Фосфора оксиды

Фосфор и его соединения (стр. 1 из 3)

Фосфора оксиды

Фосфор и его соединения

Реферат

Введение

Глава I. Фосфор как элемент и как простое вещество

1.1. Фосфор в природе

1.2. Физические свойства

1.3. Химические свойства

1.4. Получение

1.5. Применение

Глава II. Соединения фосфора

2.1. Оксиды

2.2. Кислоты и их соли

2.3. Фосфин

Глава III. Фосфорные удобрения

Заключение

Библиографический список

Введение

Фосфор (лат. Phosphorus) P – химический элемент V группы периодической системы Менделеева атомный номер 15, атомная масса 30,973762(4). Рассмотрим строение атома фосфора. На наружном энергетическом уровне атома фосфора находятся пять электронов. Графически это выглядит так:

1s22s22p63s23p33d0

В 1699 г. гамбургский алхимик X. Бранд в поисках «философского камня», якобы способного превратить неблагородные металлы в золото, при выпаривании мочи с углём и песком выделил белое воскообразное вещество, способное светиться.

Название «фосфор» происходит от греч. «phos» – свет и «phoros» – несущий. В России термин «фосфор» введён в 1746 г. М.В. Ломоносовым.

К основным соединениям фосфора относят оксиды, кислоты и их соли (фосфаты, дигидрофосфаты, гидрофосфаты, фосфиды, фосфиты).

Очень много веществ, содержащих фосфор, содержатся в удобрениях. Такие удобрения называют фосфорными.

Глава I Фосфор как элемент и как простое вещество

1.1 Фосфор в природе

Фосфор относится к числу распространенных элементов. Общее содержание в земной коре составляет около 0,08%. Вследствие лёгкой окисляемости фосфор в природе встречается только в виде соединений.

Главными минералами фосфора являются фосфориты и апатиты, из последних наиболее распространён фторапатит 3Ca3(PO4)2 • CaF2. Фосфориты широко распространены на Урале, в Поволжье, Сибири, Казахстане, Эстонии, Беларуси.

Самые большие залежи апатитов находятся на Кольском полуострове.

Фосфор – необходимый элемент живых организмов. Он присутствует в костях, мышцах, в мозговой ткани и нервах. Из фосфора построены молекулы АТФ – аденозинтрифосфорной кислоты (АТФ – собиратель и носитель энергии). В организме взрослого человека содержится в среднем около 4,5 кг фосфора, в основном в соединении с кальцием.

Фосфор содержится также в растениях.

Природный фосфор состоит лишь из одного стабильного изотопа 31Р. В наши дни известно шесть радиоактивных изотопов фосфора.

1.2 Физические свойства

Фосфор имеет несколько аллотропных модификаций – белый, красный, чёрный, коричневый, фиолетовый фосфор и др. Первые три из названных наиболее изучены.

Белый фосфор – бесцветное, с желтоватым оттенком кристаллическое вещество, светящееся в темноте. Его плотность 1,83 г/см3. Не растворяется в воде, хорошо растворяется в сероуглероде. Имеет характерный чесночный запах.

Температура плавления 44°С, температура самовоспламенения 40°С. Чтобы защитить белый фосфор от окисления, его хранят под водой в темноте (на свету идёт превращение в красный фосфор).

На холоде белый фосфор хрупок, при температурах выше 15°С становится мягким и режется ножом.

Молекулы белого фосфора имеют кристаллическую решётку, в узлах которой находятся молекулы Р4, имеющие форму тетраэдра.

Каждый атом фосфора связан тремя σ-связями с другими тремя атомами.

Белый фосфор ядовит и даёт труднозаживающие ожоги.

Красный фосфор – порошкообразное вещество тёмно-красного цвета без запаха, в воде и сероуглероде не растворяется, не светится. Температура воспламенения 260°С, плотность 2,3 г/см3. Красный фосфор представляет собой смесь нескольких аллотропных модификаций, отличающихся цветом (от алого до фиолетового). Свойства красного фосфора зависят от условий его получения. Не ядовит.

Чёрный фосфор по внешнему виду похож на графит, жирный на ощупь, обладает полупроводниковыми свойствами. Плотность 2,7 г/см3.

Красный и чёрный фосфоры имеют атомную кристаллическую решётку.

1.3 Химические свойства

Фосфор – неметалл. В соединениях он обычно проявляет степень окисления +5, реже – +3 и –3 (только в фосфидах).

Реакции с белым фосфором идут легче, чем с красным.

I. Взаимодействие с простыми веществами.

1. Взаимодействие с галогенами:

2P + 3Cl2 = 2PCl3 (хлорид фосфора (III)),

PCl3 + Cl2 = PCl5 (хлорид фосфора (V)).

2. Взаимодействие с нематаллами:

2P + 3S = P2S3 (сульфид фосфора (III).

3. Взаимодействие с металлами:

2P + 3Ca = Ca3P2 (фосфид кальция).

4. Взаимодействие с кислородом:

4P + 5O2 = 2P2O5 (оксид фосфора (V), фосфорный ангидрид).

II. Взаимодействие со сложными веществами.

3P + 5HNO3 + 2H2O = 3H3PO4 + 5NO↑.

1.4 Получение

Фосфор получают из измельченных фосфоритов и апатитов, последние смешиваются с углем и песком и прокаливаются в печах при 1500°С:

2Ca3(PO4)2 + 10C + 6SiO2 6CaSiO3 + P4↑ + 10CO↑.

Фосфор выделяется в виде паров, которые конденсируются в приёмнике под водой, при этом образуется белый фосфор.

При нагревании до 250-300°С без доступа воздуха белый фосфор превращается в красный.

Чёрный фосфор получается при длительном нагревании белого фосфора при очень большом давлении (200°С и 1200 МПа).

1.5 Применение

Красный фосфор применяется при изготовлении спичек (см. рисунок). Он входит в состав смеси, наносимой на боковую поверхность спичечного коробка.

Основным компонентом состава головки спички является бертолетова соль KClO3. От трения головки спички о намазку коробка частицы фосфора на воздухе воспламеняются.

В результате реакции окисления фосфора выделяется тепло, приводящее к разложению бертолетовой соли.

KClO3 KCl + .

Образующийся кислород способствует воспламенению головки спички.

Фосфор используют в металлургии. Он применяется для получения проводников и входит в состав некоторых металлических материалов, например оловянных бронз.

Также фосфор используют при производстве фосфорной кислоты и ядохимикатов (дихлофос, хлорофос и др.).

Белый фосфор используют для создания дымовых завес, так как при его горении образуется белый дым.

Глава II. Соединения фосфора

2.1 Оксиды

Фосфор образует несколько оксидов. Важнейшими из них являются оксид фосфора (V) P4O10 и оксид фосфора (III) P4O6. Часто их формулы пишут в упрощённом виде – P2O5 и P2O3. В структуре этих оксидов сохраняется тетраэдрическое расположение атомов фосфора.

Оксид фосфора (III) P4O6 – воскообразная кристаллическая масса, плавящаяся при 22,5°С и превращающаяся при этом в бесцветную жидкость. Ядовит.

При растворении в холодной воде образует фосфористую кислоту:

P4O6 + 6H2O = 4H3PO3,

а при реакции со щелочами – соответствующие соли (фосфиты).

Сильный восстановитель. При взаимодействии с кислородом окисляется до Р4О10.

Оксид фосфора (III) получается окислением белого фосфора при недостатке кислорода.

Оксид фосфора (V) P4O10 – белый кристаллический порошок. Температура возгонки 36°С. Имеет несколько модификаций, одна из которых (так называемая летучая) имеет состав Р4О10.

Кристаллическая решётка этой модификации слагается из молекул Р4О10, связанных между собой слабыми межмолекулярными силами, легко разрывающимися при нагревании. Отсюда и летучесть этой разновидности. Другие модификации полимерны.

Они образованы бесконечными слоями тетраэдров РО4.

При взаимодействии Р4О10 с водой образуется фосфорная кислота:

P4O10 + 6H2O = 4H3PO4.

Будучи кислотным оксидом, Р4О10 вступает в реакции с основными оксидами и гидроксидами.

Образуется при высокотемпературном окислении фосфора в избытке кислорода (сухого воздуха).

Благодаря исключительной гигроскопичности оксид фосфора (V) используется в лабораторной и промышленной технике в качестве осушающего и дегидратируюшего средства. По своему осушающему действию он превосходит все остальные вещества. От безводной хлорной кислоты отнимает химически связанную воду с образованием её ангидрида:

4HClO4 + P4O10 = (HPO3)4 + 2Cl2O7.

2.2 Кислоты и их соли

а) Фосфористая кислота H3PO3. Безводная фосфористая кислота Н3РО3 образует кристаллы плотностью 1,65 г/см3, плавящиеся при 74°С.

Структурная формула:

.

При нагревании безводной Н3РО3 происходит реакция диспропорционирования (самоокисления-самовосстановления):

4H3PO3 = PH3↑ + 3H3PO4.

Соли фосфористой кислоты – фосфиты. Например, K3PO3 (фосфит калия) или Mg3(PO3)2 (фосфит магния).

Фосфористую кислоту Н3РО3 получают растворением в воде оксида фосфора (III) или гидролизом хлорида фосфора (III) РCl3:

РCl3 + 3H2O = H3PO3 + 3HCl↑.

б) Фосфорная кислота (ортофосфорная кислота) H3PO4.

Безводная фосфорная кислота представляет собой светлые прозрачные кристаллы, при комнатной температуре расплывающиеся на воздухе. Температура плавления 42,35°С. С водой фосфорная кислота образует растворы любых концентраций.

Кислородные соединения фосфора

Фосфора оксиды

Фосфор образует очень большое число различных оксидов и кислот. Среди них наиболее устойчивыми являются оксид фосфора (V) и соответствующая ему ортофосфорная, или фосфорная, кислота H3PO4.

При обычной температуре — белая воскообразная масса с т. пл. 23,5'С. Очень легко испаряется, имеет неприятный запах, очень ядовит. Существует в виде димеров Р4О6.

Способ получения

Р2О3 образуется при медленном окислении фосфора или при его горении в недостатке кислорода:

4Р + 3О2 = 2Р2О3

Р2О3 — кислотный оксид

Как кислотный оксид при взаимодействии с водой образует фосфористую кислоту:

Р2О3 + ЗН2О =2H3PO3

Но при растворении в горячей воде происходит очень бурная реакция диспропорционирования Р2О3:

2Р2О3 + 6Н2О = РН3 + ЗH3PO4

Взаимодействие Р2О3 со щелочами приводит к образованию солей фосфористой кислоты:

Р2О3 + 4NaOH = 2Na2HPO3 + Н2О

Р2О3 — очень сильный восстановитель

1. Окисление кислородом воздуха:

Р2О3 + О2 = Р2О5

2. Окисление галогенами:

Р2О3 + 2Cl2 + 5Н2О = 4HCl + 2H3PO4

Р2О5 — оксид фосфора (V)

При обычной температуре — белая снегоподобная масса, не имеет запаха, существует в виде димеров Р4О10. При соприкосновении с воздухом расплывается в сиропообразную жидкость (НРO3). Р2О5 — самое эффективное осушающее средство и водоотнимающий агент. Применяется для осушения нелетучих веществ и газов.

Р2О5 — типичный кислотный оксид

Как кислотный оксид Р2О5 взаимодействует:

а) с водой, образуя при этом различные кислоты

Р2О5 + Н2О = 2HPO3 метафосфорная

Р2О5 + 2Н2О = Н4Р2О7 пирофосфориая (дифосфорная)

Р2О5 + ЗН2О = 2H3PO4 ортофосфорная

б) с основными оксидами, образуя фосфаты Р2О5 + ЗВаО = Ва3(PO4)2

в) со щелочами, образуя средние и кислые соли

Р2О5 + 6NaOH = 2Na3PO4 + ЗН2О

Р2О5 + 4NaOH = 2Na2HPO4 + Н2О

Р2О5 + 2NaOH = 2NaH2PO4 + Н2О

Р2О5 — водоотнимающий агент

Фосфорный ангидрид отнимает у других веществ не только гигроскопическую влагу, но и химически связанную воду. Он способен даже дегидратировать оксокислоты:

Р2О5 + 2HNО3 = 2HPO3 + N2О5

Р2О5 + 2НСlО4 = 2HPO3 + Сl2О7

Это используется для получения ангидридов кислот.

Фосфорные кислоты

Фосфор образует только 2 устойчивых оксида, но большое число кислот, в которых он находится в степенях окисления +5, +4, +3, +1. Строение наиболее известных кислот выражается следующими формулами

Как видно из этих формул, фосфор во всех случаях образует пять ковалентных связей, т.е. имеет валентность, равную V. В то же время степени окисления фосфора и основность кислот различаются.

Наибольшее практическое значение имеют ортофосфорная (фосфорная) и ортофосфористая (фосфористая) кислоты.

H3PO4 — фосфористая кислота

Важная особенность фосфористой кислоты обусловлена строением ее молекул. Один из 3-х атомов водорода связан непосредственно с атомом фосфора, поэтому не способен к замещению атомами металла, вследствие чего эта кислота является двухосновной. Формулу фосфористой кислоты записывают с учетом этого факта следующим образом: Н2[НРО3]

Является слабой кислотой.

Способы получения

1. Растворение Р2О3 в воде (см. выше).

2. Гидролиз галогенидов фосфора (III): PCl3 + ЗН2О = Н2[НРО3] + 3HCl

3. Окисление белого фосфора хлором: 2Р + 3Cl2 + 6Н2О = 2Н2[НРО3] + 6HCl

Физические свойства

При обычной температуре H3PO3 — бесцветные кристаллы с т. пл. 74°С, хорошо растворимые в воде.

Кислотные функции

Фосфористая кислота проявляет все свойства, характерные для класса кислот: взаимодействует с металлами с выделением Н2; с оксидами металлов и со щелочами. При этом образуются одно — и двухзамещенные фосфиты, например:

Н2[НРО3] + NaOH = NaH[HРО3] + Н2О

Н2[НРО3] + 2NaOH = Na2[HРО3] + 2Н2О

Восстановительные свойства

Кислота и ее соли — очень сильные восстановители; они вступают в окислительно-восстановительные реакции как с сильными окислителями (галогены, H2SО4 конц., К2Сr2O2), так и с достаточно слабыми (например, восстанавливают Au, Ag, Pt, Pd из растворов их солей). Фосфористая кислота при этом превращается в фосфорную.

Примеры реакций:

H3PO3 + 2AgNO3 + Н2О = H3PO4 + 2Ag↓ + 2HNO3

H3PO3 + Cl2 + Н2О = H3PO4 + 2HCl

При нагревании в воде Н3РO3 окисляется до H3PO4 с выделением водорода:

H3PO3 + Н2О = H3PO4 + Н2

Фосфиты — соли фосфористой кислоты

Двухосновная фосфористая кислота образует два типа солей:

а) однозамещенные фосфиты (кислые соли), в молекулах которых атомы металлов связаны с анионами Н2Р03.

Примеры: NaH2PO3, Са(H2PO3)

б) двухзамещенные фосфиты (средние соли), в молекулах которых атомы металлов связаны с 2- 1 анионами HPO3.

Примеры: Na2HPO3, СаHPO3.

Большинство фосфитов плохо растворимы в во-де, хорошо растворяются только фосфиты щелочных металлов и кальция.

Н3РO4 — ортофосфорная кислота

3-основная кислота средней силы. Диссоциация протекает в основном по 1-й ступени:

Н3РO4 → Н+ + Н2РO4-

По 2-й и 3-й ступеням диссоциация протекает в ничтожно малой степени:

Н2РO4- → Н+ + НРO42-

НРO42- → Н+ + РO43-

Качественная реакция на анион РO43-

Реактивом для обнаружения анионов РO43- (а также НРO42- , Н2РO4-) является раствор AgNO3, при добавлении которого образуется нерастворимый желтый фосфат серебра:

ЗАg+ + РO43- = Аg3РO4↓

Образование сложных эфиров

Сложные эфиры нуклеозидов и фосфорной кислоты являются структурными фрагментами природных биополимеров — нуклеиновых кислот.

Фосфатные группы входят также в состав ферментов и витаминов.

Фосфаты. Фосфорные удобрения

Н3РO4 как 3-основная кислота образует 3 типа солей, которые имеют большое практическое значение.

Название Анион соли Растворимость в воде Примеры солей
Фосфаты PO43- большинство нерастворимо (кроме фосфатов щелочных Me и аммония) Na3РO4; Са3(РO4)2
Гидрофосфаты HPO42- растворимы Na2НРO4; СаНРО4
Дигидрофосфаты Н2РO4- очень хорошо растворимы NaH2PO4; Са(Н2РO4)2

Растворимые соли фосфорной кислоты в водных растворах подвергаются гидролизу.

Фосфаты и гидрофосфаты кальция и аммония используются в качестве фосфорных удобрений.

1. Фосфоритная мука — тонкоизмельченный природный фосфат кальция Са3(РO4)2

2. Простой суперфосфат — Са3(РO4)2 + 2H2SO4 = Са(Н2РO4)2 + 2CaSO4

3. Двойной суперфосфат — Са3(РO4)2 + 4Н3РO4 = ЗСа(Н2РO4)2

4. Преципитат — Са(ОН)2 + Н3РO4 = СаНРO4 + 2Н2О

5. Аммофос — NH3 + Н3РO4 = NH4Н2РO4;

2NH3 + Н3РO4 = (NH4)2HРO4

6. Аммофоска — Аммофос + KNO3

Фосфор

Фосфора оксиды

Фосфор — элемент 3-го периода и VA-группы Периодической системы, порядковый номер 15. Электронная формула атома [10Ne]3s23p3, устойчивая степень окисления в соединениях +V.

Электроотрицательность фосфора (2,32) значительно ниже, чем у типичных неметаллов, и немного выше, чем у водорода. Образует различные кислородсодержащие кислоты, соли и бинарные соединения, проявляет неметаллические (кислотные) свойства. Большинство фосфатов нерастворимы в воде.

В природе — тринадцатый по химической распространенности элемент (шестой среди неметаллов), встречается только в химически связанном виде. Жизненно важный элемент.

Недостаток фосфора в почве восполняется введением фосфорных удобрений — главным образом суперфосфатов.

Аллотропные модификации фосфора

Красный и белый фосфор Р. Известно несколько аллотропных форм фосфора в свободном виде, главные — это белый фосфор Р4 и красный фосфор Pn. В уравнениях реакций аллотропные формы представляют как Р (красн.) и Р (бел.).

Красный фосфор состоит из полимерных молекул Pn разной длины. Аморфный, при комнатной температуре медленно переходит в белый фосфор. При нагревании до 416 °С возгоняется (при охлаждении пара конденсируется белый фосфор). Нерастворим в органических растворителях. Химическая активность ниже, чем у белого фосфора. На воздухе загорается только при нагревании.

Применяется как реагент (более безопасный, чем белый фосфор) в неорганическом синтезе, наполнитель ламп накаливания, компонент намазки коробка при изготовлении спичек. Не ядовит.

Белый фосфор состоит из молекул Р4. Мягкий как воск (режется ножом). Плавится и кипит без разложения (tпл 44,14 °С, tкип 287,3 °С, р 1,82 г/см3). Окисляется на воздухе (зеленое свечение в темноте), при большой массе возможно самовоспламенение.

В особых условиях переводится в красный фосфор. Хорошо растворим в бензоле, эфирах, сероуглероде. Не реагирует с водой, хранится под слоем воды. Чрезвычайно химически активен. Проявляет окислительно-восстановительные свойства.

Восстанавливает благородные металлы из растворов их солей.

Применяется в производстве Н3Р04 и красного фосфора, как реагент в органических синтезах, раскислитель сплавов, зажигательное средство. Горящий фосфор следует гасить песком (но не водой!). Чрезвычайно ядовит.

Получение в промышленности фосфора

— восстановление фосфорита раскаленным коксом (песок добавляют для связывания кальция):

Ca3(PО4)2 + 5С + 3SiО2 = 3CaSiO3 + 2Р + 5СО (1000 °С)

Пар фосфора охлаждают и получают твердый белый фосфор.

Красный фосфор готовят из белого фосфора (см. выше), в зависимости от условий степень полимеризации n (Pn) может быть различной.

Соединения фосфора

Фосфин РН3. Бинарное соединение, степень окисления фосфора равна — III. Бесцветный газ с неприятным запахом. Молекула имеет строение незавершенного тетраэдра [: Р(Н)3] (sр3-гибридизация).

Мало растворим в воде, не реагирует с ней (в отличие от NH3). Сильный восстановитель, сгорает на воздухе, окисляется в HNО3 (конц.). Присоединяет HI. Применяется для синтеза фосфорорганических соединений.

Сильно ядовит.

Уравнения важнейших реакций фосфина:

Получение фосфина в лаборатории:

СазP2 + 6НСl (разб.) = ЗСаСl + 2РНз

Оксид фосфора (V) P2O5. Кислотный оксид. Белый, термически устойчивый. В твердом и газообразном состояниях димер Р4О10 со строением из четырех тетраэдров [O=Р(O)3], связанных по трем вершинам (Р — О-P).

При очень высоких температурах мономеризуется до P2O5. Существует также стеклообразный полимер (Р205)п. Чрезвычайно гигроскопичен, энергично реагирует с водой, щелочами. Восстанавливается белым фосфором.

Отнимает воду у кислородсодержащих кислот.

Применяется как весьма эффективный дегидратирующий агент для осушения твердых веществ, жидкостей и газовых смесей, реагент в производстве фосфатных стекол, катализатор полимеризации алкенов. Ядовит.

Уравнения важнейших реакций оксида фосфора +5:

Получение: сжигание фосфора в избытке сухого воздуха.

Ортофосфорная кислота Н3Р04. Оксокислота. Белое вещество, гигроскопичное, конечный продукт взаимодействия P2O5 с водой.

Молекула имеет строение искаженного тетраэдра [Р(O)(OН)3] (sр3-гибридизадия), содержит ковалентные σ-связи Р — ОН и σ, π-связь Р=O. Плавится без разложения, при дальнейшем нагревании разлагается. Хорошо растворяется в воде (548 г/100 г Н20).

Слабая кислота в растворе, нейтрализуется щелочами, не полностью — гидратом аммиака. Реагирует с типичными металлами. Вступает в реакции ионного обмена.

Качественная реакция — выпадение желтого осадка ортофосфата серебра (I). Применяется в производстве минеральных удобрений, для осветления сахарозы, как катализатор в органическом синтезе, компонент антикоррозионных покрытий на чугуне и стали.

Уравнения важнейших реакций ортофосфорной кислоты:

Получение фосфорной кислоты в промышленности:

кипячение фосфоритной руды в серной кислоте:

Ca3(PO4)2 + 3H2SO4 (конц.) = 2Н3РО4 + 3CaSO4

Ортофосфат натрия Na3PO4. Оксосоль. Белый, гигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. Реагируется в растворе с цинком и алюминием.

Вступает в реакции ионного обмена.

Качественная реакция на ион РО43-

— образование желтого осадка ортофосфата серебра(I).

Применяется для устранения «постоянной» жесткости пресной воды, как компонент моющих средств и фотопроявителей, реагент в синтезе каучука. Уравнения важнейших реакций:

Получение: полная нейтрализация Н3Р04 гидроксидом натрия или по реакции:

Гидроортофосфат натрия Na2HPO4. Кислая оксосоль. Белый, при умеренном нагревании разлагается без плавления. Хорошо растворим в воде, гидролизуется по аниону. Реагирует с Н3Р04 (конц.), нейтрализуется щелочами. Вступает в реакции ионного обмена.

Качественная реакция на ион НРО42- — образование желтого осадка ортофосфата серебра (I).

Применяется как эмульгатор при сгущении коровьего молока, компонент пищевых пастеризаторов и фотоотбеливателей.

Уравнения важнейших реакций:

Получение: неполная нейтрализация Н3Р04 гидроксидом натрия в разбавленном растворе:

2NaOH + Н3РО4 = Na2HPO4 + 2H2O

Дигидроортофосфат натрия NaH2PO4. Кислая оксосоль. Белый, гигроскопичный. При умеренном нагревании разлагается без плавления. Хорошо растворим в воде, анион Н2Р04 подвергается обратимой диссоциации. Нейтрализуется щелочами. Вступает в реакции ионного обмена.

Качественная реакция на ион Н2Р04 — образование желтого осадка ортофосфата серебра(1).

Применяется в производстве стекла, для защиты стали и чугуна от коррозии, как умягчитель воды.

Уравнения важнейших реакций:

Получение: неполная нейтрализация H3PО4 едким натром:

Н3РО4 (конц.) + NaOH (разб.) = NaH2PO4 + H2O

Ортофосфат кальция Са3(PO4)2— Оксосоль. Белый, тугоплавкий, термически устойчивый. Нерастворим в воде. Разлагается концентрированными кислотами. Восстанавливается коксом при сплавлении. Основной компонент фосфоритных руд (апатиты и др.).

Применяется для получения фосфора, в производстве фосфорных удобрений (суперфосфаты), керамики и стекла, осажденный порошок — как компонент зубных паст и стабилизатор полимеров.

Уравнения важнейших реакций:

Фосфорные удобрения

Смесь Са(Н2Р04)2 и CaS04 называется простым суперфосфатом, Са(Н2Р04)2 с примесью СаНР04 — двойным суперфосфатом, они легко усваиваются растениями при подкормке.

Наиболее ценные удобрения — аммофосы (содержат азот и фосфор), представляют собой смесь аммонийных кислых солей NH4H2PO4 и (NH4)2HPO4.

Хлорид фосфора (V) PCI5. Бинарное соединение. Белый, летучий, термически неустойчивый. Молекула имеет строение тригональной бипирамиды (sp3 d-гибридизация).

В твердом состоянии димер P2Cl10 с ионным строением РСl4+[РСl6]—. «Дымит» во влажном воздухе. Весьма реакционноспособный, полностью гидролизуется водой, реагирует со щелочами. Восстанавливается белым фосфором.

Применяется как хлорагент в органическом синтезе. Ядовит.

Уравнения важнейших реакций:

Получение: хлорирование фосфора.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть