Альдегиды

Урок 23. Альдегиды – HIMI4KA

Альдегиды
Самоучитель по химии › Органическая химия

Альдегиды — это производные углеводородов, которые содержат альдегидную группу:

Альдегидная группа состоит из карбонильной группы С=О, соединённой с атомом водорода. Карбонильная группа в молекулах альдегидов всегда находится на конце углеродной цепи.

Предельные альдегиды образуют гомологический ряд с общей формулой:

Если использовать эту общую формулу, то следует помнить, что минимальное значение n (числа атомов углерода) равно нулю.

Если n = 0 получаем

метанАЛЬ, муравьиный альдегид, формальдегид;

Если n = 1 получаем

этанАЛЬ, уксусный альдегид, ацетальдегид.

Вопрос. Какой суффикс обозначает наличие в молекуле альдегидной группы?

Названия альдегидов составляют, добавляя суффикс АЛЬ к названию соответствующего углеводорода. При этом учитываются все атомы углерода.

Кроме того, используются тривиальные названия, которые совпадают с названиями соответствующих кислот (см. урок 24.1).

И, наконец, для некоторых альдегидов используют названия, имеющие латинский корень, например формальдегид — от лат. formika — «муравей».

Задание 23.1. Составьте формулу и название альдегида с n = 3. Имеет ли он изомеры?

Начиная с n = 3 у альдегидов появляются изомеры положения карбонильной группы:

Задание 23.2. Допишите атомы водорода к этим цепочкам и убедитесь, что это — изомеры. Является ли вещество (2) альдегидом?

Но при перемещении карбонильной группы в середину молекулы исчезает альдегидная группа: вещество (2) не альдегид, это — кетон:

По номенклатуре ИЮПАК кетоны называют, добавляя суффикс ОН к названию соответствующего углеводорода.

Задание 23.3. Составьте формулы и названия альдегидов с n = 4. Дайте им названия.

Изомерия альдегидов связана со строением углеводородного радикала:

Строение молекул

Отличительным признаком альдегидов является наличие в их молекуле альдегидной группы. В её состав входят атомы углерода и кислорода, связанные двойной связью.

Вопрос. Какой тип реакций характерен для соединений с двойной связью?

Поэтому альдегиды легко вступают в реакции присоединения по месту разрыва π-связи карбонильной группы.

Кроме того, в состав альдегидной группы входит атом водорода, соединённый с карбонильной группой.

Вопрос. Является ли эта связь полярной?

За счёт разрыва полярной С–Н связи альдегидной группы альдегиды очень легко окисляются. Атом кислорода альдегидной группы делает эту группу в целом сильно полярной. Поэтому альдегидная группа влияет на углеводородный радикал, и в радикале возможны реакции замещения.

Физические свойства

В альдегидах отсутствует гидроксогруппа, за счёт которой между молекулами спиртов возникали водородные связи.

Вопрос. Какие соединения (спирты или альдегиды) имеют бОльшую температуру кипения?

Поэтому альдегиды, в отличие от спиртов, легче испаряются, имеют меньшие температуры кипения. Например, формальдегид — газ с резким запахом, а метанол — жидкость. Низшие альдегиды могут растворяться в воде.

Раствор формальдегида в воде (формалин) применяется в медицине, кожевенной промышленности. Его применение основано на том, что формальдегид активно реагирует с белками, вызывая в них необратимые изменения (денатурацию).

Следовательно, формальдегид сильно ядовит.

Химические свойства

При рассмотрении строения молекулы альдегидов были сделаны выводы, что для них должны быть характерны реакции присоединения, замещения (в углеводородном радикале), и окисления.

Примером реакции присоединения к карбонильной группе может служить реакция гидрирования, т. е. присоединения водорода:

Вопрос. К какому классу относится полученное соединение? Назовите его.

При окислении альдегидов образуются кислоты:

Окисление альдегидов происходит даже при их хранении, т. е. в обычных условиях. Реакции окисления альдегидов используют для того, чтобы обнаружить их в растворах. Например, если к раствору альдегида добавить аммиачный раствор оксида серебра и нагреть, то на стенках сосуда появится зеркало. Это выделилось чистое серебро, которое блестящим тонким слоем покрыло стекло:

Эта реакция получила название «реакция серебряного зеркала».

Альдегид можно превратить в кислоту (окислить) и при помощи гидроксида меди (II). Если к осадку Сu(ОН)2 добавить раствор альдегида и нагреть, то образуется жёлтый осадок СuОН, переходящий в красный оксид меди (I). В результате образуется оранжевый осадок:

Если эту же смесь долго греть, то на стенках пробирки выделится в виде блестящего слоя чистая медь «медное зеркало». Поэтому эту реакцию часто называют реакцией «медного зеркала».

Запомните: реакции «серебряного зеркала» и «медного зеркала» — качественные реакции на альдегидную группу.

Задание 23.4. Составьте уравнения качественных реакций для формальдегида.

Вопрос. Можно ли при помощи гидроксида меди (II) различить растворы глицерина и уксусного альдегида? Укажите условия и эффекты обеих реакций.

Получение и применение альдегидов на примере уксусного альдегида

Уксусный альдегид получают в больших количествах при помощи реакции Кучерова*:

* Кучеров Михаил Григорьевич (3.06.1850–26.06.1911) — русский химик-органик, открыл (1881) реакцию каталитической гидратации ацетиленовых углеводородов с образованием карбонилсодержащих соединений.

В небольших количествах этот альдегид можно получить окислением этанола:

Задание 23.5. В уроках 20.3 и 22.4 посмотрите на соответствующие уравнения реакций; обратите внимание, за счёт каких атомов они происходят, и попробуйте составить аналогичные уравнения реакций:

  1. пропин + вода →
  2. пропанол-1 + СuО →
  3. пропанол-2 + СuО →

Сделайте вывод: всегда ли в этих реакциях получаются альдегиды?

Если Вы всё сделали правильно, в реакциях 1 и 3 получается ацетон (кетон), а в реакции 2 — пропаналь.

Уксусный альдегид применяют для получения уксусной кислоты, этилового спирта, лекарств и других веществ.

Выводы

Альдегиды — это производные углеводородов, содержащие альдегидную группу. Для них должны быть характерны реакции

  • присоединения (за счёт карбонильной группы);
  • замещения (в углеводородном радикале);
  • окисления.

Альдегиды и кетоны — номенклатура, получение, химические свойства

Альдегиды

Альдегиды – органические вещества, молекулы которых содержат карбонильную группу С=O , соединенную с атомом водорода и углеводородным радикалом.
Общая формула альдегидов имеет вид:

В простейшем альдегиде – формальдегиде роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

Кетоны – органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой.
В простейшем кетоне – ацетоне – карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного радикала, связного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса  -аль.Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом  -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии — изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов

В молекуле альдегида или кетона вследствие большей электороотрицательности атома кислорода по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электронной плотности π-связи к кислороду:

Альдегиды и кетоны — полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов.

Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей.

Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

1. Реакции восстановления.

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов — вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона — пропанол-2.

 Гидрирование альдегидов — реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

2. Реакции окисления. Альдегиды способны не только восстанавливаться, но и окисляться. При окислении альдегиды образуют карбоновые кислоты.

Окисление кислородом воздуха. Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

Окисление слабыми окислителями (аммиачный раствор оксида серебра).

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

3. Реакция полимеризации:

n СH2=O → (-CH2-O-)n     параформ n=8-12

Применение альдегидов и кетонов

Формальдегид (метаналь, муравьиный альдегид) H2C=O:а) для получение фенолформальдегидных смол;б) получение мочевино-формальдегидных (карбамидных) смол;в) полиоксиметиленовые полимеры;г) синтез лекарственных средств (уротропин);д) дезинфицирующее средство;

е) консервант биологических препаратов (благодаря способности свертывать белок).

Уксусный альдегид (этаналь, ацетальдегид) СН3СН=О:а) производство уксусной кислоты;

б) органический синтез.

Ацетон СН3-СО-СН3:а) растворитель лаков, красок, ацетатов целлюлозы;

б) сырье для синтеза различных органических веществ.

АЛЬДЕГИДЫ

Альдегиды

АЛЬДЕГИДЫ — класс органических соединений с общей формулой

где R — углеводородный радикал (остаток); в организме являются промежуточными продуктами обмена веществ.

Отдельные представители альдегидов обычно получают название от кислоты, образующейся при их окислении (например, уксусная кислота — уксусный альдегид). В зависимости от типа радикала различают насыщенные, ненасыщенные, ароматические, циклические альдегиды и другие.

Если радикалом является остаток спирта, карбоновой кислоты и прочее, образуются альдегидоспирты, альдегидокислоты и другие соединения со смешанными функциями, обладающие химическими свойствами, присущими альдегидам и соответствующим R-группам. При замещении водорода альдегидной группы на углеводородный радикал получаются кетоны (см.), дающие многие сходные с альдегидами реакции.

Один из простейших альдегидов — уксусный, или ацетальдегид СН3 — СНО, иногда получают дегидрогенизацией этилового спирта над нагретой медью.

Распространен способ получения альдегида из углеводородов ацетиленового ряда путем присоединения к ним воды в присутствии катализатора, открытый М. Г. Кучеровым:

Эта реакция применяется при синтетическом производстве уксусной кислоты. Ароматические альдегиды обычно получают окислением ароматических, углеводородов, имеющих боковую метильную группу:

или действием на соответствующие углеводороды окиси углерода в присутствии НСl и катализатора.

Особенности и химические свойства альдегидов Связаны в основном со свойствами и превращениями альдегидной группы. Так, простейший из альдегидов — муравьиный, или формальдегид

альдегидная группировка которого связана с водородом, является газом; низшие альдегиды (например, ацетальдегид) — жидкости с резким запахом; высшие альдегиды — нерастворимые в воде твердые вещества.

Благодаря присутствию карбонильной группы и подвижного атома водорода альдегиды относятся к числу наиболее реакционноспособных органических соединений. Большинство из разносторонних реакций альдегидов характеризуется участием в них карбонильной группы. К ним относятся реакции окисления, присоединения и замещения кислорода на другие атомы и радикалы.

Альдегиды легко полимеризуются и конденсируются (см. Альдольная конденсация); при обработке альдегидов щелочами или кислотами получаются альдоли, например:

При отщеплении воды альдоль превращается в кротоновый альдегид

способный к дальнейшему присоединению молекул (путем полимеризации). Полученные в результате конденсации полимеры носят общее название альдольных смол.

При исследовании биологических субстратов (крови, мочи и так далее) положительный эффект реакций, основанных на окислении альдегидной группы, дает сумма редуцирующих веществ. Поэтому эти реакции, хотя и применяются для количественного определения сахара (глюкозы) по Хагедорну—Йенсену, а также пробы Ниландера, Гайнеса, Бенедикта и прочие, но не могут считаться специфическими.

Альдегиды играют большую роль в биологических процессах, в частности биогенные амины в присутствии ферментов аминоксидаз превращаются в альдегиды с последующим их окислением в жирные кислоты.

Радикалы альдегиды высших жирных кислот входят в состав молекул плазмалогенов (см.). Растительные организмы в процессах фотосинтеза для ассимиляции углерода используют муравьиный альдегид. Вырабатываемые растениями эфирные масла состоят в основном из циклических ненасыщенных альдегидов. (анисовый, коричный, ванилин и другие).

При спиртовом брожении под действием фермента карбоксилазы дрожжей происходит декарбоксилирование пировиноградной кислоты с образованием уксусного альдегида, превращающегося путем восстановления в этиловый спирт.

Альдегиды широко используются в синтезе многих органических соединений. В медицинской практике применяются как непосредственно альдегиды (см. Формалин, Паральдегид, Цитраль), так и синтетические производные, получаемые из альдегидов, например, уротропин (см. Гексаметилентетрамин), хлоралгидрат (см.) и другие.

См. также Муравьиный альдегид, Уксусный альдегид.

Альдегиды как профессиональные вредности

Аьдегиды широко применяются в промышленном производстве синтетических смол и пластмасс, ванилинокрасочной и текстильной промышленности, в пищевой промышленности и парфюмерии.

Формальдегид применяется главным образом в производстве пластмасс и искусственных смол, в кожевенно-меховой промышленности и так далее; акролеин — при всех производственных процессах, где жиры подвергаются нагреванию до t° 170° (литейные цеха — сушка стержней с масляным крепителем, электротехническая промышленность, маслобойные заводы и салотопенное производство и так далее). Более подробно — смотри статьи, посвященные отдельным альдегидам.

Все альдегиды, особенно низшие, обладают выраженным токсическим действием.

Альдегиды раздражают слизистые оболочки глаз и верхних дыхательных путей. По характеру общетоксического действия альдегиды являются наркотиками, однако наркотический эффект их значительно уступает раздражающему.

Степень выраженности интоксикации определяется наряду с величиной действующей концентрации также характером радикала и как следствие — изменением физико-химических свойств альдегидов: низшие альдегиды (хорошо растворимые и высоколетучие вещества) обладают резким раздражающим действием на верхние отделы органов дыхания и сравнительно менее выраженным наркотическим действием; при увеличении длины углеводородной цепочки радикала растворимость и летучесть альдегидов падают, в результате чего снижается раздражающее, не нарастает наркотическое действие; раздражающее действие непредельных альдегидов сильнее, чем у предельных.

Механизм токсического действия альдегидов связан с высокой реакционной способностью карбонильной группы альдегидов, которая, вступая в реакции взаимодействия с тканевыми белками, обусловливает первичный раздражающий эффект, рефлекторные реакции центральной нервной системы, дистрофические изменения внутренних органов и так далее.

Кроме того, попадая в организм, альдегиды подвергаются различным биохимическим превращениям; в этом случае токсическое действие на организм оказывают уже не сами альдегиды, а продукты их превращений.

Альдегиды медленно выводятся из организма, способны кумулировать, чем объясняется развитие хронических отравлений, основные проявления которых наблюдаются в первую очередь в виде патологических изменений органов дыхания.

Первая помощь при отравлении альдегидами. Вывести пострадавшего на свежий воздух. Промыть глаза 2% щелочным раствором. Щелочные и масляные ингаляции. При явлениях асфиксии — вдыхание кислорода.

По показаниям средства, стимулирующие сердечную деятельность и дыхание, успокаивающие средства (бромиды, валериана). При болезненном кашле — горчичники, банки, препараты кодеина.

При отравлении через рот — промывания желудка, внутрь 3% раствор бикарбоната натрия, сырые яйца, белковая вода, молоко, солевые слабительные. При попадании на кожу — обмывание водой или 5% нашатырным спиртом.

См. также статьи, посвященные отдельным альдегидам.

Профилактика

Герметизация и автоматизация производственных процессов. Вентиляция помещений (см. Вентиляция). Использование индивидуальных средств защиты, например фильтрующего противогаза марки «А» (см. Противогазы), спецодежды (см. Одежда) и так далее.

Предельно допустимые концентрации в атмосфере производственных помещений: для акролеина — 0,7 мг/м3, для ацетальдегида, масляного и проппонового альдегидов — 5 мг/м3, для формальдегида и кротонового А. — 0,5 мг/м3.

Определение альдегидов. Все альдегиды суммарно определяются бисульфитным методом по связыванию кислым сернокислым натрием или колориметрически — с фуксиносернистой кислотой. Разработан полярографический метод (Петрова—Яковцевская), спектрофотометрический (Векслер).

См. также Отравления, Яды промышленные.

Библиография

Бауер К. Г. Анализ органических соединений, пер. с нем., М., 1953; Несмеянов А. Н. и Несмеянов Н. А. Начала органической химии, кн. 1—2, М., 1969—1970.

Профессиональные вредности — Амирханова Г. Ф. и Латыпова З. В. Экспериментальное обоснование предельно допустимой концентрации ацетальдегида в воде водоемов, в кн.: Пром. загрязн. водоемов, под ред. С. Н. Черкинского, в. 9, с. 137, М., 1969, библиогр.; Быховская М. С., Гинзбург С. Л. и Xализова О. Д. Методы определения вредных веществ в воздухе, с. 481, М.

, 1966; Ван Вэнь-янь, Материалы к токсикологии альдегидов жирного ряда, в кн.: Материалы по токсикол. веществ, применяемых в производ. пластич. масс и синтетич. каучуков, под ред. Н. В. Лазарева и И. Д. Гадаскиной, с. 42, Л., 1957, библиогр.; Вредные вещества в промышленности, под ред. Н. В. Лазарева, т. 1, с. 375, Л., 1971, библиогр.; Гурвиц С. С. и Сергеева Т. И.

Определение малых количеств альдегидов в воздухе производственных помещений методом производной полярографии, Гиг. труда и проф. заболев., №9, с. 44, 1960; Трофимов Л. В. Сравнительное токсическое действие кротонового и масляного альдегидов, там же, №9, с. 34, 1962, библиогр.; Цай Л. М. К вопросу о превращениях ацетальдегида в организме, там же, № 12, с. 33, 1962, библиогр.; Нinе С. Н. а. о.

Studies on the toxicity of glycid aldehyde, Arch, environm. Hlth, v. 2, p. 23, 1961, bibliogr.; Jung F. u. Onnen K. Bindung und Wirkungen des Formaldehyds an Erythrocyten, Naunyn-Schmiedeberg's Arch. exp. Path. Pharmak., Bd 224, S. 179, 1955; Nova H. a. Touraine R. G. Asthme au formol, Arch. Mai. prof., t. 18, p. 293, 1957; Skоg E.

A lexicological investigation of lower aliphatic aldehydes, Actapharmacol. (Kbh.), v. 6, p. 299, 1950, bibliogr.

Б. В. Кулибакин; Н. К. Кулагина (проф.).

Альдегиды: примеры, описание, получение, свойства

Альдегиды

Альдегиды – органические вещества, которые содержат карбонильную группу >С=О, связанную хотя бы с одним атомом водорода. Альдегиды, а также схожие с ними по строению и свойствам кетоны, называют карбонильными, или оксосоединениями. Примеры альдегидов – муравьиный, уксусный, пропионовый альдегид.

Номенклатура

Тривиальные названия альдегидов образуют из тривиальных названий родственных карбоновых кислот. Примеры альдегидов с названиями представлены на рисунке.

Первым представителем гомологического ряда альдегидов является муравьиный альдегид, или формальдегид, при окислении которого образуется муравьиная кислота.

Второй представитель – уксусный альдегид, ацетальдегид, при окислении которого образуется уксусная кислота.

По номенклатуре ИЮПАК альдегидную группу обозначают суффиксом -аль, который добавляют к названию соответствующего углеводорода. Примеры альдегидов по номенклатуре ИЮПАК предложены на изображении ниже.

Если в соединении есть старшие группы, например, карбоксильные, то наличие альдегидной группы обозначают префиксом формил. Пример альдегида, который правильнее назвать дикарбоновой кислотой:

  • НООС – СН (СНО) – СН2 – СООН

Это 2-формилбутандиовая кислота.

Описание веществ

Альдегиды в отличие от спиртов не обладают подвижным атомом водорода, поэтому их молекулы не ассоциируются, что объясняет значительно более низкие температуры кипения. К примеру, альдегид формальдегид кипит уже при температуре -21 °С, а спирт метанол – при +65 °С.

Однако такой низкой температурой кипения обладает только формальдегид, следующий представитель – ацетальдегид закипает при +21°С.

Поэтому при комнатной температуре из всех альдегидов только формальдегид – газ, ацетальдегид уже легколетучая жидкость. Увеличение количества атомов углерода закономерно повышает температуру кипения.

Так, бензальдегид С6Н5СНО закипает только при +180 °С. Разветвление цепи вызывает понижение температуры кипения.

Низшие альдегиды, к примеру, формальдегид, хорошо растворимы в воде. 40%-ный раствор формальдегида называют формалином, его часто используют для консервации биологических препаратов. Высшие альдегиды хорошо растворимы в органических растворителях – спирте, эфире.

Характерные запахи альдегидов

Альдегиды обладают характерными запахами, причем низшие – резкими, неприятными. Всем известен неприятный запах формалина – водного раствора формальдегида. У высших альдегидов цветочные запахи, их применяют в парфюмерии.

Примером альдегидов – веществ с приятным запахом — является ванилин, обладающий ароматом ванили, и бензальдегид, придающий характерный аромат миндальным орехам. Оба вещества получают синтетически и широко используют в качестве ароматизаторов в кондитерской промышленности и парфюмерии.

Рассмотрим способы получения альдегидов.

Альдегиды получают при окислении первичных спиртов. Например, формальдегид, который используют в производстве полимерных материалов, лекарств, красителей, взрывчатых веществ. В промышленности формальдегид получают окислением кислородом метанола: 2СН3ОН + О2 = 2СН2О + 2Н2О.

Реакцию проводят на раскаленной серебряной сетке, серебро является катализатором. Через сетку пропускают пары метанола, смешанные с воздухом. Реакция идет с выделением большого количества тепла, которого хватает для поддержания сетки в раскаленном состоянии.

Альдегиды можно получать из спиртов и в отсутствии кислорода. В этом случае используют медный катализатор и высокие температуры (250 °С): R-CH2-OH = R-CHO + H2.

  • Восстановление хлорангидридов кислот.

Альдегиды можно получать восстановлением водородом хлорангидридов кислот. В качестве катализатора используют «отравленный» палладий – с пониженной активностью: RCClO + H2 = RCHO + HCl.

Ацетальдегид в промышленности получают окислением этилена кислородом или воздухом в жидкой фазе. В качестве катализатора необходим хлорид палладия (PdCl2): 2 СН2=СН2 + О2 = 2 СН3 СНО.

Реакции присоединения

В карбонильной группе С=О электронная плотность смещена к атому кислорода, поэтому на карбонильном атоме углерода формируется частичный положительный заряд, который обусловливает химическую активность альдегидов.

Положительный заряд на атоме углерода группы С=О обеспечивает его активность в реакциях с нуклеофильными реагентами – водой, спиртом, магний органическими соединениями.

Атом кислорода воды может атаковать карбонильный атом углерода, присоединяться к нему и вызывать разрыв связи С=О.

Реакции конденсации

Альдегиды вступают в реакции альдольной и кротоновой конденсации.

Ацетальдегид при действии слабого раствора щелочи на холоду превращается в альдоль. Продуктом реакции является жидкость, смешивающаяся с водой при пониженном давлении. Это вещество содержит как альдегидную, так и спиртовую группу (отсюда и название).

Качественные реакции

Для выявления альдегидов можно использовать две качественные реакции:

  • Реакция «серебряного зеркала». Реакция идет с реактивом Толленса – аммиачным раствором оксида серебра. При смешивании раствора аммиака и раствора нитрата серебра образуется сначала раствор гидроксида серебра, а при добавлении избытка аммиака — раствор гидроксида диамминсеребра (I), который и является окислителем. При взаимодействии с альдегидом выделяется элементное серебро в виде черного осадка. Если реакцию проводить при медленном нагревании, не тряся пробирку, серебро покроет стенки пробирки, создавая эффект «зеркала».
  • Реакция «медного зеркала». Другим реактивом, открывающим альдегидную группу, является гидроксид меди (II). При взаимодействии с альдегидом он восстанавливается до оксида меди (I). Цвет меняется с синего сначала на оранжевый, затем на желтый. Если реакцию проводить при медленном нагревании, оксид будет образовывать тонкий оранжево-красный налет на стенках пробирки – «медное зеркало»: СН3СНО + 2 Cu(OH)2 + NaOH = CH3COONa + Cu2O↓ + 3H2O.

Что такое Альдегиды

Альдегиды

Альдегиды — Органические соединения, являющиеся продуктом неполного окисления спирта (в химии).

Альдегиды в Энциклопедическом словаре:

Альдегиды — органические соединения, содержащие альдегидную группу CHO.Примеры альдегидов — формальдегид, ацетальдегид, бензальдегид, акролеин, ванилин. Получают окислением первичных спиртов и др. методами. Применяют впроизводстве полимеров, органическом синтезе, как душистые вещества.

Значение слова Альдегиды по словарю Брокгауза и Ефрона:

Альдегиды — Альдегиды представляют значительную и важную группу органических соединений, члены которой хотя и не часто встречаются в отдельном состоянии в природе, но без сомнения играют чрезвычайно существенную роль в различных физиологических процессах как животного, так и растительного царства.

Название свое эти вещества получили от наиболее изученного и прежде других ставшего известным обыкновенного, или уксусного, альдегида (см. это сл.). По своему положению в общей системе органических соединений альдегиды занимают промежуточное, но вполне определенное место между первичными алкоголями и соответствующими им кислотами (см. Окисление). Обозначая общий состав первич.

алкоголей формулой R-СН 2 (ОН) (где R — органический радикал, остаток), кислот — R-СО(ОН), общий состав альдегидов выразится формулой R-СОН. группы СОН (или Н-С-О) и является характеристичной для всех альдегидов, каков бы ни был состав радикала R. Кроме альдегидов R-СОН, иначе одноатомных, известны также и такие, в которых группа СОН повторяется и не один раз (многоатомные альдегиды).

Приведем для примера следующие: муравейный, или метиловый, альдегид HСОН. обыкновенный, или уксусный, СН 3 СОН. валерьяновый альд. C 4H9COH. акриловый (акролеин) C 2H3COH. бензойный (масло горьких миндалей) C 6H5COH. щавелевый (глиоксил). ванилин . виноградный сахар CH2OH(CHOH)4 COH и др.

— Общие всем альдегидам свойства, обусловливающиеся содержанием в них группы СОН, весьма разнообразны, и из них мы укажем только на главнейшие: 1) все альдегиды при действии окисляющих веществ легко фиксируют один атом кислорода на каждую группу СОН, превращаясь при этом в соответствующие кислоты, причем их группа СОН изменяется в СО(ОН).

2) все альдегиды реагируют с выделяющимся водородом, присоединяя на каждую группу СОН два атома водорода и превращаясь при этом в первичные алкоголи, т. е. группа СОН переходит в CH 2 OH. Способность альдегидов к прямым присоединениям более или менее резко проявляется и в отношении их ко многим другим реактивам. так, например, они присоединяют аммиак и кислые сернистокислые соли.

есть данные полагать, что альдегиды присоединяют к себе многие кислоты, соли, воду и проч. и проч. То же стремление к реакциям прямого присоединения обусловливает, по всей вероятности, и способность к соединению их частиц друг с другом, что всего резче выражается у простейших альдегидов.

Это последнее явление в зависимости от условий превращения дает начало или продуктам уплотнения (полимеризации), напоминающим по своим свойствам аллотропические изменения кислорода, серы и фосфора (см. аллотропия), или же продуктам конденсации, не имеющим уже способности переходить в прежние частицы.

Вообще класс альдегидов по необычайному разнообразию и числу превращений довольно резко отличается от всех других классов химических соединений. Из общих способов образования альдегидов укажем: во-первых, на умеренное окисление первичных спиртов, и во-вторых, на восстановление органич. кислот (т. е. солей) при перегонке их с муравейнокислою известью.

В природе, в особенности в растениях, встречаются представители рассматриваемой группы самого разнообразного состава и различной степени сложности. Существуют указания на присутствие в зеленых частях растений простейшего из альдегидов — муравейного СН 2 О. другие, как бензойный, ванилин, встречаются в виде сложных сочетаний с сахаристым началом (в виде глюкозидов, см. это сл.).

наконец, одной из глюкоз, виноградному сахару, приписывают состав сложного альдегида. Способность альдегидов легко вступать во взаимодействие с самыми разнообразными деятелями, склонность их к окислению, восстановлению и в особенности к конденсации не только друг с другом, но и с целой массой других органических веществ давало иногда повод некоторым биологам приписывать динамохимические свойства живой плазмы — присутствию в ней веществ с альдегидной группировкой (L öew).

Определение слова «Альдегиды» по БСЭ:

Альдегиды — класс органических соединений, содержащих карбонильную группу, связанную c органическим радикалом (R) и с атомом водорода, .

Свойства А. во многом сходны со свойствами кетонов, также содержащих карбонильную группу, но связанную с двумя радикалами, R2CO. Названия «А.» обычно производят от названий соответствующих кислот. Так, муравьиной кислоте HCOOH соответствует муравьиный альдегид, или формальдегид HCHO. уксусной кислоте — уксусный альдегид, или ацетальдегид CH3CHO.

Из сопоставления формул спиртов RCH2OH, альдегидов RCHO и кислот RCOOH следует, что по степени окисленности А. занимают промежуточное положение между этими соединениями. С этим связаны некоторые способы их получения и химические свойства. Так, при окислении первичных спиртов или при осторожном восстановлении хлорангидридов кислот образуются А.:
RCH2OH + O → RCHO + H2O.
RCOCI + H2 → RCHO + HCI.
Промежуточному положению А. отвечает и их способность к реакциям окисления-восстановления. например, в присутствии спиртового раствора едкой щёлочи А. превращаются в смесь спирта и кислоты (см. Канниццаро реакция):
2C6H5CHO → C6H5CH2OH + C6H5COOH.
А. могут быть получены также пиролизом смешанных кальциевых солей муравьиной и какой-либо другой карбоновой кислоты:
RCOOCaOOCH → CaCO3 + RCHO.Осторожным окислением ароматических соединений, содержащих метильную группу, получают ароматический А.
Техническое значение имеет аналогичный способ получения простейшего ненасыщенного А. — Акролеина — из пропилена:

CH3CH=CH2  O ЇЇЇ →  CH2=CHCHO

Метод синтеза ацетальдегида, имеющий промышленное значение, состоит в гидратации ацетилена в присутствии солей ртути (см. Кучерова реакция):
HC &equiv. CH + H2O → CH3CHO.
А. склонны к полимеризации. формальдегид, например, легко превращается в пара-формальдегид, ацетальдегид — в циклический тример, т. н. паральдегид. При конденсации 2 молей А. образуются альдоли:
2CH3CHO → CH3CH(OH)CH2CHO
(см. Альдольная конденсация), которые с отщеплением воды могут образовать ненасыщенные альдегиды:
CH3CH(OH)CH2CHO → CH3CH = CHCHO + H2O(см. Кротоновая конденсация).

А. легко вступают за счёт карбонильной группы во многие реакции присоединения и замещения. Так, с HCN они образуют циангидрины: RCH(OH)CN. Аналогично они реагируют с бисульфитом натрия, аминами и др. При действии гидроксиламина или гидразинов А. дают соответственно оксимы RCH = NOH и гидразоны RCH = N&mdash.NH3.

А. широко применяют в производстве феноло-альдегидных смол, как душистые вещества (Ванилин, Цитраль и др.), как полупродукты синтеза др. веществ, например CH3CHO — для синтеза уксусной кислоты CH3COOH и этилацетата CH3COOC2H5 (см. Тищенко реакция), а также в синтезе олефинов и полиенов (см. Виттига реакция).
Я. Ф. Комиссаров.

Альдегиды: их строение, физические и химические свойства

Альдегиды

  • Химические свойства альдегидов
  • Физические свойства альдегидов
  • Структура альдегидов
  • Номенклатура альдегидов
  • Производство альдегидов
  • Где и как используются альдегиды?
  • Альдегиды, видео
  • Альдегиды представляют собой органические соединения, в которых углерод имеет двойную связь с кислородом и одинарную с водородом либо атомом, который имеет обозначение R в структурных схемах.

    Многие из альдегидов обладают приятным запахом, вследствие чего находят активное применение в разных промышленных целях. Получают альдегиды из спиртов путем их дегидрирования.

    Об их физических и химических свойствах, применении и получении наша сегодняшняя статья.

    Химические свойства альдегидов

    Практически все альдегиды способны вступать в разнообразные химические реакции, включая полимеризацию. Сочетание их с другими видами молекул ведет к созданию так званных конденсационных полимеров, которые активно используются, например, при производстве пластмассы, в качестве растворителей и парфюмерных ингредиентов.

    А некоторые альдегиды даже принимают активное участие в физиологических процессах, так они являются частью:

    • витамина А, очень важного для зрения,
    • пиридоксальфосфата – одной из форм витамина В6,
    • глюкозы и прочих редуцированных сахаров,
    • некоторых природных и синтетических гормонов.

    Важным отличием альдегидов от тех же углеродов является наличие у них карбонильной группы. Карбонильная группа эта изначально полярна, то есть электроны образующие связь С=О притягиваются больше к кислороду, нежели к углероду. Благодаря этому первый из электронов получает отрицательный заряд, а второй положительный.

    Также стоит заметить, что альдегиды имеют более высокий дипольный момент по сравнению с остальными углеводородными соединениями.

    Структура альдегидов

    Формальгид – простейший альдегид, имеет молекулу, связанную с двумя атомами водорода. У всех других альдегидов молекулы связаны лишь с одним атомом водорода.

    Углерод, связанный с карбонильной группой может быть частью алкильных либо неалкильных групп, они в свою очередь могут быть ациклическими, ароматическими или гетероциклическими кольцами. Органические соединения, обладающие двумя альдегидными группами называются диальдегидами.

    Номенклатура альдегидов

    Есть два способа наименования альдегидов. Один из них основан на системе, разработанной Международным союзом теоретической и прикладной химии, его еще называют систематической номенклатурой.

    Он предполагает использовать в качестве исходного алкана самую длинную цепь атомов углерода, содержащую карбонильную группу в качестве исходного алкана. Числовое определение исходной карбонильной группы при этом использовать не принято, так как она всегда находится в конце родительской цепи.

    Например, название может быть 2-метилбутаналь, или изомасляный альдегид будет указан как 2-метилпропаналь.

    Другой метод представляет собой общую номенклатуру. Принцип общей номенклатуры заключается в том, чтобы называть соединения по общему наименованию соответствующей карбоновой кислоты. Иными словами структура та же, что и у альдегида, только вместо CHO появляется COOH, как у уксусной кислоты — CH3COOH или C2H4O2.

    Производство альдегидов

    Так как альдегиды одни из ключевых строительных блоков органической химии, то не удивительно, что для их получения и производства существует множество разных методов:

    • Окисление. Представляет собой один из основных методов для получения альдегидов. Обычно спирты могут быть окислены до состояния альдегидов. Для этого первичный спирт пропускается через горячий катализатор (гидроксид меди) или через аммиачный раствор оксида серебра (так званая реакция серебряного зеркала). Увы, но этот способ не подходит для маленьких лабораторий.
    • Гидроформилирование — еще один способ для получения альдегидов, когда алкены обрабатываются монооксидом углерода, водородом и катализатором на основе переходного металла.
    • Один из альдегидов (ацетальдегид) может быть получены путем взаимодействия ацетилена с водой.

    Для коммерческого получения альдегидов чаще всего применяют гидроформилирование.

    Где и как используются альдегиды?

    Альдегиды находят многообразное применение в разных сферах человеческой жизни. Сотни их соединений используются химиками для синтеза других веществ. Например, благодаря формальдегиду мы получаем формалин, который в свою очередь активно применяется для дубления, консервации и бальзамирования, а также в качестве фунгицидного и бактериального средства для обработки растений.

    Альдегиды, имеющие высокую молекулярную массу (к примеру, бензальдегид и фенилацетальдегид) обладают приятным запахом и поэтому используются в парфюмерии при производстве духов.

    Альдегиды, видео

    И в завершении образовательное видео по теме нашей статьи.

    Физические и химические свойства альдегидов

    Альдегиды

    Общая формула предельных альдегидов и кетонов CnH2nO. В названии альдегидов присутствует суффикс –аль.

    Простейшие представители альдегидов – формальдегид (муравьиный альдегид) –СН2 = О, ацетальдегид (уксусный альдегид) – СН3-СН = О. Существуют циклические альдегиды, например, циклогексан-карбальдегид; ароматические альдегиды имеют тривиальные названия – бензальдегид, ванилин.

    Атом углерода в карбонильной группе находится в состоянии sp2-гибридизации и образует 3σ-связи (две связи С-Н и одну связь С-О). π-связь образована р-электронами атомов углерода и кислорода. Двойная связь С = О является сочетанием σ- и π-связей. Электронная плотность смещена в сторону атома кислорода.

    Для альдегидов характерна изомерия углеродного скелета, а также межклассовая изомерия с кетонами:

    СН3-СН2-СН2-СН = О (бутаналь);

    СН3-СН(СН3)-СН = О (2-метилпентаналь);

    СН3-С(СН2-СН3) = О (метилэтилкетон).

    Получение альдегидов

    Основные способы получения альдегидов:

    — гидроформилирование алкенов. Эта реакция заключается в присоединении СО и водорода к алкену в присутствии карбонилов некоторых металлов VIII группы, например, октакарбонилдикобальта (Cо2(СО)8) Реакция проводится при нагревании до 130С и давлении 300 атм

    СН3-СН = СН2 + СО +Н2 →СН3-СН2-СН2-СН = О + (СН3)2СНСН = О;

    — гидратация алкинов. Взаимодействие алкинов с водой происходит в присутствии солей ртути (II) и в кислой среде:

    НС≡СН + Н2О → СН3-СН = О;

    — окисление первичных спиртов (реакция протекает при нагревании)

    СН3-СН2-ОН + CuO → CH3-CH = O + Cu + H2O.

    Применение альдегидов

    Альдегиды нашли широкое применение в качестве сырья для синтеза различных продуктов. Так, из формальдегида (крупнотоннажное производство) получают различные смолы (фенол-формальдегидные и т.д.

    ), лекарственные препараты (уротропин); ацетальдегид — сырье для синтеза уксусной кислоты, этанола, различных производных пиридина и т.д. Многие альдегиды (масляный, коричный и др.

    ) используют в качестве ингредиентов в парфюмерии.

    Примеры решения задач

    Понравился сайт? Расскажи друзьям!
    Поделиться:
    Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть