Водород как источник энергии

Выбор источника: можно ли говорить о конце нефтегазовой энергетики

Водород как источник энергии

13 июля 2016

Источник: www.rbc.ru/opinions/technology_and_media/13/07/2016/5784e0879a7947ba3bfe0405

Владимир Туманов,
Заведующий лабораторией «Накопители электрической энергии» кафедры физической химии НИТУ «МИСиС»

Водород в отличие от солнечного излучения и ветра действительно может стать основным источником энергии, но это дело достаточно далекого будущего.

О предстоящем завершении эпохи углеводородов в энергетике говорят почти все. Спор идет скорее о сроках.

Например, на недавнем Петербургском экономическом форуме министр энергетики Александр Новак говорил, что нефть и газ останутся основными источниками энергии до 2040 года.

А по мнению главы Сбербанка Германа Грефа, они перестанут быть основными источниками энергии раньше — на рубеже 2030 года.

Нефть, газ, водород

По-моему, спор о том, какой источник энергии лучше, лишен смысла: природа создала их в большом количестве, и в зависимости от потенциала добычи и разработанных человечеством технологий тот или иной источник и будет основным.

Но на разных этапах развития технологического прогресса человечество не раз сталкивалось с необходимостью выбора в пользу новых источников энергии.

Вместе с промышленной революцией на смену органике (проще говоря, дровам) пришел уголь, затем появились нефть и газ, разработки в области водородной энергетики.

Сегодня, когда объемы потребления растут с каждым днем, все чаще возникают вопросы о будущем углеводородной энергетики. Идут споры об атомной энергетике, ведутся работы по управляемому термоядерному синтезу.

Однако говорить о конце углеводородной эпохи в перспективе ближайших 20 лет невозможно. Более того, все ресурсы, которыми природа обеспечила человечество, будут активно потребляться, несмотря на возникновение и развитие новых альтернативных источников.

Тех ископаемых, что на сегодняшний день доступны человечеству, хватит на долгое время. Разговоры о том, что через 50 лет на Земле закончится нефть, глупость: процесс ее выработки бесконечен. Запасы угля и вовсе не будут исчерпаны еще примерно 400 лет.

Нефть и газ останутся основными источниками энергии к 2040 году.

А вот в дальнейшей перспективе наиболее эффективным и экологически чистым источником энергии станет не солнечное излучение или ветер, о которых сейчас так много говорят, а первый элемент в таблице Менделеева — водород.

Из 40 г водорода можно получить 1 кВт·ч​ энергии. Технически кислород и водород соединяются через топливный элемент, где через мембрану происходит преобразование их химической энергии в электричество.

Продукт реакции — вода!

Вопрос цены

Еще в конце XIX века возник спор, как будет дальше развиваться транспорт, на топливных элементах или на бензиновых моторах. Несмотря на то что водородная энергетика давала бóльший КПД, моторы победили из-за большей технологической готовности и наличия дешевого в сравнении с водородом моторного топлива из нефти.

Вторая попытка внедрения топливных водородных элементов состоялась в конце ХХ века. Практически все ведущие мировые автогиганты разработали водородные модели экотранспорта. Однако до настоящего времени проблема получения дешевого водорода так и не решена.

Резкое падение стоимости нефти также отодвигает время внедрения водородных технологий на транспорте и в стационарной энергетике.

Основным источником водорода в природе является вода. Воды в океанах огромное количество. Последние исследования показали, что объем структурных подземных вод на глубине порядка 480 км в разы больше, чем во всех океанах вместе взятых.

Получать водород обычным электролизом дорого: процесс требует большого количества энергии. Но есть Солнце — для нашей цивилизации это бесконечный источник световой энергии. Разлагать воду на водород и кислород наиболее эффективно путем фотолиза — процесс идет непосредственно в специальных ячейках под воздействии солнечного излучения.

Такие ячейки были созданы в конце прошлого века в Физико-техническом институте им. Иоффе и Институте катализа СО РАН. К сожалению, эти разработки остались на уровне лабораторных образцов и диссертаций. Были попытки возобновить работы по программе водородной энергетики «Норильский никель — РАН», но в 2008 году эта программа была закрыта.

Практическая реализация таких устройств станет возможной при обеспечении КПД фотолиза хотя бы до уровня 10–15%. Пока рекорд — 11%. Это произведет революцию в области энергетики, отодвинув на задний план ветрогенераторы, наносящие непоправимый урон биосфере, и солнечные батареи, которые очень сложно утилизировать.

Для того чтобы водород стал превалирующим источником энергии, необходимо решить проблемы его производства и хранения. По оценке американских экспертов, если стоимость производства водорода составит не более $5 за килограмм, от другого топлива можно будет отказаться.

В таком случае будет решена и проблема создания топливных элементов для автомобильной промышленности. Сейчас у электромобилей хорошие перспективы на рынке, особенно в тех странах, где государство стимулирует разработки в данном направлении. В России ситуация иная.

Здесь оптимальным мог бы стать гибридный автомобиль с электрическим приводом, работающий на газовом топливе или бензине. Ведь именно в России функционирует самая развитая система газозаправки в мире: 65% потенциальных потребителей имеют доступ и к бензину, и к газу.

Экономные гибриды

Не менее важной, чем поиск новых источников энергии, является задача ее экономии. Отсюда одно из направлений работы нашего университета МИСИС — повышение энергоэффективности. Одной из таких разработок являются суперконденсаторы, для которых у нас разрабатываются перспективные электродные и электролитные материалы.

Суперконденсаторы наиболее полезны в гибридном транспорте — колесном и рельсовом. Принцип его работы заключается в накоплении энергии, выработанной при торможении, которая затем расходуется на разгоне, что дает экономию порядка 30%. КПД суперконденсаторов сопоставим с КПД электрического мотора, то есть порядка 95–98%.

В ближайшем будущем мы надеемся, что эти разработки появятся в городских экобусах, составах метрополитена и в других областях техники.

Кроме того, разработанные нами элементы позволят обеспечить бесперебойное движение поездов в метро.

В ситуациях, когда происходит аварийное отключение электричества, накопленная энергия позволит составу проследовать несколько километров до станции за счет накопленной энергии.

Переход на стадию производства подобных систем должен произойти в ближайшие два года.

Источник: https://altenergiya.ru/apologiya/vodorod-kak-istochnik-energii.html

Водород как источник энергии

Водород как источник энергии

Продолжим наши познания по передовым технологиям, где в качестве энергии используется водород. В предыдущей статье мы вкратце охарактеризовали существующие технологии получения газообразного водорода. Продолжим наш путь и заглянем в ближайшее будущее.

О судьбе «Гинденбурга»

“Для тотального перехода на водород потребуются не только энергоресурсы для его производства, но и развитая инфраструктура для его транспортировки и хранения — трубопроводы, железнодорожные цистерны, морские танкеры, резервуары, автозаправки.

Одна из главных причин несколько настороженного отношения общества к водородной революции заключается в том, что водород очень летуч и взрывоопасен. Там, где будет храниться, транспортироваться или использоваться водород, необходимо наличие высокочувствительных газоанализаторов, которые просигналят о малейшей утечке.

Правда, сторонники активного использования водорода утверждают, что опасность преувеличена. В отличие от тяжелых газов типа метана, утекший из баллона легкий водород мгновенно поднимается вверх и развеивается.

В пример приводят историю катастрофы дирижабля «Гинденбург», в котором вспыхнувший водород горел всего 32 секунды, что позволило 62 из 97 пассажиров не сгинуть в огне и выжить. Но в любом случае присутствие на улицах большого количества транспортных средств, в которых под давлением находится взрывоопасный газ, потребует нового уровня безопасности движения.

Все эти факторы, ограничивающие широкое применение водорода, свидетельствуют в пользу того, что переход на новое топливо будет происходить не очень быстрыми темпами.

Продажи пионерской Toyota Mirai на водородных топливных элементах, начавшиеся в 2015 году, приблизились лишь к рубежу 3000 штук — и это на огромном рынке, в который входят не только Япония, но и США, ЕС, ОАЭ.

Очевидно, что водород как топливо будет еще долго соседствовать как с традиционными углеводородами, так и с литий-ионными аккумуляторами (в электромобилях).

При этом опережающими темпами водородные технологии смогут развиваться в отдельных наиболее перспективных нишах, например, в сфере электрических БПЛА.

Дело в том, что КПД водородного топливного элемента очень высок, за счет того что энергия, выделяемая при соединении водорода с кислородом, утилизируется непосредственно в электричество, без значительных потерь в виде тепла, как это происходило бы при сжигании топлива в цикле Карно. Используя энергию топлива по максимуму, БПЛА с топливным элементом может оставаться в воздухе гораздо дольше, чем беспилотник с сопоставимой взлетной массой, но питающий двигатель от широко применяемых литий-ионных аккумуляторов.

Твердый водород?

В России лидерами в создании водородно-воздушных топливных элементов (ВВТЭ) для БПЛА и не только являются Институт проблем физической химии ИПФХ РАН и Центральный институт авиационного моторостроения ЦИАМ им. Баранова. ВВТЭ ИПФХ в апреле 2016 года обеспечил рекордный полет длительностью 3 часа 10 минут октокоптера-концепта НЕЛК-88 совместного производства компании НЕЛК и ИПФХ РАН.

Схема размещения гранул «твердого водорода» в крыле БПЛА

Водородная бортовая система обладает очень хорошим ВВТЭ и эффективно работает, но с появлением на борту сжатого баллонного водорода возникли проблемы немалого веса и габарита. Кроме того, сохраняется вероятность утечки газа, что небезопасно. Новейшие сверхпрочные материалы и технологии до конца эту проблему не решили.

Чтобы иметь на борту водорода побольше и в более легкой системе хранения, пробовали перейти на сжиженный при температуре -253°C водород, плотность которого втрое выше плотности водорода, сжатого до стандартных для баллонных систем давлений 300−350 атм., что могло бы увеличить энергоемкость системы.

Но проблемы с сосудом Дьюара, термоизоляцией, заправкой и т. п. от такой идеи заставили отказаться. Выход был найден, когда вспомнили о твердых металлических гидридах. В гидриде водород настолько плотно запакован, что о каких-либо его просачиваниях речи не идет.

Поэтому «твердый» водород — это серьезный аргумент в решении проблемы безопасности и людей, и техники.

В разных гидридах — натрия, магния, бора и др. — водород в весовом отношении существует в разном количестве, и чемпионом здесь является боран аммиака (боразан) с 20%-м содержанием водорода.

Для получения необходимого для ВВТЭ газообразного водорода боран аммиака достаточно осторожно нагреть, чтобы не было его плавления с пенообразованием, до температуры 85−100°С.

Получение такой температуры на борту БПЛА не проблема: до нее при работе, например, нагреваются ВВТЭ.

Полет на таблетках

Не так давно в этой сфере произошло два знаковых события. Первое — в самом начале февраля 2016 года, когда британская компания Cella Energy совместно с шотландской ассоциацией морских наук SAMS на полигоне в Аргайле провела успешные испытания твердоводородной технологии на беспилотнике-демонстраторе. По плану полет продолжался десять минут, БЛА поднимался на высоту 80 м.

Второе событие имело место в середине февраля 2016 года в Сингапуре, накануне открытия там Air Show 2016.

Тогда серийный мини-БЛА Skyblade 360 UAV компании HES Energy Systems осуществил управляемый полет в течение шести часов и суммарно налетал 300 км со скоростью 50−55 км/ч.

В обоих случаях разработчики использовали похожие технологии изготовления материала-носителя водорода и получения из него водорода газообразного.

Материал гидрида был изготовлен в виде гранул, которые размещались на печатной монтажной ленте, что делало удобным производить последовательный, от гранулы к грануле, их осторожный нагрев от бортового источника тепла. Гранулы компании Cella из бoрана аммиака имели квадратное сечение со стороной 1 см.

Они были помещены в картридж-газогенератор цилиндрической формы, в котором после выделения газообразного водорода поддерживался необходимый уровень рабочего давления — кстати, небольшой.

Технология «гранулы в картридже» позволяет масштабировать топливную загрузку в зависимости от конкретного задания, что обеспечивает гибкость в применении беспилотника.

Ничего не пропадет

При производстве гранул боразана использовалась технология наноструктурирования с получением наночастиц гидрида размером 4−6 нм (в 30 раз меньше размеров песчинки, как это было у компании Cella), и это способствовало высокой отдаче водорода. 1 г структурированной гранулы отдает с эффективностью более 90−95% 1 л газообразного водорода.

Но что делать с отработавшим картриджем, в котором после извлечения водорода из гидрида остается много полезного материала? Конечно, такой картридж никто не собирается выбрасывать, а оставшийся в нем остаток — полиборазилен — восстанавливают до состояния борана аммиака насыщением водородом в присутствии специального катализатора, например, на основе рутения. Уже имеется технология регенерации, по которой все происходит в «одном котле» — прямо в отработавшем картридже, что делает процесс безопасным и упрощает производственную цепочку.

Оценивая перспективы водорода как источника энергии, мы в основном опираемся на существующие технологии его производства и применения. Однако чуть ли не каждый день в этой сфере происходит что-то новое (что показывает стремительное пришествие «твердого водорода»), и, возможно, водородная экономика придет к нам в итоге в совершенно ином обличье”. Источник

Спасибо за прочтение. 

Источник: http://savenergy.info/page/hydrogen-as-source-energy/

Водород, как альтернативный источник энергии для горнодобывающей индустрии. Энергобезопасность и автономность

Водород как источник энергии

Водород, как альтернативный источник энергии для горнодобывающей индустрии. Энергобезопасность и автономность

Институт Роки-Маунтин (штат Колорадо, США) занимается исследованиями в области применения водорода в качестве альтернативного источника энергии для горнодобывающей индустрии.

Водород заменит дизель в качестве топлива для транспорта и добывающих устройств, а также позволит делать резервы для удаленных от населенных пунктов шахт, повышая тем самым уровень энергобезопасности.

Но главным и неоспоримым достоинством водорода является сокращение выбросов CO2.

В статье GreenBiz ученые пишут об использовании водорода в добывающей промышленности, чтобы оценить перспективы и сроки внедрения новых технологий в одну из старейших отраслей промышленности.

Недооцененный водород

Горнодобывающие компании сталкиваются с серьезными проблемами в области продвижения декарбонизации — отказа от использования ископаемого топлива из-за пагубного влияния углеродных выбросов в атмосферу.

Сейчас они в поисках, в том числе и новых технологических возможностей. Особенность в том, что достаточно сложно провести подобную модернизацию, не снижая эффективность систем добычи и обработки.

Решения, связанные с возобновляемыми источниками энергии, могут компенсировать многие из этих проблем.

Но некоторым компаниям необходим альтернативный вариант гибких изменений. Водород начали использовать в качестве топлива без выбросов как новый способ обработки горных пород, для тяжелых транспортных средств и в производстве электроэнергии. Причина проста — он обладает необходимыми качествами для решения проблем обработки и эксплуатации, давлеющими над горнодобывающим сектором.

Судя по заявлению компании Anglo American, планирующей создать внутреннюю инвестиционную единицу для поддержки водородных технологий, а также совместным усилиям Rio Tinto, Apple и Alcoa по декарбонизации процесса плавки алюминия (Elysis), использование водорода в горнодобывающих отраслях набирает обороты. 

Как и многие другие перспективные проекты, водородные технологии достаточно быстро были применены на практике, еще до того, как они были доведены до совершенства.

Несмотря на планирование и значительные инвестиции в начале 2000-х годов, водородная индустрия так и не смогла обеспечить значительное внедрение технологий — использование топливных элементов и финансовую выгоду для инвесторов.

Однако этот первоначальный сбой не умалил международный интерес к водороду, и такие организации, как МЭА (IEA) и McKinsey, по-прежнему считают, что водород будет играть решающую роль в глобальном переходе энергии в экономику с низким уровнем выбросов углерода.

В 2018 году Shell выпустила свой последний сценарий полной декарбонизации — «Небо». В нем изложено видение будущего: 10% от общей потребляемой конечной энергии будет поступать из водорода, причем это топливо будет использоваться в различных областях промышленного и коммерческого отопления, транспортном секторе и секторе долговременных складских помещений.

Между тем орган, названный Водородным советом, включающий гиганты промышленности — Audi, BMW, Bosch, Engie, Equinor, GM, Honda, Marubeni и еще 32 ведущих мировых производителя, опубликовал дорожную карту использования водорода в 2017 году.

 Дорожная карта демонстрирует, что к 2050 году водород может составлять 18% от общего потребления энергии в мире.

При учете, что прогнозы Совета оправдаются и на водородном топливе будут передвигаться 400 млн автомобилей, 15–20 млн грузовиков и 5 млн автобусов, глобальные выбросы CO2 сократятся на 60%. 

Многие наблюдатели задаются вопросом, будут ли эти технологии применимы к транспортным средствам большой грузоподъемности, таким как шахтные грузовые подъемники.

Действительно, возможность использования водородного топлива в крупной технике еще не изучена до конца, но работы неустанно ведутся.

Учитывая этот пробел в исследованиях и проблемы, связанные с непрерывным производственным циклом на рудниках, очень ценны исследования для поиска механизма избавления от некоторых из наиболее укоренившихся проблем горнодобывающей промышленности.

Топливо и резервный запас энергии

Именно в этом контексте инвесторы и предприниматели начали изучать коммерчески выгодные заявки на использование водорода. Одним из возможных вариантов использования является горнодобывающий сектор.

Стремление компаний сделать свой сектор более безопасным и экологически безвредным вызвало значительный интерес к использованию водорода на местах, а также к развертыванию технологий на горных грузовиках и другой отраслевой технике.

Ряд электромобилей с водородными топливными элементами (FCEV) уже поступил в продажу, в том числе Hyundai ix35 и Toyota Mirai. FCEV могут вскоре заменить обычные легковые транспортные средства и другие виды малогабаритного транспорта.

Более того, использование водородных топливных элементов в более крупной технике, например, в поезде Alstom Coradia iLint и большом грузовике Nikola One, наглядно показывает, что они поддерживают значительную мощность двигателя и крутящий момент, а также экономят топливо для тяжелой техники.

Широко используемый сверхпрочный карьерный самосвал, такой как CAT 785D, имеет валовую грузоподъемность в 1 450 фунтов при собственном весе 46–67 тыс. фунтов, в то время как Nikola One генерирует до 1000 л. с. на раме грузоподъемностью 18–21 тыс. фунтов с помощью топливного элемента мощностью 300 кВт.

Если увеличить мощность, три аккумуляторные батареи Nikola мощностью 320 кВт будут весить 9–12 тыс. фунтов и обеспечивать крутящий момент до 6 тыс. футо-фунтов. Это выгодно отличается от дизельного двигателя CAT 3512C HD, который имеет массу двигателя 14 650 фунтов с максимальным крутящим моментом — 6 910 футо-футов.

Это предположение демонстрирует возможности и потенциал для технологий, связанных с водородом. Применение линейного масштабирования аккумуляторной батареи Nikola также является показательным и еще будет полем для дальнейших исследований.

Тем не менее, он показывает потенциальную способность решить проблему без нарушения цикла производства на участке и без ущерба для способности транспортного средства.

Водород также представляет собой эффективную среду для хранения энергии в небольших шахтах, с многочисленными возможностями для производства топлива и долговременной избыточной энергии.

На Оркнейских островах избыточная возобновляемая электроэнергия, вырабатываемая Европейским морским энергетическим центром и ветряными турбинами островов, превращается в водород электролизером протонной обменной мембраны (ПЭМ).

При этом сам водородный топливный элемент хранится в столице островов для обеспечения управляемой «зеленой» мощности. Эта гибкость демонстрирует, что водород обладает динамической значимостью использования в различных процессах вокруг шахты. В том числе, в качестве:

  • топлива для грузовиков и погрузчиков;
  • энергии для систем отопления и охлаждения;
  • вторичного или резервного топлива для производства электроэнергии для повышения энергобезопасности.

Последняя опция может потенциально стать механизмом, позволяющим горнодобывающим компаниям уменьшать традиционную зависимость от дизельных резервных генераторов и двигаться в сторону более чистого источника энергии, способного эффективно обеспечивать сектор тяжелой промышленности.

Альтернатива дизелю

Возможность замены дизельного топлива также оправдывает разумная рыночная стоимость водорода по сравнению с дизелем. Большинство машин в горнодобывающей отрасли использует именно дизель для питания электродвигателя.

Оценки Министерства энергетики США свидетельствуют, что к 2020 году распределенный электролиз (с использованием внепиковой электроэнергии) может достигнуть $2,30/ГГЭ (галлон бензинового эквивалента) водорода, что делает его конкурентоспособным по отношению к ценам на бензин в США.

Но это вряд ли отразит более широкие преимущества по стоимости, добавляемые с помощью электролизера к мини-электросетям для отдельно взятого участка рудника, поскольку он не отражает стоимость электроэнергии, которая может быть продана, и не включает в себя значение частотных характеристик, предоставляющих такие изменения. Соответственно, переход от топлива к водороду обеспечивает экономию средств при операциях и расходах на техническое обслуживание и материально-техническое обеспечение. И речь идет о производстве и в рамках шахты, и вторичного товара, который можно продавать, даже если шахта временно закрыта.

Это крайне обоснованная почва для будущих инвестиций и сокращения расходов в этом секторе.

Например, компания Voestalpine в партнерстве с Siemens и Verbund изучает потенциал замены кокса для производственных нужд на водород, а SSAB, поддерживаемый Vattenfall и Luossavaara-Kiirunavaara, планирует ликвидировать большую часть своих выбросов CO2 к 2045 году, рассматривая водород как потенциальное решение. Соответственно, будущее массовое использование водорода в процессах интенсивной переработки, которые происходят на шахтных участках, уже не за горами.

Будущее за автономными шахтами

Набор инструментов для внедрения водорода в качестве источника топлива в горнодобывающую отрасль промышленности уже существует.

Несмотря на то, что у водорода тоже есть свои недостатки, его использование сократит материально-технические и эксплуатационные расходы на удаленные от населенных пунктов шахты.

В то же время водород обеспечит персонал шахт системным резервированием и резервным запасом топлива, а также уменьшит нагрузку на системы вентиляции подземных рудников.

Эти неоспоримые плюсы должны стимулировать увеличение инвестиций и крупномасштабное развертывание возобновляемых источников энергии в секторе тяжелой промышленности. Кроме того, возможности использования водорода предлагают еще одну разработку шахты будущего, в которой углеродное загрязнение на участке значительно сократится, а шахта станет более автономной и безопасной.

Читайте самые интересные истории ЭлектроВестей в Telegram и Viber

Источник: https://elektrovesti.net/63197_vodorod-kak-alternativnyy-istochnik-energii-dlya-gornodobyvayushchey-industrii-energobezopasnost-i-avtonomnost

Водородная энергетика: начало большого пути

Водород как источник энергии

Водородная энергетика – одна из самых перспективных отраслей. узнаем самые продвинутые и известные водородные технологии.

C ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.

Водородные топливные элементы

Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века.

Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность и заметил, что под действием электрического тока вода распадается на водород и кислород.

После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита. 

Позже, в 1959 году, Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовалось правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов. 

Водородный топливный элемент из сервисного модуля «Аполлонов», вырабатывающий электричество, тепло и воду для астронавтов.

Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне.

Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода.

Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода. 

Принцип работы водородного топливного элемента. 

С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.

С точки зрения «зеленой» энергетики у водородных топливных элементов крайне высокий КПД — 60%. Для сравнения: КПД лучших двигателей внутреннего сгорания составляет 35-40%.

Для солнечных электростанций коэффициент составляет всего 15-20%, но сильно зависит от погодных условий.

КПД лучших крыльчатых ветряных электростанций доходит до 40%, что сравнимо с парогенераторами, но ветряки также требуют подходящих погодных условий и дорогого обслуживания. 

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода. 

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа. Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е.

давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%.

Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве. 

Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. 

Более удобный и простой метод — электролиз воды. При прохождении электрического тока через обрабатываемую воду происходит серия электрохимических реакций, в результате которых образуется водород. Существенный недостаток этого способа — большие энергозатраты, необходимые для проведения реакции.

То есть получается несколько странная ситуация: для получения водородной энергии нужна… энергия. Во избежание возникновения при электролизе ненужных затрат и сохранения ценных ресурсов некоторые компании стремятся разработать системы полного цикла «электричество — водород— электричество», в которых получение энергии становится возможным без внешней подпитки.

Примером такой системы является разработка Toshiba H2One.   

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света.

Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м3 водорода станции требуется до 2,5 м3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно.

Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества.

К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.   

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки. 

Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте).

Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность.

Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи. 

Стало известно, что на грядущих Олимпийских играх в Токио водород будет использоваться в автомобилях, при производстве электричества и тепла, а также станет главным источником энергии для олимпийской деревни.

Для этого по заказу Toshiba Energy Systems & Solutions Corp. в японском городе Намиэ строится одна из крупнейших в мире станций по производству водорода.

Станция будет потреблять до 10 МВт энергии, полученной из «зеленых» источников, генерируя электролизом до 900 тонн водорода в год.

Водородная энергетика — это наш «запас на будущее», когда от ископаемого топлива придется окончательно отказаться, а возобновляемые источники энергии не смогут покрывать нужды человечества. Согласно прогнозу Markets&Markets объем мирового производства водорода, который сейчас составляет $115 млрд, к 2022 году вырастет до $154 млрд.

Но в ближайшем будущем массовое внедрение технологии вряд ли произойдет, необходимо еще решить ряд проблем, связанных с производством и эксплуатацией специальных энергоустановок, снизить их стоимость.

Когда технологические барьеры будут преодолены, водородная энергетика выйдет на новый уровень и, возможно, будет так же распространена, как сегодня традиционная или гидроэнергетика. опубликовано econet.

ru  

Подписывайтесь на наш канал Яндекс Дзен!

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление – мы вместе изменяем мир! © econet

Источник: https://econet.ru/articles/vodorodnaya-energetika-nachalo-bolshogo-puti

Производство водорода для получения энергии

Водород как источник энергии

Со школьных уроков химии и физики известно, что энергия водорода сосредоточенная в этом газе довольно значительна. Искры достаточно, чтобы воспламенить смесь нормального воздуха и водорода полученного в результате опыта на школьных уроках.

Так как человечеству необходимы все больше энергии чистая водородная энергия пришлась бы кстати.

Топливные элементы могут генерировать столь востребованную электроэнергию из этого газа. Неудивительно, что многие люди с видением глобальной водородной экономики видят в этом решение наших текущих климатических проблем.

Энергия  водорода  может в то же время помочь нам избавиться от загрязнения воздуха, кислотных дождей и других экологических проблем, вызванных другими источниками.

Жюль Верн увидел потенциал энергии  водорода  еще в 1874 году в романе  «Таинственный остров», и вопрос в том, почему процветающая водородная промышленность еще не развилась.

Ответ прост: этот газ не встречается в природе в чистом виде и нужно преобразование энергии. Энергетика и комплекс технических процессов необходим прежде чем его можно выделить и использовать как водородную энергию.

Отделение до чистого водорода делает его дорогим, а некоторые производственные процессы даже приводят к высоким выбросам парниковых газов.

Но даже если водородная промышленность еще только на чертежной доске, вторичная энергия водорода все еще интересна как альтернативный источник для некоторых областей применения.

Что  представляет первый элемент периодической системы

Водород является наиболее распространенным компонентом в нашей Солнечной системе и имеет около 75% массы и более 90% всех атомов. Наше Солнце и большие газовые планеты Юпитер, Сатурн, Уран и Нептун состоят в основном из этого газа.

На Земле этот газ встречается гораздо реже. Его доля в общем весе Земли составляет только около 0,12%. Хотя водород чаще встречается в земной коре, его практически нет в чистом виде.

Он почти всегда химически связан и наиболее частым соединением является вода.

Водород — самый маленький и легкий атом.

Как чрезвычайно легкий газ, он был использован для наполнения газовых баллонов дирижаблей жесткой формы как Цеппелины, в течение первой половины девятнадцатого века.

Катастрофа в Гинденбурге в США в 1937 году, где предположительно произошел электростатический заряд который вызвал возгорание, положил трагический конец перспективам использования водорода в дирижаблях.

Основное применение водорода сегодня находится в химической промышленности. В качестве источника энергия водорода в настоящее время широко используется, в основном, в авиационном и космическом секторе.

Водород как источник энергии используется для привода реактивных двигателей самолетов.

В космических полетах жидкий водород используется в качестве ракетного топлива. Например,  запуск космического челнока потребляет около 1,4 млн литров жидкого водорода весом более 100 тонн создавая температуру горения до  3200° C.

Производство

Водородная энергетика использует несколько способов производства водорода.

Газ сначала должен быть получен в чистом виде, прежде чем энергия из него может быть получена. Это требует легкодоступного недорогого сырья, содержащего этот химический элемент.

Кроме воды (H2O), которая состоит из водорода (H) и кислорода (O) могут быть применены смеси углерода. Это в первую очередь природный газ или метан (CH4).

Мазут и уголь также состоят из водорода (H) и углерода (C), но имеют гораздо более высокую долю углерода, чем природный газ.

Из углеводородов

Современные промышленные методы получения водорода почти исключительно используют ископаемые  топливо, как природный газ, сырую нефть или уголь, как сырье.

Такие методы, как паровой риформинг или частичное окисление паром для получения водорода из ископаемых углеводородов. Этот процесс химически отделяет углерод который после этого превращается в окись углерода (CO).

Эти методы добычи водорода не являются идеальным вариантом с целью активной защиты климата.

В основном, упомянутый способ производства водорода из ископаемых  источников работает при высоких температурах обработки. Это требует большого количества внешних ресурсов.

Поэтому для получения водорода необходимы другие методы, с тем чтобы он был экологически чистым и безопасным. Идеальным способом является электролиз.

Методом электролиза

Немецкий химик Иоганн Вильгельм Риттер впервые использовал электролиз для получения водорода еще в 1800 году. С помощью электрической энергии, электролиз разлагает воду на водород и кислород.

Особенностью электролиза может быть то, что если электроэнергия добыта из возобновляемых источников, то производство водорода во всем цикле  может выделять только углекислый газ.

С помощью этого метода два электрода погружают в проводящий водный электролит. Это может быть смесь воды и серная кислота или гидроксид калия (KOH).

Аноды и катоды проводят постоянный ток в электролитах и на них образуются газы водород и кислород.

Хотя электролиз уже достиг высокого уровня технического развития, как экологически совместимый вариант производства кислорода, другие альтернативные методы также разрабатываются.

Термохимический метод

При температуре выше 1700° C вода непосредственно разлагается на водород и кислород.  Однако эти температуры требуют дорогостоящих термостойких средств. Необходимую температуру можно уменьшить ниже чем 1000° С через различные сопряженные химические реакции.

Биологическое получение

Другие методы включают фотобиологическое производство водорода. Суть этого метода в том, что некоторые водоросли во время роста при нехватке серы производят водород.  Это типа биореакторов использующих свет для разложения воды.

Хранение и транспортировка

После получения водорода он должен храниться и транспортироваться потребителю. В принципе, мы знакомы с хранением и транспортировкой горючих газов.

Водород — очень легкий газ с очень минимальной плотностью, но имеет относительно высокое значение энергоемкости. При сравнении с природным  газом то он требует гораздо больших объемов хранения, хотя накопленный водород намного легче.

Произведенный водород можно сохранить под высоким давлением и сжать для того чтобы уменьшить необходимые объемы хранения. При нормальном давлении этот газ конденсируется, но до тех пор, пока он не достигнет чрезвычайно низких температур минус 253° C.

Для достижения таких низких температур требуется определенное количество энергии. От 20 до 40%  энергии, хранящейся в водороде, используется для его сжижения.

В принципе, те же технологии, которые используются в секторе природного газа могут быть использованы для сжижения, транспортировки и хранения. Этот первый элемент периодической системы  можно транспортировать либо в трубопроводах, либо на специальных танкерах и грузовых судах.

В то время как трубопроводы, как правило, транспортируют газообразную форму, танкеры предпочтительны для жидкого водорода. В отличие от водорода, природный газ уже становится жидким при минус 162 ° C.

Опыт работы в газовой отрасли может быть использован для хранения и транспортировки водородной энергии.

Будущее применение

Топливные элементы считаются ключом к будущему использованию энергии водорода, поскольку они могут преобразовывать его непосредственно в электрическую энергию. Теоретически это приводит к более высокой эффективности, чем при сжигании в обычных тепловых электростанциях.

Принцип работы топливных элементов известен уже очень давно.

Есть некоторые споры о том, кто на самом деле изобрел топливный элемент:

  • Немецко-швейцарский химик Кристиан Фридрих  провел первые тесты в технологии топливных элементов в 1838 году.
  • Английский физик сэр Уильям Роберт Гроув построил первый топливный элемент в 1839 году.
  • Впоследствии такие известные ученые, как Анри Беккерель и Томас Эдисон, стали участвовать в их дальнейшем развитии. Однако это была довольно слабо продвинутая стадия развития.
  • Наконец, в середине двадцатого века была достигнута задача, позволившая применение и основное использование топливных элементов.

Топливные элементы, в основном, предполагают реверсирование электролиза. Топливный элемент всегда содержит два электрода.

В зависимости от типа топливного элемента, чистый водород (H2) или топливо содержащее углеводороды подают через анод и чистый кислород (О2 ) или воздух в качестве окислительного материала через катод.

Электролит отделяет анод и катод. Электроны текут по большой цепи и создают электрическую энергию.

С 1990-х годов разработка топливных элементов идет полным ходом. Автомобильные производители и энергокомпании приняли технологию и ищут способ получить прибыль от положительного применения водорода как источника энергии.

Источник: http://beelead.com/energiya-vodoroda/

Водородная энергетика

Водород как источник энергии

Водород – самый распространенный элемент на Земле. На его применении в качестве топлива базируется водородная энергетика – нетрадиционный способ получения энергии, который пока не так широко применяется на практике как альтернатива традиционным способам, или по сравнению с некоторыми другими нетрадиционными источниками энергии.

Составной частью водородной энергетики является процесс получения водорода из воды и другого сырья природного характера, а также хранение водорода в газообразном и сжиженном состояниях (или же в виде искусственно полученных химических соединений).

Важным компонентом выступает транспортировка водорода к потребителю, осуществляемая с небольшими потерями.

Водородная энергетика пока не получила широкого применения, поскольку не отработана четкая методика технологических процессов получения, хранения и транспортировки водорода, хотя разнообразные разработки и лабораторные исследования находятся в перспективной стадии.

Замечание 1

К преимуществам выбора водорода относится, прежде всего, его экологическая безопасность, так как продукт его сгорания вода, а также такие качества как исключительно высокая энтальпия (термодинамический потенциал 143,06 МДж/кг), высокая теплопроводность и низкая вязкость, что играет положительную роль при транспортировании по трубопроводам.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Способы получения водорода

Выделяют три способа получения водорода традиционными методами: химический, электролиз, термохимический. При каждом способе необходимо затрачивать природные ископаемые, поэтому все три способа экономически и экологически нецелесообразны, поскольку природные ресурсы истощимы (в настоящее время стремительно).

Водородная энергетика: недостатки и преимущества

  1. Главны проблем водородной энергетики две:
  • Это трата других энергоносителей (нефть, электричество, газ) для получения вещества и высокая угроза образования взрывов.

  • Кроме того, нет четко прописанного и экономически выгодного механизма получения водородной энергии, хотя специалистами активно разрабатываются варианты добычи водородного топлива. Но пока есть трудности в его добыче.

Стремясь найти возможности устранить недостатки, все большее внимание обращается на получение водорода из воды. В этом плане источник получения водородной энергетики неисчерпаем, учитывая водный потенциал (миллионы тонн воды в мировом океане).

  1. Преимущества:

    • Транспортировка по трубам без проблем, так как у водорода низкий показатель вязкости. Водород хранится в сжиженном, газообразном состоянии. У водорода продолжительный срок хранения, он достаточно легок.
    • Современные технологии водородной энергетики дают возможность иметь качественный топливный материал с высоким коэффициентом теплоотдачи. Этот энергоноситель имеет практическую сферу применения: в промышленном хозяйстве, в ЖКХ (для отопления жилых зданий).
    • Водородная энергетика безопасна для окружающей среды, не обладает токсичными свойствами, негативно влияющими на человека и животный мир природы.

Водород может быть применим в качестве топлива для двигателей внутреннего сгорания (у него большая эффективность по сравнению с бензином или дизельным топливом), при нагреве он не выделяет диоксид углерода, то есть в меньшей степени негативно влияет на атмосферу. Сегодня многие промышленные компании работают над созданием дешевых водородных топливных элементов, но пока это только перспектива.

Перспективы водородной энергетики

Водородная энергетика имеет, по сути, равное количество плюсов и минусов.

Одни ученые специалисты видят перспективный путь ее развития, указывая на то, что проблемы и недостатки могут быть сглажены или даже преодолены.

На этом пути выделяют две насущные задачи: изобрести новейшее оборудование для добычи водорода и удешевить процесс получения энергоносителя, снизив затраты газа. Но идеи должны быть превращены в реальность.

Замечание 2

Отметим и мнение ученых-пессимистов, считающих, что водородная энергетика не имеет перспективы, прежде всего, из-за возможной техногенной катастрофы всеобъемлющего масштаба.

Однако их мнение не имеет четкой аргументации и остается на уровне гипотез.

Скорее всего, верна «золотая середина»: водород – уникальный энергоноситель, но нуждаются в практической разработке технически совершенные способы его добычи.

Источник: https://spravochnick.ru/ekologiya/netradicionnye_istochniki_energii/vodorodnaya_energetika/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.