АСТАТ

Астат химический элемент

АСТАТ

Астат — пятый галоген — наименее распространенный элемент на нашей планете, если, конечно, не считать трансурановые элементы.

Приблизительный расчет показывает, что во всей земной коре содержится лишь около 30 г астата, и эта оценка — самая оптимистическая.

У элемента № 85 стабильных изотопов нет, а самый долгоживущий радиоактивный изотоп имеет период полураспада 8,3 часа, т. е. от полученного утром астата к вечеру не остается и половины.

Астат

Таким образом, в названии астата — а по-гречески аотатос; значит «неустойчивый» — удачно отражена природа этого элемента.

Чем же тогда может быть интересен астат и стоит ли заниматься его изучением? Стоит, ибо астат (так же, как прометий, технеций и франций) в полном смысле слова создан человеком, и изучение этого элемента дает много поучительного — прежде всего для познания закономерностей в изменении свойств элементов периодической системы. Проявляя в одних случаях металлические свойства, а в других — неметаллические, астат представляет собой один из наиболее своеобразных элементов.

До 1962 г. в русской химической литературе этот элемент называли астатином, а теперь за ним закрепилось название «астат», и это, видимо, правильно: ни в греческом, ни в латинском названии этого элемента (по-латыни astatium) нет суффикса «ни».

Д.И. Менделеев именовал последний галоген не только экаиодом, но и галоидом X. Он писал в 1898 г.: «Можно, например, сказать, что при открытии галоида X с атомным весом, большим, чем йод, он все же будет образовывать КХ, КХО3 и т. и., что его водородное соединение будет газообразной, очень непрочной кислотой, что атомный вес будет… около 215».

В 1920 г. немецкий химик Э. Вагнер вновь привлек внимание к все еще гипотетическому пятому члену группы галогенов, утверждая, что этот элемент должен быть радиоактивным. Тогда и начались интенсивные поиски элемента № 85 в природных объектах.

В предположениях о свойствах 85-го элемента химики исходили из местоположения его в периодической системе и из данных о свойствах соседей этого элемента по таблице Менделеева. Рассматривая свойства других членов группы галогенов, легко заметить следующую закономерность: фтор и хлор — газы, бром — уже жидкость, а йод — твердое вещество, проявляющее, хотя и в малой степени, свойства металлов.

Экаиод — самый тяжелый галоген. Очевидно, он должен быть еще более металлоподобен, нежели иод, и, обладая многими свойствами галогенов, так или иначе похож и на своего соседа слева — полоний… Вместе с другими галогенами экаиод, по-видимому, должен находиться в воде морей, океанов, буровых скважин. Его пытались, подобно иоду, искать в морских водорослях, рассолах и т. и. Английский химик И.

Фриенд пытался найти нынешние астат и франций в водах Мертвого моря, в которых, как было известно, и галогенов, и щелочных металлов более чем достаточно. Для извлечения экаиода из раствора хлоридов осаждалось хлористое серебро; Фриенд полагал, что осадок увлечет за собой и следы 85-го элемента. Однако ни рентгеноспектральный анализ, ни масс-спектрометрия не дали положительного результата.

В 1932 г. химики Политехнического института штата Алабама (США) во главе с Ф. Аллисоном сообщили, что ими из монацитового песка выделен продукт, в котором содержится около 0,000002 г одного из соединений элемента № 85.

В честь своего штата они назвали его «алабамий» и описали даже его соединение с водородом и кислородсодержащие кислоты. Название «алабамий» для 85-го элемента фигурировало в учебниках и справочниках по химии до 1947 г.

Однако уже вскоре после этого сообщения у нескольких ученых возникли сомнения в достоверности открытия Аллисона. Свойства алабамия резко расходились с предсказаниями периодического закона. Кроме того, к этому времени стало ясно, что все элементы тяжелее висмута не имеют стабильных изотопов.

Допустив же стабильность элемента № 85, наука оказалась бы перед необъяснимой аномалией.

Ну, а если элемент № 85 не стабилен, тогда на Земле его можно обнаружить лишь в двух случаях: если у него есть изотоп с периодом полураспада больше возраста Земли или если его изотопы образуются при распаде долгоживущих радиоактивных элементов.

Предположение, что элемент № 85 может быть продуктом радиоактивного распада других элементов, стало отправной точкой для другой большой группы исследователей, занимавшихся поисками экаиода. Первым в этой группе следует назвать известного немецкого радиохимика Отто Гана, который еще в 1926 г. предположил возможность образования изотопов 85-го элемента при бета-распаде полония.

За 19 лет, с 1925 по 1943 г., в периодической печати появилось по меньшей мере полдюжины сообщений об открытии экаиода. Ему приписывали определенные химические свойства, присваивали звучные названия: гельвеций (в честь Швейцарии), англогельвеций (в честь Англии и Швейцарии), дакин (от названия древней страны даков в Северной Европе),

лептин (в переводе с греческого «слабый», «шаткий», «обездоленный») и т. д. Однако первое достоверное сообщение об открытии и идентификации элемента № 85 сделали физики, занятые синтезом новых элементов.

На циклотроне Калифорнийского университета Д. Корсон, К. Мак-Кензи и Э. Сегре облучили альфа-частицами мишень из висмута. Энергия частиц составляла 21 Мэв, и ядерная реакция получения элемента № 85 была такова:

20983Bi + 42He → 21185At + 210n.

Новый синтетический элемент получил название лишь после войны, в 1947 г. Но еще раньше, в 1943 г., было доказано, что изотопы астата образуются во всех трех рядах радиоактивного распада.

Следовательно, астат есть в природе

Астат в природе первыми нашли австрийские химики Б. Карлик и Т. Бернерт. Изучая радиоактивность дочерних продуктов радона, они обнаружили, что незначительная часть радия-А (так называли тогда, да и сейчас еще называют, изотоп 218Ро) распадается двояко (так называемая радиоактивная вилка).

В свежевыделенном образце RaA наряду с альфа-частицами, порождаемыми полонием-218, были зарегистрированы и альфа-частицы с иными характеристиками. Как раз такие частицы могли, по теоретическим оценкам, испускать ядра изотопа 21885.

Позже в других опытах были обнаружены короткоживугцие изотопы 215At, 216At и 217At. А в 1953 г. американские радиохимики Э. Хайд и А. Гиорсо химическим путем выделили изотоп 219At из франция-223. Это единственный случай химической идентификации изотопа астата из имеющегося в природе изотопа. Намного проще и удобней получать астат искусственным путем.

Обнаружить астат At, выделить, узнать

Приведенную выше реакцию облучения висмута альфа-частицами можно использовать и для синтеза других изотопов астата.

Достаточно повысить энергию бомбардирующих частиц до 30 Мэв, как пойдет реакция с вылетом трех нейтронов и вместо астата-211 образуется астат-210.

Чем выше энергия альфа-частиц, тем больше образуется вторичных нейтронов и тем меньше, следовательно, массовое число образующегося изотопа.

В качестве мишеней для облучения используют металлический висмут или его окись, которые наплавляют или напыляют на алюминиевую или медную подложку. Другой метод синтеза астата состоит в облучении ускоренными ионами углерода мишени из золота. В этом случае происходит, в частности, такая реакция:

19779Au + 126C → 20585At + 410n.

Для выделения образующегося астата из висмутовых или золотых мишеней используют достаточно высокую летучесть астата — он же все-таки галоген! Дистилляция происходит в токе азота или в вакууме при нагревании мишени до 300-600°С. Астат конденсируется на поверхности стеклянной ловушки, охлаждаемой жидким азотом или сухим льдом.

Еще один способ получения астата основан на реакциях расщепления ядер урана или тория при облучении их альфа-частицами или протонами высоких энергий.

Так, например, при облучении 1 г металлического тория протонами с энергией 660 Мэв на синхроциклотроне Объединенного института ядерных исследований р. Дубне получается около 20 микрокюри (иначе З*1013 атомов) астата.

Однако в этом случае гораздо труднее выделить астат из сложной смеси элементов. Эту нелегкую проблему сумела решить группа радиохимиков из Дубны во главе с В.А. Халкиным.

Сейчас известно уже 24 изотопа астата с массовыми числами от 196 до 219, Самый долгоживущий из них — изотоп 210At (период полураспада 8,3 часа), а самый короткоживугций — 214At (2-106 секунды).

Поскольку астат не может быть получен в весомых количествах, его физические и химические свойства изучены неполно, а физико-химические константы чаще всего рассчитываются по аналогии с более доступными соседями по периодической системе. В частности, вычислены температуры плавления и кипения астата — 411 и 299°С, т. е. астат, как и иод, должен легче возгоняться, чем плавиться.

Все исследования по химии астата проводились с ультрамалыми количествами этого элемента, порядка 109-1013 г на литр растворителя.

И дело даже не в том, что нельзя получить более концентрированные растворы. Если бы их и удалось получить, работать с ними было бы крайне сложно.

Альфа-излучение астата приводит к радиолизу растворов, сильному их разогреву и образованию больших количеств побочных продуктов.

[attention type=red]
И все же, несмотря на все эти трудности, несмотря на то, что количество атомов астата в растворе сравнимо со случайными (хотя и тщательно избегаемыми) загрязнениями, в изучении химических свойств астата достигнуты определенные успехи.
[/attention]

Установлено, что астат может существовать в шести валентных состояниях — от 1- до 7+. В этом он проявляет себя как типичный аналог иода.

Как и иод, он хорошо растворяется в большинстве органических растворителей, но зато легче, чем иод, приобретает положительный электрический заряд.

Получены и изучены свойства ряда межгалогенных соединений астата, например AtBr, AtI, CsAtI2.

Попытка с годными средствами

Первые попытки применить астат на практике были предприняты еще в 1940 г., сразу же после получения этого элемента. Группа сотрудников Калифорнийского университета установила, что астат, подобно йоду, селективно концентрируется в щитовидной железе. Опыты показали, что использовать 211At для лечения заболеваний щитовидной железы более выгодно, чем радиоактивный 131I.

Астат-211 испускает лишь альфа-лучи — весьма энергичные на небольших расстояниях, но не способные уйти далеко. В итоге они действуют лишь на щитовидную железу, не затрагивая соседнюю — паращитовидную. Радиобиологическое действие альфа-частиц астата на щитовидную железу в 2,8 раза сильнее, чем бета-частиц, излучаемых иодом-131.

Это говорит о том, что в качестве терапевтического средства при лечении щитовидной железы астат весьма перспективен. Найдено и надежное средство выведения астата из организма. Роданид-ион блокирует накопление астата в щитовидной железе, образуя с ним прочный комплекс. Так что элемент № 85 уже нельзя назвать практически бесполезным.

Астат

АСТАТ

    Введение

  • 1 История
  • 2 Нахождение в природе
  • 3 Получение
  • 4 Физические свойства
  • 5 Химические свойства
  • 6 Применение
  • 7 Биологическая роль
  • 8 Изотопы
  • Примечания

Аста́т (от др.-греч.

ἄστατος — «неустойчивый») — элемент главной подгруппы седьмой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 85. Обозначается символом At (лат. Astatium). Радиоактивен.

Простое вещество астат (CAS-номер: 7440-68-8) при нормальных условиях — нестабильные кристаллы чёрно-синего цвета. Молекула астата, по всей видимости, двухатомна (формула At2).

1. История

Предсказан (как «эка-иод») Д. И. Менделеевым. В 1931 Ф.

Аллисон с сотрудниками (Алабамский политехнический институт) сообщили об открытии этого элемента в природе и предложили для него название «алабамин» (Ab)[2][3], однако этот результат не подтвердился.

Впервые астат был получен искусственно в 1940 Д. Корсоном, К. Р. Маккензи и Э. Сегре (Калифорнийский университет в Беркли). Для синтеза изотопа 211At они облучали висмут альфа-частицами.

В 1943—1946 годах изотопы астата были обнаружены в составе природных радиоактивных рядов (см. ниже).

В русской терминологии элемент до 1962 года назывался «астатин».

Также предлагались названия «гельветин» (в честь Гельвеции — древнего названия Швейцарии) и «лептин» (от греч. «слабый, шаткий»).

2. Нахождение в природе

Астат является наиболее редким элементом среди всех, обнаруженных в природе. В поверхностном слое земной коры толщиной 1,6 км содержится всего 70 мг астата.

Постоянное присутствие астата в природе связано с тем, что его короткоживущие радионуклиды (215At, 218At и 219At) входят в состав радиоактивных рядов 235U и 238U.

Скорость их образования постоянна и равна скорости их радиоактивного распада, поэтому в земной коре содержатся сравнительно постоянное равновесное количество изотопов астата.

3. Получение

Астат получают только искусственно. В основном изотопы астата получают облучением металлических висмута или тория α-частицами высокой энергии с последующим отделением астата соосаждением, экстракцией, хроматографией или дистилляцией.

4. Физические свойства

Ввиду малого количества доступного для изучения вещества, физические свойства этого элемента плохо изучены и, как правило, построены на аналогиях с более доступными элементами.

Астат — твёрдое вещество сине-чёрного цвета, по внешнему виду похожее на иод[4]. Для него характерно сочетание свойств неметаллов (галогенов) и металлов (полоний, свинец и другие). Как и иод, астат хорошо растворяется в органических растворителях и легко ими экстрагируется. По летучести немного уступает иоду, но также может легко возгоняться[4].

Температура плавления 302 °C, кипения (возгонки) 337 °C.

5. Химические свойства

Галоген. В положительных степенях окисления астат образует кислородсодержащую форму, которую условно обозначают как Atτ+ (астат-тау-плюс).

При действии на водный раствор астата водородом в момент реакции образуется газообразный астатоводород HAt. Астат в водном растворе восстанавливается SO2 и окисляется Br2. Астат, как металлы, осаждается из солянокислых растворов сероводородом (H2S). Вытесняется из раствора цинком (свойства металла).

Известны и межгалогенные соединения астата — иодид астата AtI и бромид астата AtBr. Астатоводород HAt также был получен.

Однако ввиду одинаковой электроотрицательности водорода и астата астатоводород крайне неустойчив, а в водных растворах существуют не только протоны, но и ионы At+, чего нет у всех других галогеноводородных кислот[5].

С металлами астат образует соединения, в которых проявляет степень окисления −1, как и все остальные галогены (NaAt, к примеру, называется астатид натрия). Подобно другим галогенам, астат может замещать водород в молекуле метана до получения тетраастатметана CAt4. При этом образуются сперва астатметан, диастатметан, астатоформ.

6. Применение

Весьма перспективным является 211At для лечения заболеваний щитовидной железы. Имеются сведения, что радиобиологическое действие α-частиц астата на щитовидную железу в 2,8 раза сильнее β-частиц иода. При этом следует учесть, что с помощью иона роданида можно надежно вывести астат из организма.

7. Биологическая роль

Будучи схожим по химическим свойствам с иодом, астат токсичен. При попадании в организм концентрируется в печени. Как и иод, астат способен накапливаться в щитовидной железе. α-излучение астата поражает близлежащие ткани, приводит к нарушению их функции и в перспективе — к образованию опухолей. Кроме того, частичное накопление астата наблюдается в молочных железах.

8. Изотопы

На 2003 год известны 33 изотопа астата, а также 23 метастабильных возбуждённых состояния ядер астата. Все они радиоактивны. Самые устойчивые из них (от 207At до 211At) имеют период полураспада больше часа (наиболее стабилен 210At, T1/2=8,1 часа); однако у трёх природных изотопов период полураспада не превышает минуты.

Примечания

  1. 12Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т.. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 211. — 623 с. — 100 000 экз.
  2. Education: Alabamine & Virginium — TIME — www.time.com/time/magazine/article/0,9171,743159,00.html
  3. elements.

    vanderkrogt.net — elements.vanderkrogt.net/element.php?sym=At

  4. 12 Школьная энциклопедия. Химия. Москва, Дрофа, 2003 год.
  5. Advances in Inorganic Chemistry, Volume 6 — books.google.com/books?id=UPBKxgY20lEC&pg=PA219 by Emeleus, p.

    219, Academic Press, 1964 ISBN 0-12-023606-0

скачать
Данный реферат составлен на основе статьи из русской Википедии. Синхронизация выполнена 11.07.11 16:28:16
Категории: Химические элементы, Радиоактивные элементы, Галогены, Элементы предсказанные Дмитрием Менделеевым, Астат.
Текст доступен по лицензии Creative Commons Attribution-ShareA.

Популярная библиотека химических элементов

АСТАТ

85
At 7 18 32 18 8 2
АСТАТ
(210)
6s26p5

Астат – пятый галоген – наименее распространенный элемент на нашей планете, если, конечно, не считать трансурановые элементы.

Приблизительный расчет показывает, что во всей земной коре содержится лишь около 30 г астата, и эта оценка – самая оптимистическая.

У элемента №85 стабильных изотопов нет, а самый долгоживущий радиоактивный изотоп имеет период полураспада 8,3 часа, т.е. от полученного утром астата к вечеру не остается и половины.

Таким образом, в названии астата – а по-гречески αστατος значит «неустойчивый» – удачно отражена природа этого элемента.

Чем же тогда может быть интересен астат и стоит ли заниматься его изучением? Стоит, ибо астат (так же, как прометий, технеций и франций) в полном смысле слова создан человеком, и изучение этого элемента дает много поучительного – прежде всего для познания закономерностей в изменении свойств элементов периодической системы. Проявляя в одних случаях металлические свойства, а в других – неметаллические, астат представляет собой один из наиболее своеобразных элементов.

До 1962 г. в русской химической литературе этот элемент называли астатином, а теперь за ним закрепилось название «астат», и это, видимо, правильно: ни в греческом, ни в латинском названии этого элемента (по-латыни astatium) нет суффикса «ин».

Поиски экаиода

Д. И, Менделеев именовал последний галоген не только экаиодом, но и галоидом X. Он писал в 1898 г.: «Можно, например, сказать, что при открытии галоида X с атомным весом, большим, чем иод, он все же будет образовывать KX, KXO3 и т.п., что его водородное соединение будет газообразной, очень непрочной кислотой, что атомный весь будет… около 215».

В 1920 г. немецкий химик Э. Вагнер вновь привлек внимание к все еще гипотетическому пятому члену группы галогенов, утверждая, что этот элемент должен быть радиоактивным.

Тогда и начались интенсивные поиски элемента №85 в природных объектах.

В предположениях о свойствах 85-го элемента химики исходили из местоположения его в периодической системе и из данных о свойствах соседей этого элемента по таблице Менделеева. Рассматривая свойства других членов группы галогенов, легко заметить следующую закономерность: фтор и хлор – газы, бром – уже жидкость, а иод – твердое вещество, проявляющее, хотя и в малой степени, свойства металлов.

Экаиод – самый тяжелый галоген. Очевидно, он должен быть еще более металлоподобен, нежели иод, и, обладая многими свойствами галогенов, так или иначе похож и на своего соседа слева – полоний… Вместе с другими галогенами экаиод, по-видимому, должен находиться в воде морей, океанов, буровых скважин. Его пытались, подобно иоду, искать в морских водорослях, рассолах и т.п. Английский химик И.

 Фриенд пытался найти нынешние астат и франций в водах Мертвого моря, в которых, как было известно, и галогенов, и щелочных металлов более чем достаточно. Для извлечения экаиода из раствора хлоридов осаждалось хлористое серебро; Фриенд полагал, что осадок увлечет за собой и следы 85-го элемента. Однако ни рентгеноспектральный анализ, ни масс-спектрометрия не дали положительного результата.

В 1932 г. химики Политехнического института штата Алабама (США) во главе с Ф. Аллисоном сообщили, что ими из монацитового песка выделен продукт, в котором содержится около 0,000002 г одного из соединений элемента №85.

В честь своего штата они назвали его «алабамий» и описали даже его соединение с водородом и кислородсодержащие кислоты. Название «алабамий» для 85-го элемента фигурировало в учебниках и справочниках по химии до 1947 г.

Однако уже вскоре после этого сообщения у нескольких ученых возникли сомнения в достоверности открытия Аллисона. Свойства алабамия резко расходились с предсказаниями периодического закона. Кроме того, к этому времени стало ясно, что все элементы тяжелее висмута не имеют стабильных изотопов.

Допустив же стабильность элемента №85, наука оказалась бы перед необъяснимой аномалией.

Ну, а если элемент №85 не стабилен, тогда на Земле его можно обнаружить лишь в двух случаях: если у него есть изотоп с периодом полураспада больше возраста Земли или если его изотопы образуются при распаде долгоживущих радиоактивных элементов.

Предположение, что элемент №85 может быть продуктом радиоактивного распада других элементов, стало отправной точкой для другой большой группы исследователей, занимавшихся поисками экаиода. Первым в этой группе следует назвать известного немецкого радиохимика Отто Гана, который еще в 1926 г. предположил возможность образования изотопов 85-го элемента при бета-распаде полония.

За 19 лет, с 1925 по 1943 г., в периодической печати появилось по меньшей мере полдюжины сообщений об открытии экаиода.

Ему приписывали определенные химические свойства, присваивали звучные названия: гельвеций (в честь Швейцарии), англогельвеций (в честь Англии и Швейцарии), дакин (от названия древней страны даков в Средней Европе), лептин (в переводе с греческого «слабый», «шаткий», «обездоленный») и т.д. Однако первое достоверное сообщение об открытии и идентификации элемента №85 сделали физики, занятые синтезом новых элементов.

На циклотроне Калифорнийского университета Д. Корсон, К. Мак-Кензи и Э. Сегре облучили альфа-частицами мишень из висмута. Энергия частиц составляла 21 МэВ, и ядерная реакция получения элемента №85 была такова:

20983Bi + 42He → 21185At + 2 10n.

Новый синтетический элемент получил название лишь после войны, в 1947 г. Но еще раньше, в 1943 г., было доказано, что изотопы астата образуются во всех трех рядах радиоактивного распада. Следовательно, астат есть в природе.

Астат в природе

Астат в природе первыми нашли австрийские химики Б. Карлик и Т. Бернерт. Изучая радиоактивность дочерних продуктов радона, они обнаружили, что незначительная часть радия-А (так называли тогда, да и сейчас еще называют, изотоп 218Po) распадается двояко (так называемая радиоактивная вилка):

В свежевыделенном образце RaA наряду с альфа-частицами, порождаемыми полонием-218, были зарегистрированы и альфа-частицы с иными характеристиками. Как раз такие частицы могли, по теоретическим оценкам, испускать ядра изотопа 21885.

Позже в других опытах были обнаружены короткожи-вущие изотопы 215At, 216At и 217At. А в 1953 г. американские радиохимики Э. Хайд и А. Гиорсо химическим путем выделили изотоп 219At из франция-223. Это единственный случай химической идентификации изотопа астата из имеющегося в природе изотопа. Намного проще и удобней получать астат искусственным путем.

Обнаружить, выделить, узнать

Приведенную выше реакцию облучения висмуса альфа-частицами можно использовать и для синтеза других изотопов астата. Достаточно повысить энергию бомбардирующих частиц до 30 МэВ, как пойдет реакция с вылетом трех нейтронов и вместо астата-211 образуется астат-210.

Чем выше энергия альфа-частиц, тем больше образуется вторичных нейтронов и тем меньше, следовательно, массовое число образующегося изотопа.

В качестве мишеней для облучения используют металлический висмут или его окись, которые наплавляют или напыляют на алюминиевую или медную подложку.

Рис. 6. Зависимость между энергией испускаемых альфа-частиц и массовым числом (или числом нейтронов в ядре) изотопов астата

Другой метод синтеза астата состоит в облучении ускоренными ионами углерода мишени из золота. В этом случае происходит, в частности, такая реакция:

19779Au + 126C → 20585At + 4 10n.

Для выделения образующегося астата из висмутовых или золотых мишеней используют достаточно высокую летучесть астата – он же все-таки галоген! Дистилляция происходит в токе азота или в вакууме при нагревании мишени до 300…600°C. Астат конденсируется на поверхности стеклянной ловушки, охлаждаемой жидким азотом или сухим льдом.

Еще один способ получения астата основан на реакциях расщепления ядер урана или тория при облучении их альфа-частицами или протонами высоких энергий.

Так, например, при облучении 1 г металлического тория протонами с энергией 680 МэВ на синхроциклотроне Объединенного института ядерных исследований в Дубне получается около 20 микрокюри (иначе 3·1013 атомов) астата.

Однако в этом случае гораздо труднее выделить астат из сложной смеси элементов. Эту нелегкую проблему сумела решить группа радиохимиков из Дубны во главе с В.А. Халкиным.

Сейчас известно уже 20 изотопов астата с массовыми числами от 200 до 219. Самый долгоживущий из них – изотоп 210At (период полураспада 8,3 часа), а самый короткоживущий – 214At (2·10–6 секунды).

Поскольку астат не может быть получен в весомых количествах, его физические и химические свойства изучены неполно, а физико-химические константы чаще всего рассчитываются по аналогии с более доступными соседями по периодической системе. В частности, вычислены температуры плавления и кипения астата – 411 и 299°C, т.е. астат, как и иод, должен легче возгоняться, чем плавиться.

Все исследования по химии астата проводились с ультрамалыми количествами этого элемента, порядка 10–9…10–13 г на литр растворителя.

И дело даже не в том, что нельзя получить более концентрированные растворы. Если бы их и удалось получить, работать с ними было бы крайне сложно.

Альфа-излучение астата приводит к радиолизу растворов, сильному их разогреву и образованию больших количеств побочных продуктов.

[attention type=red]
И все же, несмотря на все эти трудности, несмотря на то, что количество атомов астата в растворе сравнимо со случайными (хотя и тщательно избегаемыми) загрязнениями, в изучении химических свойств астата достигнуты определенные успехи.
[/attention]

Установлено, что астат может существовать в шести валентных состояниях – от 1 – до 7+. В этом он проявляет себя как типичный аналог иода.

Как и иод, он хорошо растворяется в большинстве органических растворителей, но зато легче, чем иод, приобретает положительный электрический заряд.

Получены и изучены свойства ряда межгалогенных соединений астата, например AtBr, AtI, CsAtI2.

Астат в таблице Менделеева

АСТАТ

Что такое астат, чем он интересен и стоит ли заниматься его изучением? Прочитав нашу статью, вы узнаете много интересного об этом своеобразном химическом элементе, об истории его открытия и о том, где он нашел применение.

Располагая химические элементы в порядке возрастания их атомных весов, русский химик Дмитрий Иванович Менделеев обнаружил, что в этом естественном ряду периодически через правильные интервалы повторяются химические элементы с похожими химическими свойствами. Так был открыт периодический закон Д.И. Менделеева. В то время наука ничего не знала о строении атома. Поэтому за основу классификации химических элементов Д.И. Менделеев взял величину атомной массы и свойства элемента.

Проще смысл периодического закона Д.И. Менделеева можно передать так: свойства элементов плавно и одинаково изменяются с возрастанием их атомного веса, а затем эти изменения периодически повторяются. Позже, когда наука открыла строение ядра, понятие «атомный вес» заменили понятием «заряд ядра».

Итак, согласно периодическому закону, свойства элементов должны изменяться плавно. Но так происходило не всегда. Иногда в последовательности изменения свойств элементов не хватало какого-нибудь звена.

В этом случае Менделеев оставлял в таблице пробелы, которые должны были заполняться вновь открытыми элементами с соответствующей химической характеристикой.

То есть, с помощью своего закона Менделеев предсказал свойства ещё не открытых элементов.

Астат


Подобным образом в 1898 г. Менделеев предсказал существование 85-го элемента периодической таблицы химических элементов, который он назвал «эка-иодином». Но получен был 85-й элемент только в 1940 г. американскими физиками Д. Корсоном, К. Маккензи и Э.

Сегре искусственным путем. Новому элементу дали название астат. В 1943 г. астат был обнаружен в природе. Из всех встречающихся на Земле элементов астат является самым редким. В природе астата содержится всего лишь около 30 граммов.

В переводе с греческого «астатос» означает «неустойчивый». И в самом деле, астат имеет очень короткую продолжительность существования. Период его полураспада составляет всего лишь 8,3 часа, т.е. полученный утром астат к вечеру уменьшается наполовину.

Химические свойства астата


Графически периодическая система Д.И. Менделеева отображается двухмерной таблицей, называемой таблицей Менделеева. Номер столбца или номер группы в этой таблице равен числу электронов на внешнем слое атома вещества. Номер строки или номер периода равен числу энергетических уровней в атоме.

В таблице периодической системы Менделеева астат находится в VII группе вместе с галогенами: фтором, хлором, бромом, йодом. Химическая активность галогенов уменьшается от фтора к йоду.

Если мы рассмотрим эти вещества, то увидим, что фтор и хлор — газы, бром — жидкость, а йод — твердое вещество, обладающее некоторыми свойствами металлов.

Астат является пятым, наиболее тяжелым элементом группы галогенов.

По своим химическим свойствам астат похож на йод, но во многом и отличается от него, так как больше, чем йод, обладает свойствами металлов. В отличие от йода астат – радиоактивный элемент. Астат также обнаруживает сходство с полонием, своим соседом слева в таблице Менделеева.

Как и все галогены, астат даёт нерастворимую соль AgAt. Но, как типичные металлы, астат осаждается сероводородом даже из сильно кислых растворов, вытесняется цинком из сернокислых растворов, а при электролизе осаждается на катоде.

Астат не растворяется в воде, но подобно йоду хорошо растворяется в органических растворителях. Легко испаряется в воздухе и вакууме.

Астат обладает уникальной способностью возгоняться в молекулярной форме (переходить из твердого состояния сразу в газообразное, минуя жидкое) из водных растворов. Такой способности нет ни у одного из известных элементов.

Практическое применение астата

Где же применяется астат?

Ученые выяснили, что астат, как и йод, накапливается в щитовидной железе. Но по силе действия астат сильнее йода. Астат имеет много изотопов, но все они живут очень короткое время. Самым перспективным для лечения заболеваний щитовидной железы является изотоп 211At.

Кроме этого, астат может выводиться из организма человека с помощью ионов роданида. Следовательно, вредное воздействие изотопа 211At на другие органы будет минимальным. Это позволяет сделать вывод о том, что применение астата в медицине является очень перспективным.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть