Генетический код
Генетический код | Биология
Генетический, или биологический, код является одним из универсальных свойств живой природы, доказывающим единство ее происхождения.
Генетический код — это способ кодирования последовательности аминокислот полипептидас помощью последовательности нуклеотидов нуклеиновой кислоты (информационной РНК или комплиментарного ей участка ДНК, на котором синтезируется иРНК).
Встречаются другие определения. Генетический код — это соответствие каждой аминокислоте (входящей в состав белков живого) определенной последовательности трех нуклеотидов. Генетический код — это зависимость между основаниями нуклеиновых кислот и аминокислотами белка.
В научной литературе под генетическим кодом не понимают последовательность нуклеотидов в ДНК у какого-либо организма, определяющую его индивидуальность. Неверно считать, что у одного организма или вида код один, а у другого — другой. Генетический код — это то, как кодируются аминокислоты нуклеотидами (т. е.
принцип, механизм); он универсален для всего живого, одинаков для всех организмов. Поэтому некорректно говорить, например, «Генетический код человека» или «Генетический код организма», что нередко используется в околонаучной литературе и фильмах.
В данных случаях обычно имеется в виду геном человека, организма и др.
Разнообразие живых организмов и особенностей их жизнедеятельности обусловлено в первую очередь разнообразием белков. Специфическое строение белка определяется порядком и количеством различных аминокислот, входящих в его состав.
Последовательность аминокислот пептида зашифрована в ДНК с помощью биологического кода. С точки зрения разнообразия набора мономеров, ДНК более примитивная молекула, чем пептид. ДНК представляет собой различные варианты чередования всего четырех нуклеотидов.Это долгое время мешало исследователям рассматривать ДНК как материал наследственности.
Как кодируются аминокислоты нуклеотидами
1) Нуклеиновые кислоты (ДНК и РНК) — это полимеры, состоящие из нуклеотидов. В каждый нуклеотид может входить одно из четырех азотистых оснований: аденин (А, еn: A), гуанин (Г, G), цитозин (Ц, en: C), тимин (T, en: Т). В случае РНК тимин заменяется на урацил (У, U).
При рассмотрении генетического кода принимают во внимание только азотистые основания. Тогда цепочку ДНК можно представить в виде их линейной последовательности. Например:
…AAATGAACTTCA…
Комплиментарный данному коду участок иРНК будет таким:
…UUUACUUGAAGU…
2) Белки (полипептиды) — это полимеры, состоящие из аминокислот. В живых организмах для построения полипептидов используется 20 аминокислот (еще несколько очень редко). Для их обозначения тоже можно использовать одну букву (хотя чаще используют три — сокращение от названия аминокислоты).
Аминокислоты в полипептиде соединены между собой пептидной связью также линейно. Например, пусть имеется участок белка со следующей последовательностью аминокислот (каждая аминокислота обозначается одной буквой):
…MLFRSRWIMVPQHE…
3) Если стоит задача закодировать каждую аминокислоту с помощью нуклеотидов, то она сводится к тому, как с помощью 4 букв закодировать 20 букв. Это можно сделать, сопоставляя буквам 20-ти буквенного алфавита слова, составленные из нескольких букв 4-х буквенного алфавита.
Если одну аминокислоту кодировать одним нуклеотидом, то можно закодировать только четыре аминокислоты.
Если каждой аминокислоте сопоставлять два подряд идущих в цепи РНК нуклеотида, то можно закодировать шестнадцать аминокислот.
Действительно, если имеется четыре буквы (A, U, G, C), то количество их разных парных комбинаций будет 16: (AU, UA), (AG, GA), (AC, CA), (UG, GU), (UC, CU), (GC, CG), (AA, UU, GG, CC). [Скобки используются для удобства восприятия.] Это значит, что таким кодом (двухбуквенным словом) можно закодировать только 16 разных аминокислот: каждой будет соответствовать свое слово (два подряд идущих нуклеотида).
Из математики формула, позволяющая определить количество комбинаций, выглядит так: ab = n. Здесь n — количество разных комбинаций, a — количество букв алфавита (или основание системы счисления), b — количество букв в слове (или разрядов в числе). Если подставить в эту формулу 4-х буквенный алфавит и слова, состоящие из двух букв, то получим 42 = 16.
Если в качестве кодового слова каждой аминокислоты использовать три подряд идущих нуклеотида, то можно закодировать 43 = 64 разных аминокислот, так как 64 разных комбинации можно составить из четырех букв, взятых по три (например, AUG, GAA, CAU, GGU и т. д.). Это уже больше, чем достаточно для кодирования 20 аминокислот.
Именно трехбуквенный код используется в генетическом коде. Три подряд идущих нуклеотида, кодирующих одну аминокислоту, называются триплетом (или кодоном).
Каждой аминокислоте сопоставляется определенный триплет нуклеотидов. Кроме того, поскольку комбинаций триплетов с избытком перекрывают количество аминокислот, то многие аминокислоты кодируются несколькими триплетами.
Три триплета не кодируют ни одну из аминокислот (UAA, UAG, UGA). Они обозначают конец трансляции и называются стоп-кодонами (или нонсенс-кодонами).
Триплет AUG кодирует не только аминокислоту метионин, но и инициирует трансляцию (играет роль старт-кодона).
Ниже приведены таблицы соответствия аминокислот триплетам нуклеоитидов. По первой таблице удобно определять по заданному триплету соответствующую ему аминокислоту. По второй — по заданной аминокислоте соответствующие ей триплеты.
Рассмотрим пример реализации генетического кода. Пусть имеется иРНК со следующим содержанием:
AUGGAUUCUACCUGGUUAUUGAAAAAUCAGUAG
Разобьем последовательность нуклеотидов на триплеты:
AUG-GAU-UCU-ACC-UGG-UUA-UUG-AAA-AAU-CAG-UAG
Сопоставим каждому триплету кодируемую им аминокислоту полипептида:
Метионин — Аспаргиновая кислота — Серин — Треонин — Триптофан — Лейцин — Лейцин — Лизин — Аспарагин — Глутамин
Последний триплет является стоп-кодоном.
Свойства генетического кода
Свойства генетического кода во многом являются следствием способа кодирования аминокислот.
Первое и очевидное свойство — это триплетность. Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.
Важным свойством генетического кода является его неперекрываемость. Нуклеотид, входящий в один триплет, не может входить в другой. То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.
Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота. Например, триплет AGU кодирует аминокислоту серин и больше никакую другую. Данному триплету однозначно соответствует только одна аминокислота.С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода.
Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета.
Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.
Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).
Что такое генетический код: общие сведения
В любой клетке и организме все особенности анатомического, морфологического и функционального характера определяются структурой белков, которые входят в них. Наследственным свойством организма является способность к синтезу определенных белков.
В молекуле ДНК аминокислоты расположены в полипептидной цепочке, от которой зависят биологические признаки.
Для каждой клетки характерна своя последовательность нуклеотидов в полинуклеотидной цепи ДНК. Это и есть генетический код ДНК. Посредством его записывается информация о синтезе тех или иных белков.
О том, что такое генетический код, о его свойствах и генетической информации рассказывается в этой статье.
Немного истории
Идея о том, что, возможно, генетический код существует, была сформулирована Дж.Гамовым и А.Дауном в середине двадцатого столетия. Они описали, что последовательность нуклеотидов, отвечающая за синтез определенной аминокислоты, содержит по меньшей мере три звена.
Позже доказали точное количество из трех нуклеотидов (это единица генетического кода), которое назвали триплет или кодон.
Всего нуклеотидов насчитывается шестьдесят четыре, потому что молекулы кислот, где происходит синтез белка или РНК, состоит из остатков четырех различных нуклеотидов.
Что такое генетический код
Способ кодирования последовательности белков аминокислот благодаря последовательности нуклеотидов характерен для всех живых клеток и организмов. Вот что такое генетический код.
В ДНК есть четыре нуклеотида:
- аденин — А;
- гуанин — Г;
- цитозин — Ц;
- тимин — Т.
Они обозначаются заглавными буквами латинскими или (в русскоязычной литературе) русскими.
В РНК также присутствуют четыре нуклеотида, однако один из них отличается от ДНК:
- аденин — А;
- гуанин — Г;
- цитозин — Ц;
- урацил — У.
Все нуклеотиды выстраиваются в цепочки, причем в ДНК получается двойная спираль, а в РНК — одинарная.
Белки строятся на двадцати аминокислотах, где они, расположенные в определенной последовательности, определяют его биологические свойства.
Генетическая информация
Под этим понятием подразумевается программа свойств, которая передается от предков. Она заложена в наследственности как генетический код.
Реализуется при синтезе белка генетический код РНК (рибонуклеиновыми кислотами):
- информационной и-РНК;
- транспортной т-РНК;
- рибосомальной р-РНК.
Информация передается прямой связью (ДНК-РНК-белок) и обратной (среда-белок-ДНК).Организмы могут получать, сохранять, передавать ее и использовать при этом наиболее эффективно.
Передаваясь по наследству, информация определяет развитие того или иного организма. Но из-за взаимодействия с окружающей средой реакция последнего искажается, благодаря чему и происходит эволюция и развитие.
Таким образом в организм закладывается новая информация.
Вычисление закономерностей молекулярной биологии и открытие генетического кода проиллюстрировали то, что необходимо соединить генетику с теорией Дарвина, на основе чего появилась синтетическая теория эволюции — неклассическая биология.
Наследственность, изменчивость и естественный отбор Дарвина дополняются генетически определяемым отбором.
Эволюция реализуется на генетическом уровне путем случайных мутаций и наследованием самых ценных признаков, которые наиболее адаптированы к окружающей среде.
Расшифровка кода у человека
В девяностых годах был начат проект Human Genome, в результате чего в двухтысячных были открыты фрагменты генома, содержащие 99,99% генов человека. Неизвестными остались фрагменты, которые не участвуют в синтезе белков и не кодируются. Их роль пока остается неизвестной.
Последняя открытая в 2006 году хромосома 1 является самой длинной в геноме. Более трехсот пятидесяти заболеваний, в том числе рак, появляются в результате нарушений и мутаций в ней.
Роль подобных исследований трудно переоценить. Когда открыли, что такое генетический код, стало известно, по каким закономерностям происходит развитие, как формируется морфологическое строение, психика, предрасположенность к тем или иным заболеваниям, обмен веществ и пороки индивидов.
Генетический код (стр. 1 из 2)
Министерство образования и науки Российской Федерации Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования «Алтайский государственный технический университет им. И.И. Ползунова»
Кафедра «Естествознания и системного анализа»
Реферат по теме «Генетический код»
Барнаул 2007
Оглавление
1. Понятие генетического кода
2. Свойства генетического кода
3. Генетическая информация
4. Расшифровка генетического кода человека
Список литературы
1. Понятие генетического кода
Генетический код — свойственная живым организмам единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Каждый нуклеотид обозначается заглавной буквой, с которой начинается название азотистого основания, входящего в его состав: — А (A) аденин; — Г (G) гуанин; — Ц (C) цитозин; — Т (T) тимин (в ДНК) или У (U) урацил (в мРНК).
Реализация генетического кода в клетке происходит в два этапа: транскрипцию и трансляцию.
Первый из них протекает в ядре; он заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.
Второй этап протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке: этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов.
2. Свойства генетического кода
1. Триплетность
Каждая аминокислота кодируется последовательностью из 3-х нуклеотидов.
Триплет или кодон — последовательность из трех нуклеотидов, кодирующая одну аминокислоту.Код не может быть моноплетным, поскольку 4 (число разных нуклеотидов в ДНК) меньше 20. Код не может быть дуплетным, т.к. 16 (число сочетаний и перестановок из 4-х нуклеотидов по 2) меньше 20. Код может быть триплетным, т.к. 64 (число сочетаний и перестановок из 4-х по 3) больше 20.
2. Вырожденность.
Все аминокислоты, за исключением метионина и триптофана, кодируются более чем одним триплетом: 2 аминокислоты по 1 триплету = 2 9 аминокислот по 2 триплета = 18 1 аминокислота 3 триплета = 3 5 аминокислот по 4 триплета = 20 3 аминокислоты по 6 триплетов = 18 Всего 61 триплет кодирует 20 аминокислот.
3. Наличие межгенных знаков препинания.
Ген- это участок ДНК, кодирующий одну полипептидную цепь или одну молекулу tРНК, rРНК или sРНК.
Гены tРНК, rРНК, sРНК белки не кодируют.
В конце каждого гена, кодирующего полипептид, находится, по меньшей мере, один из 3-х терминирующих кодонов, или стоп-сигналов: UAA, UAG, UGA. Они терминируют трансляцию.
Условно к знакам препинания относится и кодон AUG — первый после лидерной последовательности. Он выполняет функцию заглавной буквы. В этой позиции он кодирует формилметионин (у прокариот).
4. Однозначность.
Каждый триплет кодирует лишь одну аминокислоту или является терминатором трансляции.
Исключение составляет кодон AUG. У прокариот в первой позиции (заглавная буква) он кодирует формилметионин, а в любой другой — метионин.
5. Компактность, или отсутствие внутригенных знаков препинания.
Внутри гена каждый нуклеотид входит в состав значащего кодона.
В 1961г. Сеймур Бензер и Френсис Крик экспериментально доказали триплетность кода и его компактость.
Суть эксперимента: «+» мутация — вставка одного нуклеотида. «-» мутация — выпадение одного нуклеотида. Одиночная «+» или «-» мутация в начале гена портит весь ген. Двойная «+» или «-» мутация тоже портит весь ген. Тройная «+» или «-» мутация в начале гена портит лишь его часть. Четверная «+» или «-» мутация опять портит весь ген.
Эксперимент доказывает, что код триплетен и внутри гена нет знаков препинания. Эксперимент был проведен на двух рядом расположенных фаговых генах и показал, кроме того, наличие знаков препинания между генами.
3. Генетическая информация
Генетическая информация — программа свойств организма, получаемая от предков и заложенная в наследственных структурах в виде генетического кода
Предполагается, что становление генетической информации шло по схеме: геохимические процессы — минералообразование — эволюционный катализ (автокатализ).
Возможно, что первые примитивные гены представляли собой микрокристаллические кристаллы глины, причем каждый новый слой глины выстраивается в соответствии с особенностями строения предыдущего, как бы получая от него информацию о строении.
Реализация генетической информации происходит в процессе синтеза белковых молекул с помощью трех РНК: информационной (иРНК), транспортной (тРНК) и рибосомальной (рРНК). Процесс передачи информации идет: — по каналу прямой связи: ДНК — РНК — белок; и — по каналу обратной связи: среда — белок — ДНК
Живые организмы способны получать, сохранять и передавать информацию. Причем живым организмам присуще стремление полученную информацию о себе и окружающем мире использовать максимально эффективно.
Наследственная информация, заложенная в генах и необходимая живому организму для существования, развития и размножения передается от каждого индивида его потомкам.
Эта информация определяет направление развития организма, и в процессе взаимодействия его с окружающей средой реакция на ее индивида может искажаться, обеспечивая тем самым эволюцию развития потомков. В процессе эволюции живого организма возникает и запоминается новая информация, в том числе для него возрастает ценность информации.В ходе реализации наследственной информации в определенных условиях внешней среды формируется фенотип организмов данного биологического вида.
Генетическая информация определяет морфологическое строение, рост, развитие, обмен веществ, психический склад, предрасположенность к заболеваниям и генетические пороки организма
Многие ученые, справедливо подчеркивая роль информации в становлении и эволюции живого, отмечали это обстоятельство в качестве одного из главных критериев жизни. Так, В.И.
Карагодин считает: «Живое есть такая форма существования информации и кодируемых ею структур, которая обеспечивает воспроизведение этой информации в подходящих условиях внешней среды». Связь информации с жизнью отмечает и А.А.
Ляпунов: «Жизнь — это высокоупорядоченное состояние вещества, использующее для выработки сохраняющихся реакций информацию, кодируемую состояниями отдельных молекул». Известный наш астрофизик Н.С.
Кардашев также подчеркивает информационную составляющую жизни: «Жизнь возникает благодаря возможности синтеза особого рода молекул, способных запоминать и использовать вначале самую простую информацию об окружающей среде и собственной структуре, которую они используют для самосохранения, для воспроизводства и, что для нас особенно важно, получения еще большего количества информации». На эту способность живых организмов сохранять и передавать информацию обращает внимание в своей книге «Физика бессмертия» эколог Ф. Типлер: «Я определяю жизнь как некую закодированную информацию, которая сохраняется естественным отбором». Более того, он считает, если это так, то система жизнь — информация является вечной, бесконечной и бессмертной.
Раскрытие генетического кода и установление закономерностей молекулярной биологии показали необходимость соединения современной генетики и дарвиновской теории эволюции. Так родилась новая биологическая парадигма — синтетическая теория эволюции (СТЭ), которую можно рассматривать уже как неклассическую биологию.
Основные идеи эволюции Дарвина с его триадой — наследственностью, изменчивостью, естественным отбором — в современном представлении эволюции живого мира дополняются представлениями не просто естественного отбора, а такого отбора, который детерминирован генетически.
Началом разработки синтетической или общей эволюции можно считать работы С.С. Четверикова по популяционной генетике, в которых было показано, что отбору подвергаются не отдельные признаки и особи, а генотип всей популяции, но осуществляется он через фенотипические признаки отдельных особей.
Это приводит к распространению полезных изменений во всей популяции.
Таким образом, механизм эволюции реализуется как через случайные мутации на генетическом уровне, так и через наследование наиболее ценных признаков (ценности информации!), определяющих адаптацию мутационных признаков к окружающей среде, обеспечивая наиболее жизнеспособное потомство.Сезонные изменения климата, различных природные или техногенные катастрофы с одной стороны, приводят к изменению частоты повторяемости генов в популяциях и, как следствие, к снижению наследственной изменчивости.
Этот процесс иногда называют дрейфом генов.
А с другой — к изменениям концентрации различных мутаций и уменьшению разнообразия генотипов, содержащихся в популяции, что может привести к изменениям направленности и интенсивности действия отбора.
4. Расшифровка генетического кода человека
В мае 2006 года учёные, работающие над расшифровкой генома человека, опубликовали полную генетическую карту хромосомы 1, которая была последней из не полностью секвенсированной хромосомой человека.
Предварительная генетическая карта человека была опубликована в 2003 году, что ознаменовало формальное завершение проекта Human Genome. В его рамках были секвенсированы фрагменты генома, содержащие 99% генов человека. Точность идентификации генов составила 99,99%.
Однако на момент завершения проекта полностью секвенсированы были лишь четыре из 24 хромосом. Дело в том, что помимо генов хромосомы содержат фрагменты, не кодирующие никаких признаков и не участвующие в синтезе белков.
Роль, которые эти фрагменты играют в жизни организма пока остается неизвестной, но все больше исследователей склоняются к мнению, что их изучение требует самого пристального внимания.