Гигроскопическая точка – таблицы электронного справочника по химии, содержащие Гигроскопическая точка

Гигроскопичность ткани: что это за характеристика, и на что она влияет

Гигроскопическая точка - таблицы электронного справочника по химии, содержащие Гигроскопическая точка

Удовольствие, которое мы получаем при ношении одежды, зависит от многих обстоятельств, в частности от гигиенических свойств ткани.

Одни изделия носятся годами, и расстаться с ними невозможно, другие висят в шкафу почти нетронутыми. Чувство комфорта формирует несколько показателей, одним из которых является гигроскопичность.

Немного теории

В одежде, пошитой из гигроскопичной ткани, человек чувствует себя комфортно.

Гигроскопичность – это способность материала поглощать и отдавать влагу. Слово имеет древнегреческое происхождение, в дословном переводе означает «наблюдение за влагой».

Оценивают степень гигроскопичности по величине влажности, которая в большой мере зависит от условий ее определения:

  • Обычную в понимании покупателей влажность называют фактической. Она показывает процентное содержание влаги по отношению к сухой ткани в имеющихся условиях.
  • Кондиционной называют влажность при нормальных атмосферных условиях: влажности воздуха – 65 % и температуре – 20 °С.
  • Максимальной влажностью называют показатель, измеренный при влажности воздуха – 100 % и температуре 20 °С.

Так оценивают гигроскопичность специалисты. Рядовым покупателям важно знать общую характеристику гигроскопичности, не вдаваясь в подробности.

  • Если ткань способна поглощать влагу, у человека появляется ощущение комфорта. В пространстве, окружающем кожу, всегда будет присутствовать благоприятный микроклимат.
  • Материал, не имеющий такой возможности, при контакте неприятен. Гигиенисты не рекомендуют пользоваться подобными тканями. Человек в такой одежде чувствует себя как будто в стеклянном футляре.

Реагирование на молекулы воды зависит от структуры тканей, состава волокон, их химического строения.

  • Сырье с особыми группами атомов, проявляющих сродство к воде, называют гидрофильным.
  • Волокна, не имеющие таких групп, склонны отталкивать воду. Их называют гидрофобными.

Помимо показателя гигроскопичности гигиенисты оценивают воздухопроницаемость и паропроницаемость материалов. Хорошие ткани могут поглощать влагу, пропускать пары и воздух.

При поглощении влаги волокна увеличиваются в объеме, размеры их изменяются. Когда гигроскопичная ткань попадает в атмосферу с влажностью, равной 0 %, высыхание происходит не сразу.

Какой-то период времени вода, благодаря взаимодействию с волокнами, остается связанной, не испаряется. Гигроскопичные ткани в абсолютно сухом воздухе мгновенно не теряют воду. Процесс высыхания идет медленно.

Человек в такой одежде, например, чувствует себя нормально в пустыне.

Материалы с гидрофобными свойствами обладают малой гигроскопичностью. В окружении сухого воздуха они пересыхают мгновенно. У человека в одежде из тканей с маленькой гигроскопичностью появляются неприятные чувства. Вслед за высыханием ткани начинает пересыхать кожа тела.

Гигроскопичность разных тканей

Для каждой ткани характерна своя степень гигроскопичности.

Рядовому покупателю важно знать физические свойства ткани, чтобы обеспечить себе не только приятное внешнее впечатление от одежды, но и носить ее с удовольствием.

Шерсть

Самой большой гигроскопичностью обладают шерстяные ткани. Природой задумано такое строение шерсти, которое позволяет животным благополучно выживать в жару и в холод, в субтропиках и в пустынях.

  • При нормальной влажности окружающего воздуха шерстяные волокна могут поглощать до 17 % влаги.
  • При высокой влажности окружающей среды гигроскопичность достигает 40 %.

Шелк

Несколько меньшей поглощающей способностью обладают натуральные шелковые нити.

  • В нормальных условиях показатель составляет 11 %.
  • При высокой влажности воздуха значение гигроскопичности достигает 40 %.

Вискоза

Удивительно, что на следующей позиции находится искусственное вискозное волокно. Благодаря целлюлозному каркасу, оставшемуся после модификации сырья:

  • гигроскопичность тканей в нормальных условиях равна 12 %;
  • при высокой влажности показатель увеличивается до 40 %.

Лен

Четвертое место в рейтинге гигроскопичности тканей занимает лен.

  • В нормальных условиях способность поглощать влагу равна 12 %.
  • В максимально влажном окружении показатель увеличивается до 21 %.

Хлопок

Замыкает пятерку лидирующих материалов хлопок.

  • В нормальных условиях он способен поглощать до 8 % влаги.
  • В максимально влажном окружении значение гигроскопичности достигает 8 %.

Мерсеризированные хлопковые волокна обладают большей способностью к поглощению воды.

Все остальные ткани обладают маленькой гигроскопичностью:

  • У ацетатных волокон, капрона, винола показатель укладывается в диапазон от 5 до 7 % в нормальных условиях.
  • Лавсан, спандекс, хлорсодержащие волокна характеризуются гигроскопичностью от 0,5 до 1,5 %.

Способность поглощать и отдавать молекулы воды существенно снижается после обработки тканей. Любые пропитки, уменьшающие сминаемость, предотвращающие усадку, закрепляющие красители, неизбежно приводят к заметному уменьшению гигроскопичности материала.

Источник: https://textile.life/svojstva-tkanej-i-poloten/gigroskopichnost-tkani-chto-eto-za-harakteristika-i-na-chto-ona-vliyaet.html

ОФС.1.2.3.0002.15 Определение воды

Гигроскопическая точка - таблицы электронного справочника по химии, содержащие Гигроскопическая точка

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Взамен  ст.  ГФ XI

Метод основан на химическом взаимодействии воды с компонентами реактива К. Фишера.

Реактив К. Фишера

Реактив К. Фишера представляет собой раствор серы диоксида, йода и пиридина (или другого основания, например, имидазола) в метаноле. Взаимодействие реактива с водой протекает в две стадии стехиометрически по уравнениям:

Используемые растворы и реактивы должны быть безводными. Их хранят и применяют в условиях, исключающих возможность воздействия на них атмосферной влаги.

Йодсернистый реактив представляет собой  раствор, содержащий  пиридин безводный, монометиловый эфир этиленгликоля, йод и  серу диоксид. В йодсернистых реактивах часто пиридин заменяют на другие основания.

Использование реактивов такого состава должно быть предварительно валидировано для подтверждения в каждом конкретном случае стехиометрии реакции и отсутствия несовместимости между испытуемым веществом и реактивом.

При определении воды в твердых веществах, нерастворимых в метаноле, тонко измельченную навеску вещества взбалтывают с метанолом, после чего титруют реактивом К. Фишера. Некоторые вещества или смеси можно растворять в безводной уксусной кислоте, хлороформе, пиридине и других растворителях.

Пропанол и другие алканолы имеют большую растворяющую способность для молекул с длинной цепью и могут использоваться как таковые или в смеси с метанолом при анализе высокомолекулярных соединений.

2-Метоксиэтанол (монометиловый эфир этиленгликоля) применяют в тех случаях, когда в присутствии метанола протекают побочные реакции (этерификация, образование кеталей и т. п.). Однако, титрование в этом растворителе протекает медленнее по сравнению с метанолом.

Хлороформ является хорошим растворителем для жиров и может использоваться в смеси с метанолом, содержание которого обычно составляет 50 %, но не менее 25 %. Формамид улучшает растворимость полярных веществ и может добавляться в метанол для определения воды в протеинах.

Не рекомендуется использование в качестве рабочей среды чистые апротонные растворители, которые нарушают стехиометрию реакции К. Фишера.

Масса навески, время взбалтывания навески с растворителем, а также наименование растворителя, должны быть указаны в фармакопейной статье.

С помощью реактива К. Фишера может быть определена как гигроскопическая, так и кристаллизационная вода. При этом воду можно определять в органических и неорганических соединениях, в различных растворителях и летучих веществах.

Прибор

Прибор для титрования по методу К.

Фишера представляет собой закрытую систему, состоящую из бюретки, снабженной осушительной трубкой, заполненной, осушающим агентом, (например, молекулярными ситами), сосуда для подачи реактива и колбы для титрования, соединенных с бюреткой.

Колба для титрования представляет собой сосуд вместимостью 60–100 мл с двумя платиновыми электродами, трубкой для подвода азота, осушительной трубкой, заполненной, осушающим агентом, (например, молекулярными ситами), и пробкой, в которую вставляется кончик бюретки.

Испытуемое вещество вносят в сосуд через трубку, расположенную с противоположной стороны по отношению к трубке-осушителю, и закрываемую притертой пробкой. Перемешивание раствора в процессе титрования осуществляют при помощи магнитной мешалки или продуванием высушенного азота через раствор.

Конечную точку титрования определяют амперометрически. Электрическая схема состоит из потенциометра с сопротивлением 2000 Ом, подключенного к источнику постоянного тока с напряжением 1,5 В и обеспечивающего необходимую разность потенциалов.

Разность потенциалов отрегулирована таким образом, чтобы через платиновые электроды, соединенные последовательно с микроамперметром, проходил небольшой начальный ток. При прибавлении реактива стрелка микроамперметра отклоняется, но сразу же возвращается в исходное положение.

В конце реакции получаемое отклонение должно оставаться неизменным не менее 30 с.

Конечную точку титрования допускается определять визуально по изменению окраски титруемой жидкости от желтой до красновато-коричневой при условии обеспечения необходимой точности. При этом необходимо проводить контрольный опыт.

Допускается использование автоматических титраторов в соответствии с инструкцией производителя.

Если нет других указаний в фармакопейной статье, используют методику А.

Методика А

Точную навеску испытуемого вещества, содержащую приблизительно от 30 до 50 мг воды, помещают в сосуд для титрования, в который предварительно внесено 5,0 мл метанола безводного. Перемешивают
1 мин и титруют реактивом К. Фишера, прибавляя его при приближении к конечной точке по 0,1–0,05 мл.

Параллельно проводят контрольный опыт (титруют 5,0 мл метанола безводного).

Методика Б

Около 20 мл метанола безводного или растворителя, указанного в фармакопейной статье, помещают в сосуд для титрования и титруют реактивом К. Фишера, определяя конечную точку титрования амперометрически.

Затем в сосуд для титрования вносят точную навеску испытуемого вещества, указанную в фармакопейной статье. Смесь перемешивают в течение 1 мин и снова титруют реактивом К.

Фишера, определяя конечную точку титрования амперометрически.

Методика С

Около 10 мл метанола безводного или растворителя, указанного в фармакопейной статье, помещают в сосуд для титрования и титруют йодсернистым реактивом, определяя конечную точку титрования амперометрически.

Затем быстро вносят в сосуд для титрования указанное количество испытуемого вещества и точно отмеренный объем йодсернистого реактива, взятый с избытком приблизительно на 1 мл или объем, указанный в фармакопейной статье.

Сосуд закрывают пробкой, выдерживают в защищенном от света месте в течение 1 мин или в течение времени, указанного в фармакопейной статье, периодически перемешивая содержимое сосуда.

Избыток йодсернистого реактива титруют до первоначального значения силы тока, используя метанол безводный или растворитель, указанный в фармакопейной статье, к которому было прибавлено точно известное количество воды, эквивалентное около 2,5 мг/мл.

При кулонометрическом титровании необходимый для реакции К. Фишера йод образуется при анодном окислении йодид-иона:

2J− − 2e → J2

Образующийся йод реагирует с присутствующей водой и диоксидом серы в присутствии основания. Йод потребляется до тех пор, пока в среде присутствует вода. Избыток йода указывает на достижение конечной точки титрования. Количество оттитрованной воды пропорционально количеству электричества, пропущенному через ячейку.

1 моль йода соответствует 1 молю воды, а количество электричества 10,71 Кл соответствует 1 мг воды.

Вследствие малого тока титрования кулонометрическое определение применяется для количественного определения микроколичеств воды: от
10 мкг до 10 мг.

Правильность и точность метода должны быть обеспечены устранением атмосферной влаги из системы.

Оборудование

Главным блоком прибора является кулонометрическая ячейка. Наиболее часто используемая ячейка состоит из анодного отделения, в котором протекает реакция К. Фишера, и меньшего по объему катодного отделения, в котором протекает катодная реакция восстановления. Каждое отделение содержит платиновый электрод.

Анодное отделение заполняется анолитом, в качестве которого используется модифицированный реактив К. Фишера, содержащий йодид-анион вместо йода. Катодное отделение заполняется подходящим католитом, как правило, содержащим соли аммония в качестве активного компонента. Отделения разделены диафрагмой, предотвращающей смешение двух растворов.

Поскольку диффузия активных компонентов не может быть полностью исключена диафрагмой, компоненты католита должны быть совместимы с анолитом. Могут использоваться и однокамерные ячейки без диафрагмы.

В этом случае анодная и катодная реакции протекают в одном и том же объеме электролита, поэтому катодная реакция восстановления не должна давать продукты, способные окисляться на аноде, что может привести к завышенным результатам определения.

Реакционная ячейка должна поддерживаться в абсолютно сухом состоянии. Заливка реактива в анодное отделение производится через сухую воронку, после чего ячейка немедленно герметизируется. При этом может произойти обесцвечивание реактива. Влагу удаляют из системы предварительным электролизом.

Катодное отделение также должно быть безводным. Небольшой избыток элементарного йода в католите не оказывает влияния на титрование.

Анализируемая  жидкая проба вводится в ячейку с анолитом шприцем через  силиконовую прокладку. Следует избегать ввода твердых проб в ячейку.

Тем не менее, если необходимо провести испытание на твердых образцах, они вводятся через герметично закрываемый ввод; при этом должны быть предприняты меры по предотвращению поступления в ячейку атмосферной влаги, например, работать в перчаточном боксе в атмосфере сухого инертного газа.

Также твердые пробы могут вводиться в виде раствора после растворения в подходящем растворителе, или вода высвобождается из пробы в трубчатой печи при нагревании и переносится в анолит потоком сухого инертного газа. Газы вводятся в анолит через трубку для ввода газа (барботер).

Объем пробы не должен превышать 10 мл. Обычно в ячейку дозируется 0,5–5,0 мл жидкой пробы. Газовые пробы вводятся в объеме от 100 мл до 10 л.

Методика

Кулонометрическое титрование выполняют до установления конечной точки титрования.

Отделение реакционной ячейки заполняют электролитом для микроопределения воды согласно инструкциям изготовителя. Влагу удаляют из системы предварительным электролизом.

Точное количество испытуемого вещества, указанное в фармакопейной статье, вносят в реакционную ячейку и перемешивают в течение
30 с или в течение времени, указанного в фармакопейной статье. Титруют до установления конечной точки титрования.

При использовании испарителя точную навеску испытуемого вещества, указанную в фармакопейной статье, помещают в трубку и нагревают. После выпаривания воды из образца в ячейку проводят титрование.

Проводят контрольный опыт и вычисляют содержание воды в испытуемом веществе в процентах.

Проверка точности. Между двумя последовательными титрованиями вводят точно взвешенное количество воды – такое же, как в определяемом образце, и выполняют кулонометрическое титрование. Результат должен быть в пределах от 97,5 до 102,5 % для содержания 1000 мкг воды в образце и в пределах от 90,0 до 110,0 % для содержания 100 мкг воды в образце.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.