Плавление

Плавление

Плавление

плавление пропана, плавление свинца
Плавле́ние — это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое.

Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения — температура плавления.

Способность плавиться относится к физическим свойствам вещества

При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), среди простых веществ — углерод (по разным данным 3500 — 4500 °C) а среди произвольных веществ — карбид тантала-гафния Ta4HfC5 (3942 °C). Можно считать, что самой низкой температурой плавления обладает гелий: при нормальном давлении он остаётся жидким при сколь угодно низких температурах.

Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путем сублимации сразу переходят в газообразное состояние.

  • 1 Плавление смесей и твёрдых растворов
  • 2 Кинетика плавления
    • 2.1 Природа плавления
    • 2.2 Динамика плавления
    • 2.3 Плавление в двумерных системах
  • 3 См. также
  • 4 Примечания
  • 5 Ссылки

Плавление смесей и твёрдых растворов

У сплавов, как правило, нет определённой температуры плавления; процесс их плавления происходит в конечном диапазоне температур. На диаграммах состояния «температура — относительная концентрация» имеется конечная область сосуществования жидкого и твёрдого состояния, ограниченная кривыми ликвидуса и солидуса. Аналогичная ситуация имеет место и в случае многих твёрдых растворов.

Фиксированной температуры плавления нет также у аморфных тел; они переходят в жидкое состояние постепенно, размягчаясь при повышении температуры.

Кинетика плавления

Технически плавление вещества осуществляется с помощью подвода тепловой энергии снаружи образца (внешний нагрев, например, в термической печи) или непосредственно во всём его объёме (внутренний нагрев, например, резистивный нагрев при пропускании тока через образец, или индукционный нагрев в высокочастотном электро-магнитном поле). Способ плавления не влияет на основные характеристики процесса — температуру и скрытую теплоту плавления, но определяет внешнюю картину плавления, например, появление квази-жидкого слоя на поверхности образца при внешнем нагреве.

Считается, что плавление характеризуется потерей дальнего ориентационного межатомного порядка в кристалле с переходом к «жидкоподобному» или «газоплотному» беспорядку.

Природа плавления

Поясним вначале, почему при некоторой температуре тело предпочитает разорвать часть межатомных связей и из упорядоченного состояния (кристалл) перейти в неупорядоченное (жидкость).

Как известно из термодинамики, при фиксированной температуре тело стремится минимизировать свободную энергию . При низких температурах второе слагаемое (произведение температуры и энтропии) несущественно, и в результате всё сводится к минимизации обычной энергии .

[attention type=yellow]
Состояние с минимальной энергией — это кристаллическое твёрдое тело. При повышении температуры, второе слагаемое становится всё важнее, и при некоторой температуре оказывается выгоднее разорвать некоторые связи.
[/attention]

При этом обычная энергия слегка повысится, но при этом сильно возрастет и энтропия, что в результате приведёт к понижению свободной энергии.

Динамика плавления

В динамике, плавление происходит следующим образом. При повышении температуры тела увеличивается амплитуда тепловых колебаний его молекул, и время от времени возникают структурные дефекты решётки в виде перескоков атомов, роста дислокаций и других нарушений кристаллической решетки.

Каждый такой дефект, возникновение и перемещение дислокаций требуют определённого количества энергии, поскольку сопровождается разрывом некоторых межатомных связей. Стадия рождения и накопления дефектов называется стадией предплавления. Кроме того, на этой стадии, как правило, при внешнем нагреве возникает квази-жидкий слой на поверхности тела.

Считается, что при некоторой температуре концентрация дефектов становится столь большой, что приводит к потере ориентационного порядка в образце.

Температурные колебания атомов в решетке кристалла Поведение жидкости после перехода кристалла через точку плавления, как в среднем постоянные для заданной температуры разрывы и восстановления межкластерных и внутрикластерных межатомных связей (короткие утолщенные отрезки — разорванные связи)

В связи с тем, что механизм термодеструкции кристалла за счёт образования дефектов и роста дислокаций, протекающей в широком диапазоне температур, не приводит к фазовому превращению 1-го рода, то есть к скачку термодинамических характеристик вещества в конкретной для каждого вещества температурной точке, то Линдеман развил простые представления о ходе процесса плавления, согласно которым амплитуда колебания частиц в точке плавления увеличивается настолько, что становится сравнимой с межатомным расстоянием в кристаллической решётке и приводит к разрушению решётки и потере ориентционного межатомного порядка. Фактически этот «фактор плавления» является основой большинства моделей с определяющей ролью отталкивающей части потенциала парного взаимодействия и наложением условий перехода от порядка к «жидкоподобному» или «газоплотному» беспорядку, рассчитываемых методами Монте-Карло и молекулярной динамики. Однако, было установлено, что в точке плавления среднеквадратичное смещение атомов из состояния равновесия составляет всего около 1/8 межатомного расстояния, что исключает модель Линдемана, то есть соударение атомов, как «фактор плавления». При этом энергия атомов существенно ниже потенциальной энергии атомизации кристаллической решётки.

Дальнейшие исследования показали, что динамика плавления кристаллического тела, как фазового превращения 1-го рода, определяется (в отличие от модели накопления дефектов и дислокаций) «катастрофичеким» (crash — ) конформационным преобразованием структуры группы атомов, сопровождаемым разрушением межатомной связи при преодолении потенциального барьера с затратой постоянной величины энергии, ниже энергии атомизации решетки, и равной удельной теплоте плавления.

Этот механизм приводит к подтверждаемой экспериментально кластерной структуре связанного (конденсированного) жидкого состояния с постоянным (для заданной температуры) средним числом разрывающихся и восстанавливающихся межкластерных и внутрикластерных межатомных связей, что определяет подвижность (текучесть) жидкости.

С ростом температуры количество атомов в кластерах уменьшается и при температуре кипения вещество переходит в моноатомное (мономолекулярное) газообразное состояние.

Плавление в двумерных системах

В двумерных или квази-двумерных системах кристалл является гораздо более шатким объектом, чем в трёхмерном случае, а именно у двумерного кристалла нет дальнего позиционного порядка. Для сравнения, в одномерном случае кристалл при конечной температуре вообще не может быть стабильным.

Как выяснилось, это приводит к тому, что плавление двумерного кристалла происходит в два этапа. Вначале кристалл переходит в так называемую гексатическую фазу, в которой теряется ближний позиционный порядок, но сохраняется ориентационный, а затем происходит потеря и ориентационного порядка и тело становится жидким.

Примечания

  1. С. Т. Жуков Химия 8-9 класс, Глава 1. Основные представления и понятия химии
  2. Разброс экспериментальных данных связан, по видимому, с фазовым переходом графит-карбин и различной скоростью нагрева при измерениях.
    Климовский И. И., Марковец В. В.

     Влияние фазового перехода графит-карбин на излучательную способность графитовых образцов при их нагревании до температур 3000 K и более // International Scientific Journal for Alternative Energy and Ecology. — 2007. — № 6 (50). — С. 50-59.

  3. Мейер К. Физико-химическая кристаллография, М.

    , «Металлография», 1972

  4. LindemannF.A. // Phys.Z., 1910, v.11, p.609
  5. Wood W. W., Jacobson J. D. Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres // J. Chem. Phys.. — 1957. — № 27. — С. 1207. — DOI:10.1063/1.1743956.
  6. Alder B. J.

    , Wainwright T. E. Phase Transition in Elastic Disks // Phys. Rev.. — 1962. — № 127. — С. 359. — DOI:10.1103/PhysRev.127.359.

  7. Hoover W. G., Gray S. G., Johnson K. W. Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials // J. Chem. Phys.. — 1971. — № 55. — С. 1128. — DOI:10.1063/1.

    1676196.

  8. Пайнс Д. Элементарные возбуждения в твёрдых телах. М., Мир, 1965.

Ссылки

  • Поверхностное предплавление льда
  • Плавление двумерных кристаллов

плавление воды, плавление льда, плавление металлов, плавление пропана, плавление свинца

Плавление Информацию О

Плавление

Плавление
Плавление Вы просматриваете субъект
Плавление что, Плавление кто, Плавление описание

There are excerpts from wikipedia on this article and video

Наш сайт имеет систему в функции поисковой системы. Выше: «что вы искали?»вы можете запросить все в системе с коробкой. Добро пожаловать в нашу простую, стильную и быструю поисковую систему, которую мы подготовили, чтобы предоставить вам самую точную и актуальную информацию.

Поисковая система, разработанная для вас, доставляет вам самую актуальную и точную информацию с простым дизайном и системой быстрого функционирования. Вы можете найти почти любую информацию, которую вы ищете на нашем сайте.

На данный момент мы служим только на английском, турецком, русском, украинском, казахском и белорусском языках.
Очень скоро в систему будут добавлены новые языки.

Жизнь известных людей дает вам информацию, изображения и видео о сотнях тем, таких как политики, правительственные деятели, врачи, интернет-сайты, растения, технологические транспортные средства, автомобили и т. д.

Плавление и кристаллизация

Плавление
Подробности Категория: Молекулярно-кинетическая теория 06.11.

2014 13:52 10986

Одно и то же вещество при определённых условиях может находиться в различных агрегатных состояниях — твёрдом, жидком или газообразном.

При переходе из одного состояния в другое состав молекул этого вещества не меняется. Изменяется только их расположение, характер теплового движения и силы межмолекулярного воздействия.

Из твёрдого состояния вещество переходит в жидкое, а из жидкого в газообразное. Такой переход называют фазовым переходом.

Плавление

При низких температурах все вещества замерзают и превращаются в твёрдые тела, атомы и молекулы в которых упакованы так плотно, что силы их взаимного притяжения позволяют им совершать только колебательные движения около положения равновесия. Поэтому при обычных условиях твёрдые тела сохраняют объём и форму.

Процесс перехода вещества из твёрдого состояния в жидкое называют плавлением. Это процесс происходит при повышении температуры.

Весной, когда пригревает солнышко, начинают таять снежные сугробы. Мельчайшие кристаллики льда, из которых состоит снег, превращаются в воду.

Но, несмотря на то, что воздух прогревается, и его температура становится выше нуля, температура тающего снега, и температура талой воды остаются равными 00С до тех пор, пока снег не растает совсем. Всё дело в том, что плавление происходит постепенно.

Вещество при плавлении поглощает тепло, которое получает извне, и некоторое время одновременно находится и в твёрдом, и в жидком состоянии. И его температура не меняется, пока всё оно не расплавится и не станет жидким.

Что происходит при нагревании твёрдого вещества? При повышении температуры скорость колебаний частиц внутри вещества увеличивается. Следовательно, увеличивается и его внутренняя энергия.

При определённой температуре, которую называют температурой плавления, кристаллическая решётка твёрдого тела начинает разрушаться. Молекулы получают большую свободу.

Они могут перескакивать и занимать другие положения. Вещество превращается в жидкость.

Чтобы твёрдое вещество начало плавиться, его необходимо нагреть до температуры плавления. Когда оно начинает получать тепло извне, некоторое время его температура будет расти прямо пропорционально времени нагревания.

Так будет до тех пор, пока оно не начнёт плавиться. Но как только его температура станет равной температуре плавления, она перестанет изменяться и будет постоянной, пока всё вещество не превратится в жидкость.

После этого температура жидкости снова начнёт повышаться.

Но если жидкость перестанет получать тепло, она начнёт остывать. И как только её температура снизится до значения, равного температуре плавления, начинается процесс кристаллизации.

Каждое вещество имеет свою температуру плавления. При нормальном давлении (760 мм рт.ст.) лёд начинает плавиться при 0оС. Самую высокую температуру плавления среди металлов имеет вольфрам — 3422 °C. Простое вещество углерод плавится при температуре 3500 — 4500 °C. А температура плавления спирта — минус 114оС.

Кристаллизация

Когда температура жидкости понижается, её молекулы становятся менее подвижными. А силы притяжения, которые удерживают молекулы в определённом строгом порядке, характерном для твёрдого тела, увеличиваются.

Если жидкое вещество охладить до определённой температуры, то оно затвердеет. Процесс фазового перехода из жидкого состояния к твёрдому называется кристаллизацией. В отличие от плавления, когда вещество получает тепло, при кристаллизации оно его отдаёт, а его температура снижается.

Температура, при которой происходит этот процесс, называется температурой кристаллизации. Для чистого вещества температура плавления равна температуре кристаллизации.

Как и плавление, кристаллизация также происходит постепенно. Точно так же жидкость и твёрдое вещество будут иметь одинаковую температуру до тех пор, пока не затвердеет всё вещество.

Расплавленное паяльником жидкое олово застывает и становится твёрдым, кода мы убираем паяльник. Расплавленный жидкий металл, разлитый в формы, отвердевает при снижении температуры.

Кристаллизацию в природе мы наблюдаем ежегодно, когда при низкой температуре замерзает вода в водоёмах, на землю вместо капелек дождя падают снежинки.

График изменения агрегатного состояния вещества

Процессы плавления и кристаллизации хорошо видны на графике, показывающем, как меняется агрегатное состояние вещества в зависимости от температуры.

Измерим температуру куска льда. Термометр показывает -20оС. Положим лёд в ведро и занесём в помещение. Постепенно он начнёт таять, а его температура — повышаться. Когда на термометре будет 0оС, дальнейшего повышения температуры не произойдёт, пока не растает весь лёд. Когда же он весь превратится в воду, вода в ведре начнёт нагреваться, пока не достигнет комнатной температуры.

Вынесем ведро с водой на мороз. Вода продолжит остывать. Когда её температура опустится до 0оС, она начнёт превращаться в лёд. А температура не будет изменяться, пока не затвердеет вся вода. И только после этого она снова начнёт постепенно понижаться до значения, равного температуре воздуха.

С помощью подобного графика можно отобразить изменения агрегатного состояния любого вещества.

Плавление смесей и твёрдых растворов[ | ]

У сплавов, как правило, нет определённой температуры плавления; процесс их плавления происходит в конечном диапазоне температур. На диаграммах состояния «температура — относительная концентрация» имеется конечная область сосуществования жидкого и твёрдого состояния, ограниченная кривыми ликвидуса и солидуса. Аналогичная ситуация имеет место и в случае многих твёрдых растворов.

Фиксированной температуры плавления нет также у аморфных тел; они переходят в жидкое состояние постепенно, размягчаясь при повышении температуры.

Кинетика плавления[ | ]

Технически плавление вещества осуществляется с помощью подвода тепловой энергии снаружи образца (внешний нагрев, например, в термической печи) или непосредственно во всём его объёме (внутренний нагрев, например, резистивный нагрев при пропускании тока через образец, или индукционный нагрев в высокочастотном электромагнитном поле). Способ плавления не влияет на основные характеристики процесса — температуру и скрытую теплоту плавления, но определяет внешнюю картину плавления, например, появление квази-жидкого слоя на поверхности образца при внешнем нагреве.

Считается, что плавление характеризуется потерей дальнего ориентационного межатомного порядка в кристалле с переходом к «жидкоподобному» или «газоплотному» беспорядку.

Природа плавления[ | ]

Поясним вначале, почему при некоторой температуре тело предпочитает разорвать часть межатомных связей и из упорядоченного состояния (кристалл) перейти в неупорядоченное (жидкость).

Как известно из термодинамики, при фиксированной температуре тело стремится минимизировать свободную энергию F = E − T S {displaystyle F=E-TS} . При низких температурах второе слагаемое (произведение температуры и энтропии) несущественно, и в результате всё сводится к минимизации обычной энергии E {displaystyle E} .

[attention type=yellow]
Состояние с минимальной энергией — это кристаллическое твёрдое тело. При повышении температуры, второе слагаемое становится всё важнее, и при некоторой температуре оказывается выгоднее разорвать некоторые связи.
[/attention]

При этом обычная энергия E {displaystyle E} слегка повысится, но при этом сильно возрастет и энтропия, что в результате приведёт к понижению свободной энергии.

Динамика плавления[ | ]

Тепловые колебания атомов в решетке кристалла: точки — атомы, соединяющие линейные отрезки — межатомные связи Поведение атомов жидкости после перехода кристалла через точку плавления, как в среднем постоянные для заданной температуры разрывы и восстановления межкластерных и внутрикластерных межатомных связей (короткие утолщенные отрезки — разорванные связи)[3]

Изначально, в умозрительном, т.е. не количественном, представлении считалось, что в динамике плавление происходит следующим образом.При повышении температуры тела увеличивается амплитуда тепловых колебаний его молекул, и время от времени возникают структурные в виде перескоков атомов, роста дислокаций и других нарушений кристаллической решетки[4]. Каждый такой дефект, возникновение и перемещение дислокаций требуют определённого количества энергии, поскольку сопровождается разрывом некоторых межатомных связей. Стадия рождения и накопления дефектов называется стадией предплавления. Кроме того, на этой стадии, как правило, при внешнем нагреве возникает квази-жидкий слой на поверхности тела. Считается, что при некоторой температуре концентрация дефектов становится столь большой, что приводит к потере ориентационного порядка в образце, т.е. плавлению.

Однако, в связи с тем, что механизм термодеструкции кристалла за счёт образования дефектов и роста дислокаций, протекающей в широком диапазоне температур, не приводит к фазовому превращению 1-го рода, то есть к скачку термодинамических характеристик вещества в конкретной, фиксированной для каждого вещества температурной точке, то Линдеман[5] развил простые представления о ходе процесса плавления, согласно которым амплитуда колебания частиц в точке плавления увеличивается настолько, что становится сравнимой с межатомным расстоянием в кристаллической решётке и приводит к разрушению решётки и потере ориентационного межатомного порядка. Фактически этот «фактор плавления» является основой большинства моделей с определяющей ролью отталкивающей части потенциала парного взаимодействия и наложением условий перехода от порядка к «жидкоподобному» или «газоплотному» беспорядку, рассчитываемых методами Монте-Карло и молекулярной динамики[6][7][8]. Однако, было установлено[9], что в точке плавления среднеквадратичное смещение атомов из состояния равновесия составляет всего около 1/8 межатомного расстояния, что исключает модель Линдемана, то есть соударение атомов как «фактор плавления». При этом энергия атомов оказывается существенно ниже потенциальной энергии атомизации кристаллической решётки.

Теоретические исследования В.

Андреева[10][11] показали, что динамика плавления кристаллического тела, как фазового превращения 1-го рода, определяется (в отличие от модели накопления дефектов и дислокаций и модели Линдемана) «катастрофичеким» (crash — [крэш]) конформационным преобразованием (инвертированием) структуры группы атомов при их тепловых колебаниях с амплитудами, меньшими межатомных расстояний в решетке, сопровождаемым разрушением межатомной связи при преодолении потенциального барьера инвертирования в фиксированной температурной точке с затратой постоянной величины энергии, ниже энергии атомизации решетки, и равной удельной теплоте плавления. Этот механизм приводит к подтверждаемой экспериментально кластерной структуре связанного (конденсированного) жидкого состояния с постоянным (для заданной температуры) средним числом разрывающихся и восстанавливающихся межкластерных и внутрикластерных межатомных связей, обеспечивающих сохранение объёма и определяющих подвижность (текучесть) и химическую активность жидкости. С ростом температуры количество атомов в кластерах уменьшается за счет увеличения разорванных связей. Образующиеся свободные атомы (молекулы) испаряются с поверхности жидкости или остаются в межкластерном пространстве в качестве растворённого газа (пара). При температуре кипения вещество переходит в моноатомное (мономолекулярное) газообразное (парообразное) состояние.

Плавление в двумерных системах[ | ]

В двумерных или квази-двумерных системах кристалл является гораздо более шатким объектом, чем в трёхмерном случае, а именно у двумерного кристалла нет дальнего позиционного порядка. Для сравнения, в одномерном случае кристалл при конечной температуре вообще не может быть стабильным.

Как выяснилось, это приводит к тому, что плавление двумерного кристалла происходит в два этапа. Вначале кристалл переходит в так называемую гексатическую фазу, в которой теряется ближний позиционный порядок, но сохраняется ориентационный, а затем происходит потеря и ориентационного порядка и тело становится жидким.

Примечания[ | ]

  1. ↑ С. Т. Жуков Химия 8-9 класс, Глава 1. Основные представления и понятия химии
  2. ↑ Разброс экспериментальных данных связан, по видимому, с фазовым переходом графит-карбин и различной скоростью нагрева при измерениях. Климовский И. И., Марковец В. В.

    Влияние фазового перехода графит-карбин на излучательную способность графитовых образцов при их нагревании до температур 3000 K и более // International Scientific Journal for Alternative Energy and Ecology. — 2007. — № 6 (50). — С. 50-59.

  3. Андреев В. Д. Избранные проблемы теоретической физики.. — Киев: Аванпост-Прим,.

     — 2012.

  4. ↑ Мейер К. Физико-химическая кристаллография, М., «Металлография», 1972
  5. ↑ Lindemann F. A. // Phys.Z., 1910, v.11, p.609
  6. Wood W. W., Jacobson J. D. Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard Spheres // J. Chem. Phys.. — 1957. — № 27. — С. 1207. — DOI:10.1063/1.

    1743956.

  7. Alder B. J., Wainwright T. E. Phase Transition in Elastic Disks // Phys. Rev.. — 1962. — № 127. — С. 359. — DOI:10.1103/PhysRev.127.359.
  8. Hoover W. G., Gray S. G., Johnson K. W. Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials // J. Chem. Phys.. — 1971. — № 55. — С.

    1128. — DOI:10.1063/1.1676196.

  9. ↑ Пайнс Д. Элементарные возбуждения в твёрдых телах. М., Мир, 1965.
  10. Андреев В. Д. Крэш (crash)-конформационная кинематика ковалентной решетки алмаза при плавлении. // . — 2001. — № 3. — С. 486-495.
  11. Андреев В. Д.

    «Фактор плавления» при межатомных взаимодействиях в алмазной решетке. // Химическая физика. — 2002. — № 8,т.21. — С. 35-40.

Ссылки[ | ]

  • Поверхностное предплавление льда
  • Плавление двумерных кристаллов

Что такое Плавление

Плавление

Плавление — Процесс действия по знач. глаг.: плавить (1*), плавиться (1*).

Плавление в Энциклопедическом словаре:

Плавление — переход твердого кристаллического вещества в жидкое состояние(фазовый переход первого рода).

При постоянном внешнем давлении плавлениечистого вещества происходит при постоянной температуре (tпл), называетсятемпературой плавления. tпл при атмосферном давлении называется точкойплавления вещества.

Аморфные твердые тела не имеют точки плавления. Онипереходят в жидкое состояние постепенно, размягчаясь при повышениитемпературы.

Значение слова Плавление по словарю Ушакова:

ПЛАВЛЕНИЕ
плавления, мн. нет, ср. (спец.). Состояние по глаг. плавиться, процесс перехода из твердого состояния в жидкое под воздействием высокой температуры. Точка плавления (температура, при к-рой вещество начинает плавиться).

Значение слова Плавление по словарю Даля:

Плавление
ср. длит. плавка ж. об. действ. по глаг. Плавка лесу, гонка. Плавка металлов, топка. Замечательно, что и топить, также как плавить, относится к огню и к воде. Плавеж м. плавка скота, переправа вплавь. | самое место в реке, удобное д

Определение слова «Плавление» по БСЭ:

Плавление — переход вещества из кристаллического (твёрдого) состояния в жидкое. происходит с поглощением теплоты (Фазовый переход I рода). Главными характеристиками П. чистых веществ являются Температура плавления (Tпл) и теплота, которая необходима для осуществления процесса П. (Теплота плавления Qпл).
Температура П. зависит от внешнего давления p.

на диаграмме состояния чистого вещества эта зависимость изображается кривой плавления (кривой сосуществования твёрдой и жидкой фаз, AD или AD на рис. 1). П. сплавов и твёрдых растворов происходит, как правило, в интервале температур (исключение составляют эвтектики с постоянной Tпл). Зависимость температуры начала и окончания П.

сплава от его состава при данном давлении изображается на диаграммах состояния специальными линиями (кривые ликвидуса и солидуса, см. Двойные системы).

У ряда высокомолекулярных соединений (например, у веществ, способных образовывать Жидкие кристаллы) переход из твёрдого кристаллического состояния в изотропное жидкое происходит постадийно (в некотором температурном интервале), каждая стадия характеризует определённый этап разрушения кристаллической структуры.
Наличие определённой температуры П.

— важный признак правильного кристаллического строения твёрдых тел. По этому признаку их легко отличить от аморфных твёрдых тел, которые не имеют фиксированной Tпл. Аморфные твёрдые тела переходят в жидкое состояние постепенно, размягчаясь при повышении температуры (см. Аморфное состояние).
Самую высокую температуру П.

среди чистых металлов имеет Вольфрам (3410°C), самую низкую — Ртуть (-38,9°C). К особо тугоплавким соединениям относятся: TiN (3200°C), HfN (3580°C), ZrC (3805°C), TaC (4070°C), HfC (4160°C) и др. Как правило, для веществ с высокой Tпл характерны более высокие значения Qпл. Примеси, присутствующие в кристаллических веществах, снижают их Tпл.

Этим пользуются на практике для получения сплавов с низкой Tпл (см., например, Вуда сплав с Tпл = 68°C) и охлаждающих смесей.
П. начинается при достижении кристаллическим веществом Tпл. С начала П. до его завершения температура вещества остаётся постоянной и равной Tпл, несмотря на сообщение веществу теплоты (рис. 2). Нагреть кристалл до T > Tпл в обычных условиях не удаётся (см.

Перегрев), тогда как при кристаллизации сравнительно легко достигается значительное Переохлаждение расплава.
Характер зависимости Tпл от давления p определяется направлением объёмных изменений (&Delta.Vпл) при П. (см. Клапейрона — Клаузиуса уравнение). В большинстве случаев П. вещества сопровождается увеличением их объёма (обычно на несколько %).

Если это имеет место, то возрастание давления приводит к повышению Tпл (рис. 3). Однако у некоторых веществ (воды, ряда металлов и металлидов, см. рис. 1) при П. происходит уменьшение объёма. Температура П. этих веществ при увеличении давления снижается.
П.

сопровождается изменением физических свойств вещества: увеличением энтропии, что отражает разупорядочение кристаллической структуры вещества. ростом теплоёмкости, электрического сопротивления [исключение составляют некоторые полуметаллы (Bi, Sb) и полупроводники (Ge), в жидком состоянии обладающие более высокой электропроводностью]. Практически до нуля падает при П.

сопротивление сдвигу (в расплаве не могут распространяться поперечные упругие волны, см. Жидкость), уменьшается скорость распространения Звука (продольных волн) и т.д.
Согласно молекулярно-кинетическим представлениям, П. осуществляется следующим образом.

При подведении к кристаллическому телу теплоты увеличивается энергия колебаний (амплитуда колебаний) его атомов, что приводит к повышению температуры тела и способствует образованию в кристалле различного рода дефектов (незаполненных узлов кристаллической решётки — вакансий. нарушений периодичности решётки атомами, внедрившимися между её узлами, и др., см. Дефекты в кристаллах).

В молекулярных кристаллах может происходить частичное разупорядочение взаимной ориентации осей молекул, если молекулы не обладают сферической формой.
Постепенный рост числа дефектов и их объединение характеризуют стадию предплавления. С достижением Tпл в кристалле создаётся критическая концентрация дефектов, начинается П.

— кристаллическая решётка распадается на легкоподвижные субмикроскопические области. Подводимая при П. теплота идёт не на нагрев тела, а на разрыв межатомных связей и разрушение дальнего порядка в кристаллах (см. Дальний порядок и ближний порядок). В самих же субмикроскопических областях ближний порядок в расположении атомов при П.

существенно не меняется (Координационное число расплава при Tпл в большинстве случаев остаётся тем же, что и у кристалла). Этим объясняются меньшие значения теплот плавления Qпл по сравнению с теплотами парообразования и сравнительно небольшое изменение ряда физических свойств веществ при их П.
Процесс П. играет важную роль в природе (П. снега и льда на поверхности Земли, П. минералов в её недрах и т.д.) и в технике (производство металлов и сплавов, литьё в формы и др.).
Лит.: Френкель Я. И., Кинетическая теория жидкостей, Собр. избр. трудов, т. 3, М. -Л., 1959. Данилов В. И., Строение и кристаллизация жидкости, К., 1956. Глазов В. М., Чижевская С. Н., Глаголева Н. Н., Жидкие полупроводники, М., 1967. Уббелоде А., Плавление и кристаллическая структура, пер. с англ., М., 1969. Любов Б. Я., Теория кристаллизации в больших объемах, М. (в печати).Б. Я. Любов.

Рис. 1. Диаграмма состояния чистого вещества. Линии AD и AD — кривые плавления, по линии AD плавятся вещества с аномальным изменением объёма при плавлении.

Рис. 2. Остановка температуры при плавлении кристаллического тела. По оси абсцисс отложено время &tau., пропорциональное равномерно подводимому к телу количеству теплоты.
Рис. 3. Изменение температуры плавления Тпл (°C) щелочных металлов с увеличением давления p (кбар). Кривая плавления Cs указывает на существование у него при высоких давлениях двух полиморфных превращений (а и в).

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть