ГУКА ЗАКОН

Закон Гука – формула: при каких условиях выполняется, сила упругости, определение и формулировка при растяжке и сжатии

ГУКА ЗАКОН

Как известно, физика изучает все законы природы: начиная от простейших и заканчивая наиболее общими принципами естествознания. Даже в тех областях, где, казалось бы, физика не способна разобраться, все равно она играет первоочередную роль, и каждый малейший закон, каждый принцип — ничто не ускользает от нее.

Именно физика является основой основ, именно эта наука лежит в истоках всех наук.

Физика изучает взаимодействие всех тел, как парадоксально маленьких, так и невероятно больших. Современная физика активно изучает не просто маленькие, а гипотетические тела, и даже это проливает свет на суть мироздания.

Физика поделена на разделы, это упрощает не только саму науку и понимание ее, но и методологию изучения. Механика занимается движением тел и взаимодействием движущихся тел, термодинамика — тепловыми процессами, электродинамика — электрическими.

Почему деформацию должна изучать механика

Говоря о сжатиях или растяжениях, следует задать себе вопрос: какой раздел физики должен изучать этот процесс? При сильных искажениях может выделяться тепло, быть может, этими процессами должна заниматься термодинамика? Иногда при сжатии жидкостей, она начинает кипеть, а при сжатии газов — образуются жидкости? Так что же, деформацию должна познавать гидродинамика? Или молекулярно-кинетическая теория?

Всё зависит от силы деформации, от ее степени. Если деформируемая среда (материал, который сжимают или растягивают) позволяет, а сжатие невелико, есть смысл рассматривать этот процесс как движение одних точек тела относительно других.

А раз вопрос касается сугубо движения, значит, заниматься этим будет механика.

Закон Гука и условие его выполнения

В 1660 году известный английский ученый Роберт Гук открыл явление, при помощи которого можно механически описать процесс деформаций.

Для того чтобы понимать при каких условиях выполняется закон Гука, ограничимся двумя параметрами:

Есть такие среды (например, газы, жидкости, особо вязкие жидкости, близкие к твердым состояниям или, наоборот, очень текучие жидкости) для которых описать процесс механически никак не получится. И наоборот, существуют такие среды, в которых при достаточно больших силах механика перестает «срабатывать».

Важно! На вопрос: «При каких условиях выполняется закон Гука?», можно дать определенный ответ: «При малых деформациях».

Закон Гука, определение: деформация, которая возникает в теле, прямо пропорциональна силе, которая вызывает эту деформацию.

Естественно, это определение подразумевает, что:

  • сжатия или растяжения невелики;
  • предмет упругий;
  • он состоит из материала, при котором в результате сжатия или растяжения нет нелинейных процессов.

Закон Гука в математической форме

Формулировка Гука, которую мы привели выше, дает возможность записать его в следующем виде:

,

где  — изменение длины тела вследствие сжатия или растяжения, F — сила, приложенная к телу и вызывающая деформацию (сила упругости), k — коэффициент упругости, измеряется в Н/м.

Следует помнить, что закон Гука справедлив только для малых растяжений.

Также отметим, что он при растяжении и сжатии имеет один и тот же вид. Учитывая, что сила — величина векторная и имеет направление, то в случае сжатия, более точной будет такая формула:

,  но опять-таки, все зависит от того куда будет направлена ось, относительно которой вы проводите измерение .

В чем кардинальная разница между сжатием и растяжением? Ни в чем, если оно незначительно.

Степень применимости можно рассмотреть в таком виде:

Обратим внимание на график.

Как видим, при небольших растяжениях (первая четверть координат) долгое время сила с координатой имеет линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и закон перестает выполняться.

На практике это отражается таким сильным растяжением, что пружина перестает возвращаться в исходное положение, теряет свойства. При еще большем растяжении происходит излом, и разрушается структура материала.

При небольших сжатиях (третья четверть координат) долгое время сила с координатой имеет тоже линейную связь (красная прямая), но затем реальная зависимость (пунктир) становится нелинейной, и всё вновь перестает выполняться.

На практике это отражается таким сильным сжатием, что начинает выделяться тепло и пружина теряет свойства.

При еще большем сжатии происходит «слипание» витков пружины и она начинает деформироваться по вертикали, а затем и вовсе плавиться.

Как видим формула, выражающая закон, позволяет находить силу, зная изменение длины тела, либо, зная силу упругости, измерить изменение длины:

.

Также, в отдельных случаях можно находить коэффициент упругости. Для того, чтобы понять как это делается, рассмотрим пример задачи:

К пружине подсоединен динамометр. Ее растянули, приложив силу в 20 Ньютон, из-за чего она стала иметь длину 1 метр. Затем ее отпустили, подождали пока прекратятся колебания, и она вернулась к своему нормальному состоянию. В нормальном состоянии ее длина составляла 87, 5 сантиметров. Давайте попробуем узнать, из какого материала сделана пружина.

Дано:

Решение:

Найдем численное значение деформации пружины:

Запишем:

.

Отсюда можем выразить значение коэффициента:

Посмотрев таблицу, можем обнаружить, что этот показатель соответствует пружинной стали.

! Что такое закон всемирного тяготения: формула великого открытия

Неприятности с коэффициентом упругости

Физика, как известно, наука очень точная, более того, она настолько точна, что создала целые прикладные науки, измеряющие погрешности. Будучи эталоном непоколебимой точности, она не может себе позволить быть нескладной.

Практика показывает, что рассмотренная нами линейная зависимость, является ничем иным как законом Гука для тонкого и растяжимого стержня. Лишь в качестве исключения можно применять его для пружин, но даже это является нежелательным.

Оказывается, что коэффициент k — переменная величина, которая зависит не только от того из какого материала тело, но и от диаметра и его линейных размеров.

По этой причине, наши умозаключения требуют уточнений и развития, ведь иначе, формулу:

нельзя назвать ничем иным как зависимостью между тремя переменными.

! Специальная теория относительности Эйнштейна: кратко и простыми словами

Модуль Юнга

Давайте попробуем разобраться с коэффициентом упругости. Этот параметр, как мы выяснили, зависит от трех величин:

  • материала (что нас вполне устраивает);
  • длины L (что указывает на его зависимость от );
  • площади S.

Важно! Таким образом, если нам удастся каким-то образом «отделить» из коэффициента длину L и площадь S, то мы получим коэффициент, полностью зависящий от материала.

Что нам известно:

  • чем больше площадь сечения тела, тем больше коэффициент k, причем зависимость линейная;
  • чем больше длина тела, тем меньше коэффициент k, причем зависимость обратно пропорциональная.

Значит, мы можем, коэффициент упругости записать таким образом:

,

причем Е — новый коэффициент, который теперь точно зависит исключительно от типа материала.

Введем понятие “относительное удлинение”:

.

Следует признать, что эта величина более содержательна, чем  , поскольку она отражает не просто на сколько пружина сжалась или растянулась, а во сколько раз это произошло.

Поскольку мы уже «ввели в игру» S, то введем понятие нормального напряжения, которое записывается таким образом:

.

Важно! Нормальное напряжение представляет собой долю деформирующей силы на каждый элемент площади сечения.

Измеряется нормальное сечение в Н/м2.

Тогда, закон можно записать в следующем виде:

,

подставим выражение для k:

,

перенесем S в левую часть, в знаменатель:

,

заменим величины:

.

Таким образом, мы получили формулу, которая отражает связь между нормальным напряжением и относительным удлинением.

урок по физике «Силы упругости. Закон Гука»

Закон Гука и упругие деформации



Вывод

Сформулируем закон Гука при растяжении и сжатии: при малых сжатиях нормальное напряжение прямо пропорционально относительному удлинению.

Коэффициент Е называется модулем Юнга и зависит исключительно от материала.

Источник: https://uchim.guru/fizika/zakon-guka-formula.html

Техническая механика

ГУКА ЗАКОН


Более 350 лет назад 25-летний английский физик Роберт Гук (в англоязычной транскрипции — Хук) сформулировал зависимость между относительным линейным удлинением тела и величиной растягивающей тело силы. В оригинале формулировка закона, предложенная Гуком, звучит примерно так:

«Какова сила, таково и удлинение».

В современной трактовке эта зависимость в общем виде формулируется следующим образом:

«Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации».

Казалось бы, очевидный вывод, который напрашивается естественным образом – чем больше сила, приложенная к брусу, тем в большей степени он деформируется. Тем не менее, заслуга Гука заключается в том, что именно он обратил внимание, на линейную (прямо пропорциональную) зависимость между нагрузкой и относительной деформацией.

Открытия многих, казалось бы — очевидных, закономерностей совершают гении.

Ведь в течении предшествующих Ньютону человеческих поколений считалось, что чем легче тело, тем дольше оно падает на земную поверхность с высоты. И лишь гений смог опровергнуть это заблуждение миллионов людей.

По сути, только великий Эйнштейн сделал неочевидное открытие, которому, впрочем, предшествовали научные исследования и гипотезы многих талантов.

Долгое время закон Гука являлся единственным инструментом новоявленной науки сопротивление материалов, и лежал в основе всех расчетов конструкций на прочность и жесткость. Лишь спустя много лет учеными были установлены более сложные (непропорциональные) зависимости между напряжениями и приложенными к элементам конструкции силовыми факторами, которые, впрочем, тоже основываются на законе Гука.

Большую роль в развитии науки сопротивление материалов сыграли такие видные ученые, как Герц, Журавский, Эйлер, Ясинский и другие, установившие зависимости между напряжениями и сложными видами нагружений. Большинство этих зависимостей и выводов основываются на экспериментально-опытных исследованиях, т. е. получены не только с помощью математического анализа (эмпирические зависимости).

Роберт Гук (1635—1703) считается одним из талантливейших ученых своего времени. Обладавший кипучей творческой энергией, он совершил много интересных открытий в самых разных науках – фундаментальной физике, термодинамике, акустике, оптике, биологии.

Достаточно сказать, что Гуку многие ученые отдают пальму первенства в открытии закона всемирного тяготения, считая, что он раньше Ньютона пришел к его осознанию.

Роберт Гук отличался способностью браться за изучение многих явлений в природе, и, зачастую, не закончив исследование одного явления, на полпути к открытию брался за совершенно другой научный труд, а результатами его незавершенных выводов пользовались последователи, увековечивая свое имя в науке.
Тем не менее, этот человек останется в памяти потомков, как автор знаменитого закона Гука.

Математически закон Гука для деформаций растяжения и сжатия можно записать так:

σ = Еε,

где:
σ – напряжение в сечении бруса,
ε — относительное удлинение бруса, которое определяется по формуле ε = Δl/l (здесь Δl – абсолютное удлинение бруса, l – начальная длина бруса),
Е – коэффициент пропорциональности, который называют модулем продольной упругости (или модулем упругости первого рода, или модулем Юнга).

Коэффициент Е является справочной (определяемой экспериментально) величиной, характеризующей способность материала противостоять деформации и измеряется в Паскалях (1 Па = Н/м2).

Поскольку 1 Паскаль – очень маленькая величина (муха весом 14 мг, севшая на столик площадью 1 м2 окажет на него давление, примерно равное 0,00014 Па), поэтому чаще применяют ее производную – 1 МПа (миллион Паскалей, или 1 МПа = 1 000 000 Па).



Математическое выражение закона Гука можно представить в расширенном виде, подставив вместо σ (напряжения) его зависимость от силы и площади сечения: σ = F/A, и вместо ε (удельное удлинение) выражение Δl/l. Тогда получим:
F/A = Е(Δl/l), откуда можно выразить абсолютное удлинение (укорочение) бруса в результате приложения внешней силы F:

Δl = Fl/(EA).

Это выражение можно сформулировать следующим образом: абсолютное удлинение (укорочение) бруса прямо пропорционально приложенной внешней нагрузке и длине бруса и обратно пропорционально площади поперечного сечения бруса.
Выражение ЕА, стоящее в знаменателе дроби, часто называют жесткостью сечения при растяжении и сжатии.

Приведенные формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из однородного материала и при постоянной продольной силе.

Если брус имеет ступенчатую форму, или состоит из участков, изготовленных из разных материалов, и нагружен на разных участках несколькими продольными силами, то абсолютное изменение длины всего бруса определяют, как сумму абсолютных удлинений его отдельных участков:

Δl = Σ (Δli)

В заключение следует отметить, что закон Гука справедлив в ограниченном диапазоне внешних нагрузок и не применим, когда некоторые напряжения (или деформации) достигают предельных значений, характерных для каждого материала. При превышении предельных значений напряжений линейная зависимость между нагрузками и деформациями не наблюдается.

***

Материалы раздела «Сопротивление материалов»:

Метод сечений. Напряжения



Олимпиады и тесты

Правильные ответы на вопросы Теста № 3

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

1

2

1

2

3

2

1

3

1

3

Источник: http://k-a-t.ru/tex_mex/1-sopromat_huk/index.shtml

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть