Альдегидо- и кетокислоты

Альдегидо и кетокислоты таутомерия стр. 4 — стр. 4

Альдегидо- и кетокислоты

24. Гидроксикислоты

Изомерия структурная и оптическая. Стереоизомеры молочной, хлоряблочной, винной кислот. Способы получения: из карбонильных соединений через оксинитрилы, гидролизом галогенкарбоновых кислот и др.

Химические свойства оксикислот как бифункциональных соединений. Кислотные свойства. Отношение к нагреванию -, -, -оксикислот.

Отдельные представители: гликолевая, молочная, яблочная, лимонная, изолимонная кислоты, их биологическое значение.

25. Альдегидо- и кетокислоты. Таутомерия

Глиоксиловая, пировиноградная, ацетоуксусная кислоты, их биологическое значение. Кислотные свойства. Декарбоксилирование.

Ацетоуксусный эфир (АУЭ), получение сложноэфирной конденсацией по Кляйзену. Таутомерия АУЭ – равновесие кетонной и енольной форм. Двойственная реакционная способность АУЭ. Опыт, доказывающий наличие равновесия. С- и О-алкилирование АУЭ. Енолятный анион АУЭ-амбидентный нуклеофил. Синтезы на основе АУЭ кетонов и карбоновых кислот.

26. Аминокислоты

Номенклатура. Изомерия структурная и оптическая. Получение аминокислот химическими и микробиологическими способами.

Химические свойства аминокислот как бифункциональных соединений. Амфотерность и образование биполярных ионов. Реакции по карбоксильной и аминогруппе. Отношение к нагреванию,,,,-аминокислот. Лактамы, лактам-лактимная таутомерия. Практическое значение аминокислот, производство полиамидных волокон (капрон, энант).

Биологическое значение -аминокислот. Понятие о пептидах и белках.

27. Углеводы

Классификация. Биологическое значение. Моносахариды. Номенклатура. Изомерия структурная и пространственная. Оптическая изомерия. Стереоизомеры пентоз и гексоз (рибоза, ксилоза, глюкоза, манноза, галактоза, рибулоза, фруктоза). Цикло-оксотаутомерия, - и -аномеры, пиранозы и фуранозы. Мутаротация. Конформации пиранозного цикла «кресло» и «ванна». С 1-конформации - и -глюкопиранозы.

Химические свойства моносахаридов. Реакции карбонильных форм. Циангидриновый синтез. Окислительно-восстановительные реакции. Получение озазонов. Эпимеризация. Реакции циклических форм. Алкилирование. Особый характер полуацетального гидроксила. Гликозиды. Ацилирование моноз. Фосфаты сахаров, их биологическое значение.

Дисахариды восстанавливающие (мальтоза, целлобиоза, лактоза) и невосстанавливающие (трегалоза, сахароза). Строение, химические свойства.

Полисахариды. Крахмал. Строение цепей амилозы и амилопектина. Гидролиз крахмала. Гликоген. Целлюлоза. Строение, свойства. Применение целлюлозы и ее производных (нитраты, ацетаты). Искусственные волокна (ацетатное, вискозное и др.).

Циклические соединения

28. Алициклические соединения

Циклопропан. Строение, особый тип С-С-связей («банановые связи»), свойства в сравнении с алкенами и алканами. Методы получения из дигалогеналканов, алкенов.

Циклобутан, циклопентан. Строение, свойства, получение. Циклогексан. Особенности пространственного строения. Конформации циклогексана и монозамещенных циклогексанов. Свойства и методы получения циклогексанов.

Алициклы со средним размером кольца. Природные алициклы. Понятие о терпенах и стероидах.

29. Арены. Общие сведения

Ароматичность. Правило Хюккеля. Небензоидные ароматические системы.

Бензол. История открытия и изучения строения бензола. Современная модель бензола. Энергия резонанса. ПМР-спектр бензола.

Методы создания бензольного кольца: дегидрирование циклоалканов, дегидроциклизация алканов, циклотримеризация ацетилена.

Пути химических превращений бензольного кольца: замещение, присоединение, окисление.

Механизм электрофильного ароматического замещения в общем виде (SE2). Строение -комплекса (предельные структуры, мезоформула). Энергетический профиль SЕ2-реакции.

Изомерия и номенклатура производных бензола.

30. Алкилбензолы

Природные источники: уголь, нефть, ароматизация нефти. Методы синтеза: реакция Вюрца-Фиттига, алкилирование бензола алкилгалогенидами, алкенами, спиртами (механизм SЕ2).

Электронное строение алкилбензолов (на примере толуола), взаимное влияние алкильной группы и кольца. Свойства алкилбензолов. Электрофильное замещение в ядре, сравнение реакционной способности толуола, кумола, третичного бутилбензола. Реакции боковой цепи: галогенирование, нитрование, дегидрирование, окисление. Объяснение повышенной лёгкости гомолиза бензильной С-Н-связи.

Значение ароматических углеводородов для органического синтеза.

Получение и применение стирола.

31. Влияние заместителей на реакционную способность бензольного ядра и ориентацию при электрофильном ароматическом замещении

Классификация заместителей. Теоретическое обоснование влияния электронно-донорных и электроноакцепторных заместителей на реакционную способность ядра и ориентацию SЕ2-реакций: а) с учетом распределения электронной плотности, в нереагирующей молекуле (I— и М-эффекты), б) с учетом устойчивости  -комплексов.

Согласованная и несогласованная ориентация в дизамещённых бензолах.

32. Галогенопроизводные бензола

Способы получения. Хлорирование толуола в ядро (механизм SЕ2) и боковую цепь (механизм SR). Строение арилгалогенидов, характеристики связей С-Hal в сравнении с алкилгилогенидами и винилхлоридом.

Особенности ориентирующего действия галогенов в SЕ2-peaкциях. Нуклеофильное замещение галогена в арилгалогенидах (кинезамещение).

Замещение галогена в активированных электроноакцепторными группами производных бензола (механизм SЕ2 ароматического типа).

Взаимодействие арилгалогенидов с металлами. Арилмагнийгалогениды и их значение в органическом синтезе.

Свойства атома галогена в боковой цепи. SN1 и SN2 реакции бензилхлорида.

33. Ароматические сульфокислоты

Сульфирование бензола и его производных (SЕ2). Особенности реакции сульфирования, изотопный эффект. Энергетический профиль реакции.

Выделение сульфокислот из реакционной массы. Электронное строение бензолсульфокислот. Ориентирующее влияние сульфогруппы в SЕ2-реакциях (нитрование, сульфирование). Реакции сульфогруппы: кислотные свойства, получение сульфохлоридов, сульфамидов. Десульфирование. Нуклеофильное замещение сульфогруппы.

Применение сульфокислот и их производных, лекарственные препараты.

34. Нитросоединения и амины ароматического ряда

Нитрование бензола и его производных (механизм SЕ2). Электронное строение нитробензола и его свойства. Тринитротолуол, его техническое значение.

Ароматические амины. Классификация, изомерия, номенклатура. Способы получения: восстановление нитросоединений (Н.Н. Зинин), аминирование хлорбензола. Электронное строение анилина и его реакционная способность. Основные свойства в сравнении с аммиаком и алифатическими аминами.

Реакции солеобразования, алкилирования, ацилирования, арилирования аминогруппы, образование соединений Шиффа. Реакции с азотистой кислотой первичных, вторичных, третичных аминов. Реакции в бензольном ядре: галогенирование, нитрование, сульфирование.

Получение сульфаниловой кислоты, ее практическое значение. Сульфамидные препараты.

35. Фенолы и хиноны

Фенолы одно- и многоатомные. Понятие об ароматических спиртах.

Способы получения одноатомных фенолов из сульфокислот, галогенбензолов. Кумольный метод, механизм перегруппировки гидропероксида кумола. Выделение фенолов из каменноугольной смолы.

Электронное строение фенола (предельные структуры, мезоформула) и его реакционная способность. Электрофильное замещение в ядре; галогенирование, нитрование, сульфирование (кинетический и термодинамический контроль реакции), С-алкилирование, карбоксилирование (А..

 Кольбе), гидроксиметилирование. Реакции гидроксильной группы. Кислотные свойства фенола в сравнении со спиртами и кислотами. Строение фенолятного аниона. Влияние электронодонорных и электроноакцепторных заместителей на кислотные свойства фенола. Пикриновая кислота.

O-алкилирование и ацилирование фенольного гидроксила.

Практическое значение фенолов. Применение в производстве фенолформальдегидных смол, пестицидов, синтетических волокон.

Двух- и трехатомные фенолы. Пирокатехин, резорцин, гидрохинон, пирогаллол, флороглюцин. Особые свойства. Применение.

Хиноны, п-бензохинон, получение, свойства, применение. Биомолекулы хиноидной структуры.

36. Ароматические альдегиды и кетоны

Способы синтеза бензальдегида из толуола. Получение ацетофенона и бензофенона по методу Фриделя-Крафтса. Строение и свойства ароматических карбонильных соединений. Реакции с участием карбонильной группы и бензольного ядра. Особые свойства, бензоиновая конденсация.

37. Ароматические карбоновые кислоты

Бензойная кислота. Способы получения из толуола, арилгалогенидов через нитрилы и магнийорганические соединения. Строение и свойства. Реакции по ядру. Кислотные свойства, влияние заместителей в ядре. Производные бензойной кислоты. Бензоилирование. Салициловая кислота. Синтез по методу Кольбе. Ацетилсалициловая кислота, фенилсалицилат, ПАСК.

Дикарбоновые кислоты. Фталевая и терефталевая кислоты, получение окислением ксилолов. Фталевый ангидрид, применение в синтезах. Фталимид, NН-кислотность, применение в синтезе первичных аминов по Габриэлю. Применение терефталевой кислоты для получения лавсана.

38. Ароматические диазо- и азосоединения

Современные представления о строении диазосоединений. Соли диазония, гидроксиды диазония, диазогидраты, диазотаты, их характеристика. Строение диазокатиона (предельные структуры, мезоформула).

Реакция диазотирования, механизм, условия, контроль за ходом реакции. Побочные реакции при диазотировании и методы их предотвращения. Прямой и обратный методы диазотирования. Методы выделения солей диазония из растворов.

Химические свойства. Реакции солей диазония с выделением азота. Термическое разложение солей диазония (механизм SN1): замещение диазогруппы на гидроксил, алкокси-группу, фтор (реакция Шимана), водород. Замещение диазогруппы на йод (механизм реакции). Реакции Зандмейера, механизм SR.

Реакции солей диазония без выделения азота. Образование арилгидразинов, азосоединений.

Азосоединения (азокрасители). Реакция азосочетания. Диазо- и азокомпоненты красителя. Механизм азосочетания (SЕ2). Условия сочетания солей диазония с фонолами и аминами.

Индикаторные свойства некоторых азокрасителей (метилоранж, конго красный, метиловый красный).

39. Полиядерные ароматические соединения с изолированными бензольными кольцами

Полифениловые углеводороды. Дифенил. Способы получения. Химические свойства. Ориентация SЕ2-реакций в дифениле. Атропоизомерия производных дифенила. Применение дифенила.

Фенилметаны. Получение алкилированием бензола альдегидами и кетонами (механизм реакций). Строение и реакционная способность трифенилметана. Реакции бензольных ядер и центральной связи С–Н. Строение трифенилметильных ионов и радикала. Использование в синтезах тритильной защиты гидроксильных групп.

Трифенилметановые красители. Малахитовый зеленый, кристаллический фиолетовый, фенолфталеин. Методы синтеза. Свойства. Электронное строение ионов-носителей окраски.

40. Полиядерные ароматические соединения с конденсированными бензольными кольцами

Нафталин. Изомерия и номенклатура моно- и дизамещённых нафталинов. Электронное строение нафталина, энергия резонанса. Электрофильное замещение (механизм SE2): нитрование, галогенирование, сульфирование. Реакции присоединения, окисления. Производные нафталина: нафтолы, нафтиламины, их применение. Биологическое значение производных 1,4-нафтохинона, ауксин.

Антрацен. Строение, энергия резонанса. Склонность к реакциям присоединения, диеноподобие, объяснение активности положений 9,10. Окисление антрацена. Антрахинон.

Фенантрен. Биологическое значение производных фенантрена.

Гетероциклические соединения

41. Пятичленные гетероциклы с одним гетероатомом

Фуран, пиррол, тиофен. Электронное строение, энергии резонанса, направление дипольных моментов. Химические свойства. Цикл Юрьева. Кислотно-основные превращения, ацидофобность пиррола и фурана. Реакции электрофильного замещения (механизм SЕ2), особенности нитрования и сульфирования ацидофобных гетероциклов. Реакции гидрирования.

Природные соединения, содержащие ядро пиррола. Порфирины, энергия резонанса..

Индол. Индоксил. Получение синего индиго. Понятие о кубовом крашении. Биологическое значение производных индола (триптофан, гетероауксин).

42. Шестичленные гетероциклы с одним гетероатомом

Пиридин. Пиколины. Электронное строение пиридина (предельные структуры, мезоформула), энергия резонанса. Направление дипольного момента.

Электрофильное замещение в кольце пиридина в сравнении с бензолом и нитробензолом, ориентация SЕ2 реакций. Нуклеофильное замещение в ядре пиридина (реакция Чичибабина). Гидрирование пиридина. Сравнение основных свойств пиридина и пиперидина.

Oтношение пиридина и его гомологов к окислению. Биологическое значение производных пиридина: витамины РР, В6, алкалоиды.

43. Полигетероциклы

Пятичленные гетероциклы с двумя гетероатомами. Оксазол, тиазол, пиразол, имидазол. Биологическое и медицинское значение производные тиазола (витамин В1, пеницилин, норсульфазол) и пиразола (амидопирин, анальгин). Биомолекулы с кольцом имидазола (гистидин, биотин).

Шестичленные гетероциклы с несколькими гетероатомами. Диазины. Пиримидин и его производные, входящие в состав нуклеиновых кислот (урацил, тимин, цитозин). Лактим-лактамная таутомерия пиримидиновых оснований.

Пурин и его производные, входящие в состав нуклеиновых кислот (аденин, гуанин). Пуриновые алкалоиды: кофеин, теобромин, теофиллин.

Фуллерены.

Основы супрамолекулярной химии

44. Понятия о супрамолекулярной химии

Типы взаимодействий, обуславливающие образование супрамолекулярных структур. Молекулярное распознавание. Самосборка, самоорганизация.

Объекты супрамолекулярной химии: клатраты, краун-эфиры, криптанды, кавитанды, сферанды, катенаны, карцеранды и другие; сферы их практического применения и перспективы.

Кетокислоты

Альдегидо- и кетокислоты

Кетокислоты, кетонокислоты или оксокислоты — это группа органических химических соединений, которые являются производными карбоновых кислот. Молекула кетокислоты кроме карбоксильной группы (СООН) (или карбоксилатной (СОО)) также содержит в своем составе альдегидную (RH=O) или кетогруппу (R1(C=O)R2).

Простейшими представителями альдегидо- и кетокислот является оксоетанова (глиоксалева кислота) и 2-оксопропанова (пировиноградная кислота), которым принадлежит важная роль в превращении углеводов, белков и липидов в живых организмах.

В зависимости от строения молекулы, а именно взаимного расположения функциональных групп различают как минимум три типа монокарбоновых кетокислот:

  • α-кетокислоты (α-оксокислоты), в которых кетокарбонильная группа непосредственно связана с атомом углерода карбоксильной группы, например пировиноградной кислотой
  • β-кетокислоты (β-оксокислоты), в которых кетокарбонильная группа присоединена дополнительным атомом углерода, например ацетоуксусной кислотой
  • γ-кетокислоты (γ-оксокислоты), в которых кетокарбонильная группа присоединена через два атома углерода, например левулиновую кислоту

Свойства кетокислот

Оксокислоты или кетокислоты — гетерофункциональные соединения. Они одновременно обладают свойствами карбоновых кислот и оксосоединений. Как карбоновые кислоты, они способны образовывать соли, галогенангидриды, эфиры, ангидриды кислот. Имея в составе своих молекул карбонильную группу, они способны образовывать оксимы, гидразоны, циангидрины и др.

Биологическое значение кетокислот

Цикл Кребса.

 Щавелевая, пировиноградная и кетоглутаровая кетокислоты являются элементами цикла Кребса или цикла трикарбоновых кислот, а это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме.

  Кроме значительной энергетической роли цикла он является важным источником молекул предшественников, из которых в ходе других биохимических реакций синтезируются такие важные для жизнедеятельности клетки соединения, как аминокислоты, углеводы, жирные кислоты и др.

Синтез аминоксилот. Так из глутаминовой кислоты синтезируется аминокислота глутамин.

Транспорт азота. Кетоглутаровая кислота также участвует в метаболизме азота. Она реагирует с азотистыми веществами, образующимися в клетке, предотвращая таким образом перенасыщение клеток этими соединениями.

Транспорт аммиака. Еще одной функцией кетоглутаровой кислоты является транспорт аммиака, который образуется в результате катаболизма аминокислот. В клетках печени избыточные аминокислоты в организме лишены аминогрупп.

Это приводит к образованию аммиака и кетокислот, которые могут быть использованы для синтеза сахаров и некоторых других аминокислот, используемых в энергетических целях или превращенных в резервный жир.

Некоторые кетокислоты с особенно высоким биологическим значением могут образовываться на специализированных синтетических путях, например, пировиноградная кислота является конечным продуктом гликолиза.

Антиоксидантые свойства. Кетоглутаровая кислота также выступает в качестве антиоксиданта, за счет того, что снижает уровень перекиси водорода в клетке.

Важнейшие кетокислоты

Пировиноградная кислота — один из центральных промежуточных продуктов в ходе взаимного преобразования углеводов, липидов и белков в живых организмах.

Пировиноградная (2-оксопропанова, α-кетопропионова, ацетилформиатна) кислота — жидкость, кипит при 165 °С (с разложением), хорошо растворяется в воде, диэтиловом эфире и этаноле, имеет резкий запах. Получают путем окисления лактатной кислоты. Одновременно имеет свойства кислот и кетонов.

Соли и эфиры пировиноградной кислоты называют пируват. Присоединяя водород превращается в лактатную кислоту. При окислении образует ацетатную кислоту и оксид углерода. Эти реакции происходят и в живых организмах.

При взаимодействии пировиноградной кислоты и аммиака образуется важная для организма аминокислота — аланин. В результате взаимодействия пировиноградной кислоты с коферментом-А и тиолом образуется важнейший промежуточный продукт многих реакций — ацетил-коА.

Пировиноградная кислота является промежуточным продуктом спиртового брожения и других аналогичных реакций, таких как цикл Кребса.

Левулиновая кислота — обладает антисептическими свойствами.

Левулиновая кислота (γ-кетовалерианова, 4-оксовалериановая, β-ацетилпропионовая, 3-ацетопропионовая) кислота — твердое кристаллическое вещество, температура плавления 35 °С, температура кипения 246 °С, легко растворяется в воде, спирте, эфире. 
Левулиновая кислота используется в фармацевтической промышленности

Кетоглутаровая кислота — как было указано выше, это важнейший элемент в цикле трикарбоновых кислот, является промежуточным продуктом синтеза и катаболизма аминокислот.

Кетоглутаровая кислота (2-оксобутандиовая, α-кетоглутаровая) — кристаллическое вещество, температура плавления 115 °С, растворяется в воде и этаноле.

Ацетоуксусная кислота — метаболит β-окисления жирных кислот внутри живой клетки.

Ацетоуксусная (β-кетомасляна кислота) — жидкое вязкое вещество, кипит при температуре 100 °С (с разложением), хорошо смешивается с водой, растворяется в спирте и эфире. Образует ацетон при нагревании или комнатной температуре.

Эфир ацетоуксусной кислоты используют в фармацевтической промышленности при производстве препаратов из группы анальгетики и антипиретики.

Увеличение уровня ацетоуксусной кислоты в плазме крови часто связывают с наличием в организме патологических процессов. Например, это явление наблюдается у людей больных сахарным диабетом.

Щавелевоуксусная кислота — метаболит в цикле трикарбоновых кислот и глюкогенезе, играет большую роль в углеводном обмене. Из этой кислоты и ацетил кофермента А синтез лимонной кислоты.

Щавелевоуксусная (2-оксобутандиовая) — является одновременно α- и β-оксокислотой, имеет температуру плавления 161 °С.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть