрации ведет к ожогам и отравлениям.

Едкость соединений приносит пользу в металлургии, а также реставраторам и мебельщикам. Смеси на их основе позволяют выравнивать поверхности и очищать ржавчину.

Сложные эфиры, получаемые при реакции этерификации, нашли свое применение в парфюмерии. Они используются также в качестве компонентов лаков и красок, растворителей. А также как аромадобавки.

Х и м и я

Карбоновые кислоты

Карбоновые кислоты — это органические соединения, которые характеризуются присутствием в их молекулах карбоксильной группы -СООН.

Карбоксильная группа является функциональной (характеристической) группой этого класса соединений. Примерами карбоновых кислот могут служить:

Кислотный характер этих соединений является результатом того, что атом водорода гидроксильной группы способен диссоциировать с образованием иона водорода, например:

Взаимодействуя с основаниями карбоновые кислоты образуют соли:

Карбоновые кислоты являются слабыми кислотами, поэтому их соли подвергаются обратимоми гидролизу. Наиболее сильные из карбоновых кислотмуравьиная и уксусная.

Карбоновые кислоты со спиртами образуют сложные эфиры. Сложные эфиры – чрезвычайно важное соединение, очень часто встречающееся в продуктах животного и растительного мира.

Одноосновные и двухосновные карбоновые кислоты

Карбоновые кислоты делятся одноосновные и двухосновные в зависимости от кличества в их составе гидроксильных групп ОН.

Все карбоновые кислоты, рассмотренные выше – это примеры одноосновных кислот. В их сотавах содержится по одной гидроксильной группе.

Соответственно, в молекулах двухосновных кислот содержится по две гидроксильных группы. К двухосновным карбоновым кислотам относятся, например, щавелевая или терефталиевая кислоты.

Низшие, средние и высшие карбоновые кислоты

По числу атомов углерода в молекуле карбоновые кислоты делят на:

Низшие (С1-С3),

Средние (С4-С8) и

Высшие (С9-С26).

Высшие карбоновые кислоты называют высшими жирными кислотами, по причине того, что они входят в состав природных жиров.

Но иногда жирными называют все ациклические карбоновые кислоты. Таким образом, термины «жирные кислоты» и «карбоновые кислоты» часто используются как синонимы.

Предельные и непредельные карбоновые кислоты

Предельные карбоновые кислоты в своём составе, содержат радикал предельных углеводородов, т.е. радикал только с простыми, одинарными связями.

И наоборот, непредельные карбоновые кислоты в своём составе содержат радикал непредельных углеводородов, т.е. радикал, в котором присутствуют кратные (двойные и тройные) связи.

Высшие карбоновые (жирные) кислоты

Напомним, что высшим карбоновым кислотам относят такие карбоновые кислоты, молекулы которых содержат сравнительно большое число атомов углерода (С9-С26).

По причине того, что высшие карбоновые кислоты входят в состав животных и растительных жиров их называют высшими жирными кислотами.

Примеры предельных высших жирных кислот:

  1. Каприновая кислота — C9H19COOH,
  2. Лауриновая кислота — С11Н23СООН,
  3. Миристиновая кислота — С13Н27СООН,
  4. Пальмитиновая кислота — С15Н31СООН,
  5. Стеариновая кислота – С17Н35СООН.

Примеры непредельных высших жирных кислот:

  1. Олеиновая кислота — С17Н33СООН – имеет одну двойную связь,
  2. Линолевая кислота – С17Н31СООН — имеет две двойных связи,
  3. Линоленовая кислота – С17Н29СООН – имеет три двойных связи.

Структурные формулы соединений, в которых присутствуют длинные углеводородный радикалы, часто изображают следующим образом:

В углеводородной цепи атомы углерода расположены не по прямой линии, а виде «змейки». Угол между двумя соседними отрезками такой «змейки» 109 градусов 28 минут. В случае двойной связи угол другой.

В структурной формуле каждая вершина такой «змейки» означает атом углерода, соединённый с двумя атомами водорода. Последний атом углерода соединён с тремя атомами водорода.

При этом сами символы углерода (С) и водорода(Н) не изображаются.

Предельные и непредельные жирные кислоты имеют в значительной степени различные свойства.

Высшие предельные кислоты – воскообразные вещества, непредельные – жидкости (напоминающие растительное масло).

Натриевые и калиевые соли высших жирных кислот называют мылами.

Например:

C17H35COONa – стеарат натрия,

С

Карбоновые кислоты

Карбоновые кислоты

Карбоновые кислоты — производные углеводородов, которые содержат в молекуле одну или несколько карбоксильных групп -СООН.

а) По основности (т. е. числукарбоксильных групп в молекуле):

— одноосновные (монокарбоновые) RCOOH; например:

СН3СН2СН2СООН;

— двухосновные (дикарбоновые) R(COOH)2; например:

НООС-СН2-СООН пропандиовая (малоновая) кислота

— трехосновные (трикарбоновые) R(COOH)3 и т. д.

б) По строению углеводородного радикала:

— алифатические

предельные; например: СН3СН2СООН;

непредельные; например: СН2=СНСООН пропеновая(акриловая) кислота

— алициклические, например:

— ароматические, например:

Предельные монокарбоновые кислоты

(одноосновные насыщенные карбоновые кислоты) – карбоновые кислоты, в которых насыщенный углеводородный радикал соединен с одной карбоксильной группой -COOH. Все они имеют общую формулу CnH2n+1COOH (n ≥ 0 ); или CnH2nO2 (n≥1)

Изомерия

Изомерия скелета в углеводородном радикале проявляется, начиная с бутановой кислоты, которая имеет два изомера:

Межклассовая изомерия проявляется, начиная с уксусной кислоты:

— CH3-COOH уксусная кислота;

— H-COO-CH3 метилформиат (метиловый эфир муравьиной кислоты);

— HO-CH2-COH гидроксиэтаналь (гидроксиуксусный альдегид);

— HO-CHO-CH2 гидроксиэтиленоксид.

Гомологический ряд

Тривиальное название Название по ИЮПАК Формула
Муравьиная кислота Метановая кислота HCOOH
Уксусная кислота Этановая кислота CH3COOH
Пропионовая кислота Пропановая кислота C2H5COOH
Масляная кислота Бутановая кислота C3H7COOH
Валериановая кислота Пентановая кислота C4H9COOH
Капроновая кислота Гексановая кислота C5H11COOH
Энантовая кислота Гептановая кислота C6H13COOH
Каприловая кислота Октановая кислота C7H15COOH
Пеларгоновая кислота Нонановая кислота C8H17COOH
Каприновая кислота Декановая кислота C9H19COOH
Ундециловая кислота Ундекановая кислота C10H21COOH
Пальмитиновая кислота Гексадекановая кислота C15H31COOH
Стеариновая кислота Октадекановая кислота C17H35COOH

Кислотные остатки и кислотные радикалы

Кислота Кислотный остаток Кислотный радикал (ацил)
НСООН муравьиная НСОО- формиат
СН3СООНуксусная СН3СОО- ацетат
СН3СН2СООН пропионовая СН3СН2СОО- пропионат
СН3(СН2)2СООНмасляная СН3(СН2)2СОО-бутират
СН3(СН2)3СООНвалериановая СН3(СН2)3СОО-валериат
СН3(СН2)4СООНкапроновая СН3(СН2)4СОО-капронат

Электронное строение молекул карбоновых кислот

Показанное в формуле смещение электронной плотности в сторону карбонильного атома кислорода обусловливает сильную поляризацию связи О-Н, в результате чего облегчается отрыв атома водорода в виде протона — в водных растворах происходит процесс кислотной диссоциации:

RCOOH ↔ RCOO- + Н+

В карбоксилат-ионе (RCOO-) имеет место р, π-сопряжение неподеленной пары электронов атома кислорода гидроксильной группы с р-облаками, образующими π- связь, в результате происходит делокализация π- связи и равномерное распределение отрицательного заряда между двумя атомами кислорода:

В связи с этим для карбоновых кислот, в отличие от альдегидов, не характерны реакции присоединения.

I. Кислотные свойства

Сила кислот уменьшается в ряду:

НСООН → СН3СООН → C2H6COOH → …

3. Реакции с металлами

2СН3СН2СООН + 2Na → 2СН3СН2COONa + H2↑

4. Реакции с солями более слабых кислот (в т. ч. с карбонатами и гидрокарбонатами)

2СН3СООН + Na2CO3 → 2CH3COONa + CO2↑ + Н2O

2НСООН + Mg(HCO3)2 → (НСОО)2Мg + 2СO2↑ + 2Н2O

(НСООН + НСО3- → НСОО- + СO2 +Н2O)

II. Замещение группы -ОН

Амиды кислот гидролизуются с образованием кислот:

или их солей:

3. Образование галогенангидридов

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты — PCl3, PCl5, тионилхлорид SOCl2.

4. Образование ангидридов кислот (межмолекулярная дегидратация)

Ангидриды кислот образуются также при взаимодействии хлорангидридов кислот с безводными солями карбоновых кислот; при этом можно получать смешанные ангидриды различных кислот; например:

III. Реакции замещения атомов водорода у α-углеродного атома

Строение молекулы

Молекула муравьиной кислоты, в отличие от других карбоновых кислот, содержит в своей структуре альдегидную группу.

1. Окисление спиртов и альдегидов

Общая схема окисления спиртов и альдегидов:

В качестве окислителей используют KMnO4, K2Cr2O7, HNO3 и другие реагенты.

Например:

5С2Н5ОН + 4KMnO4 + 6H2S04 → 5СН3СООН + 2K2SO4 + 4MnSO4 + 11Н2O

2. Гидролиз сложных эфиров

СO + NaOH → HCOONa формиат натрия

2HCOONa + H2SO4 → 2НСООН + Na2SO4

2. Декарбоксилирование щавелевой кислоты

Так получают пищевую уксусную кислоту.

Гидролиз природных жиров

Общая формула алкеновых кислот: CnH2n-1COOH (n ≥ 2)

CH2=CH-COOH пропеновая (акриловая) кислота

Высшие непредельные кислоты

Радикалы этих кислот входят в состав растительных масел.

C17H33COOH — олеиновая кислота, или цис-октадиен-9-овая кислота

Транс-изомер олеиновой кислоты называется элаидиновой кислотой.

C17H31COOH — линолевая кислота, или цис, цис-октадиен-9,12-овая кислота

C17H29COOH — линоленовая кислота, или цис, цис, цис-октадекатриен-9,12,15-овая кислота

Особенности химических свойств

Кроме общих свойств карбоновых кислот, для непредельных кислот характерны реакции присоединения по кратным связям в углеводородном радикале. Так, непредельные кислоты, как и алкены, гидрируются и обесцвечивают бромную воду, например:

Предельные дикарбоновые кислоты HOOC-R-COOH

HOOC-CH2-COOH пропандиовая (малоновая) кислота, (соли и эфиры — малонаты)

HOOC-(CH2)2-COOH бутадиовая (янтарная) кислота, (соли и эфиры — сукцинаты)

HOOC-(CH2)3-COOH пентадиовая (глутаровая) кислота, (соли и эфиры — глутораты)

HOOC-(CH2)4-COOH гексадиовая (адипиновая) кислота, (соли и эфиры — адипинаты)

Карбоновые кислоты: физические свойства. Соли карбоновых кислот

Карбоновые кислоты

Практически у всех дома есть уксус. И большинство людей знают, что его основу составляет уксусная кислота.

Но что она представляет собой с химической точки зрения? Какие еще органические соединения этого ряда существуют и каковы их характеристики? Попробуем разобраться в этом вопросе и изучить предельные одноосновные карбоновые кислоты.

Тем более что в быту применяется не только уксусная, но и некоторые другие, а уж производные этих кислот вообще частые гости в каждом доме.

Класс карбоновых кислот: общая характеристика

С точки зрения науки химии, к данному классу соединений относят кислородсодержащие молекулы, которые имеют особенную группировку атомов — карбоксильную функциональную группу. Она имеет вид -СООН.

Таким образом, общая формула, которую имеют все предельные одноосновные карбоновые кислоты, выглядит так: R-COOH, где R — это частица-радикал, которая может включать любое количество атомов углерода.

Согласно этому, определение данному классу соединений можно дать такое. Карбоновые кислоты — это органические кислородсодержащие молекулы, в состав которых входит одна или несколько функциональных группировок -СООН — карбоксильные группы.

То, что данные вещества относятся именно к кислотам, объясняется подвижностью атома водорода в карбоксиле. Электронная плотность распределяется неравномерно, так как кислород — самый электроотрицательный в группе.

От этого связь О-Н сильно поляризуется, и атом водорода становится крайне уязвимым. Он легко отщепляется, вступая в химические взаимодействия.

Поэтому кислоты в соответствующих индикаторах дают подобную реакцию:

  • фенолфталеин — бесцветный;
  • лакмус — красный;
  • универсальный — красный;
  • метилоранжевый — красный и прочие.

Благодаря атому водорода, карбоновые кислоты проявляют окислительные свойства. Однако наличие других атомов позволяет им восстанавливаться, участвовать во многих других взаимодействиях.

Классификация

Можно выделить несколько основных признаков, по которым делят на группы карбоновые кислоты. Первый из них — это природа радикала. По этому фактору выделяют:

  • Алициклические кислоты. Пример: хинная.
  • Ароматические. Пример: бензойная.
  • Алифатические. Пример: уксусная, акриловая, щавелевая и прочие.
  • Гетероциклические. Пример: никотиновая.

Если говорить о связях в молекуле, то также можно выделить две группы кислот:

  • предельные — все связи только одинарные;
  • непредельные — в наличии двойные, одна или несколько.

Также признаком классификации может служить количество функциональных групп. Так, выделяют следующие категории.

  1. Одноосновные — только одна -СООН-группа. Пример: муравьиная, стеариновая, бутановая, валериановая и прочие.
  2. Двухосновные — соответственно, две группы -СООН. Пример: щавелевая, малоновая и другие.
  3. Многоосновные — лимонная, молочная и прочие.

Далее в данной статье речь пойдет только о предельных одноосновных карбоновых кислотах алифатического ряда.

История открытия

Виноделие процветало с самой древности. А, как известно, один из его продуктов — уксусная кислота. Поэтому история известности данного класса соединений берет свои корни еще со времен Роберта Бойля и Иоганна Глаубера. Однако при этом химическую природу этих молекул выяснить долгое время не удавалось.

Ведь долгое время господствовали взгляды виталистов, которые отрицали возможность образования органики без живых существ. Но уже в 1670 году Д. Рэй сумел получить самого первого представителя — метановую или муравьиную кислоту. Сделал он это, нагревая в колбе живых муравьев.

Позже работы ученых Берцелиуса и Кольбе показали возможность синтеза этих соединений из неорганических веществ (перегонкой древесного угля). В результате была получена уксусная. Таким образом были изучены карбоновые кислоты (физические свойства, строение) и положено начало для открытия всех остальных представителей ряда алифатических соединений.

Способы получения

Существует несколько основных способов, которыми можно получать предельные карбоновые кислоты.

1. В лаборатории это делают окислением:

  • спиртов;
  • альдегидов;
  • алкинов;
  • алкилбензолов;
  • деструкцией алкенов.

2. Гидролиз:

  • сложных эфиров;
  • нитрилов;
  • амидов;
  • тригалогеналканов.

3. Декарбоксилирование — отщепление молекулы СО2.

4. В промышленности синтез осуществляют окислением углеводородов с большим числом атомов углерода в цепи. Процесс осуществляется в несколько стадий с выходом множества побочных продуктов.

5. Некоторые отдельные кислоты (муравьиная, уксусная, масляная, валериановая и прочие) получают специфическими способами, используя природные ингредиенты.

Основные соединения предельных карбоновых кислот: соли

Соли карбоновых кислот — важные соединения, используемые в промышленности. Они получаются в результате взаимодействия последних с:

Особенно важное значение среди них имеют те, что образуются между щелочными металлами натрием и калием и высшими предельными кислотами — пальмитиновой, стеариновой. Ведь продукты подобного взаимодействия — мыла, жидкие и твердые.

Мыла

Так, если речь идет о подобной реакции: 2C17H35-COOH + 2Na = 2C17H35COONa + H2,

то образующийся продукт — стеарат натрия — это есть по своей природе обычное хозяйственное мыло, используемое для стирки белья.

Если заменить кислоту на пальмитиновую, а металл на калий, то получится пальмитат калия — жидкое мыло для мытья рук.

Поэтому можно с уверенностью заявлять, что соли карбоновых кислот — это на самом деле важные соединения органической природы. Их промышленное производство и использование просто колоссально в своих масштабах.

Если представить, сколько мыла тратит каждый человек на Земле, то несложно вообразить и эти масштабы.

Эфиры карбоновых кислот

Особая группа соединений, которая имеет свое место в классификации органических веществ. Это класс сложных эфиров. Образуются они при реакции карбоновых кислот со спиртами. Название таких взаимодействий — реакции этерификации. Общий вид можно представить уравнением:

R,-COOH + R»-OH = R,-COOR» + H2O.

Продукт с двумя радикалами и есть сложный эфир. Очевидно, что в результате реакции карбоновая кислота, спирт, сложный эфир и вода претерпели значительные изменения.

Так, водород от молекулы кислоты уходит в виде катиона и встречается с гидроксо-группой, отщепившейся от спирта. В итоге формируется молекула воды.

Группировка, оставшаяся от кислоты, присоединяет к себе радикал от спирта, образуя молекулу сложного эфира.

Чем же так важны эти реакции и в чем промышленное значение их продуктов? Все дело в том, что сложные эфиры используются, как:

  • пищевые добавки;
  • ароматические добавки;
  • составной компонент парфюма;
  • растворители;
  • компоненты лаков, красок, пластмасс;
  • медикаментов и прочее.

Понятно, что области их использования достаточно широки, чтобы оправдать объемы производства в промышленности.

Этановая кислота (уксусная)

Это предельная одноосновная карбоновая кислота алифатического ряда, которая является одной из самых распространенных по объемам производства во всем мире. Формула ее — СН3СООН. Такой распространенности она обязана своим свойствам. Ведь области ее использования крайне широки.

  1. Она является пищевой добавкой под кодом Е-260.
  2. Используется в пищевой промышленности для консервации.
  3. Применяется в медицине для синтеза лекарственных средств.
  4. Компонент при получении душистых соединений.
  5. Растворитель.
  6. Участник процесса книгопечатания, крашения тканей.
  7. Необходимый компонент в реакциях химических синтезов множества веществ.

В быту ее 80-процентный раствор принято называть уксусной эссенцией, а если разбавить его до 15%, то получится просто уксус. Чистая 100% кислота называется ледяной уксусной.

Муравьиная кислота

Самый первый и простой представитель данного класса. Формула — НСООН. Также является пищевой добавкой под кодом Е-236. Ее природные источники:

  • муравьи и пчелы;
  • крапива;
  • хвоя;
  • фрукты.

Основные области использования:

  • для консервации и подготовки животного корма;
  • применяется для борьбы с паразитами;
  • для крашения тканей, протравки деталей;
  • как растворитель;
  • отбеливатель;
  • в медицине — для дезинфекции приборов и оборудования;
  • для получения монооксида углерода в лаборатории.

Также в хирургии растворы данной кислоты используют как антисептические средства.

Номенклатура, классификация и свойства карбоновых кислот

Карбоновые кислоты

1001student.ru > Химия > Номенклатура, классификация и свойства карбоновых кислот

Органические соединения, называемые карбоновыми кислотами, — класс органических соединений, в составе молекул которых содержатся карбоксильные группы, -COOH, одна или несколько. Лёгкое отщепление протона карбоксильной группы обуславливает кислые свойства таких соединений.

  • Номенклатура и строение органических соединений
  • Классификация карбоновых кислот
  • Качественные реакции
  • Физические свойства
  • Химические свойства
  • Способы получения
  • Применение карбоновых кислот

Номенклатура и строение органических соединений

Название в номенклатуре ИЮПАК строится из названия углеводорода, соответствующего углеродной цепочке, содержащей функциональную группу, с окончанием «овая» и добавлением слова «кислота».

Атом углерода в составе карбоксильной группы считается первым в углеводородной цепочке.

Например, для формулы СН3-СН2-COOH название вещества — пропановая кислота, а СН3-С(СН3)-СООН — 2-метилпропановая, CH3CH2CH2COOH — бутановая.

Рациональная номенклатура к названию углеводорода требует добавления окончания «карбоновая» и слова «кислота», причём атом углерода карбоксила в нумерацию не включается. Например, этилкарбоновая кислота — СН3-СН2-СООН.

У многих веществ гомологического ряда кислот есть тривиальные названия. Например, уксусная (СН3-СООН), муравьиная (НСООН), валериановая (С4Н8-СООН), маргариновая (С16Н33-СООН) и многие другие.

Функциональная группа COOH состоит из карбонила — CO и гидроксила — OH, тем не менее свойства кислот отличаются от свойств альдегидов и спиртов, содержащих в своём составе эти группы.

Общая формула предельных одноосновных карбоновых кислот R-COOH, где R — углеводородный радикал.

Качественные реакции

Самые основные качественные реакции органической химии:

  • окраска индикатора — красное окрашивание лакмуса;
  • реакция с карбонатами или гидрокарбонатами, например, с содой — выделение СО2;
  • реакция этерификации — характерный запах продукта реакции (эфира).
Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть