ПОЛОНИЙ

Полоний 210: период полураспада. Для чего используется полоний 210?

ПОЛОНИЙ

Полоний-210 вызывает совершенно четкую ассоциацию с радиацией. И это совсем не зря, поскольку он крайне опасен.

История открытия

Его существование было предсказано еще в 1889 году Менделеевым, когда тот создал свою знаменитую периодическую таблицу. На практике же этот элемент под номером 84 был получен девятью годами позже усилиями супругов Кюри, изучавших явление радиации.

Мария Склодовская-Кюри пыталась выяснить причину сильного излучения, исходящего от некоторых минералов, а потому начала работу с несколькими образцами пород, обрабатывая их всеми доступными ей способами, деля на фракции и отбрасывая ненужное.

В результате она получила новое вещество, ставшее аналогом висмута и третьим открытым радиоактивным элементом после урана и тория.

Несмотря на удачные результаты эксперимента, Мария не спешила говорить о своей находке. Спектральный анализ, проведенный коллегой супругов Кюри, также не дал оснований говорить об открытии нового элемента.

Тем не менее в докладе на заседании Парижской академии наук в июле 1898 года супруги сообщили о предположительном получении вещества, проявляющего свойства металла и предложили назвать его полонием в честь Польши — родины Марии.

Это был первый и единственный в истории случай, когда еще не выделенный достоверно элемент уже получил название. Ну а первый образец появился лишь в 1910 году.

Полоний представляет собой сравнительно мягкий серебристо-белый металл. Он настолько радиоактивен, что светится в темноте и постоянно нагревается. При этом температура его плавления чуть выше, чем у олова — всего 254 градуса Цельсия. Металл очень быстро окисляется на воздухе. При низких температурах образует одноатомную простую кубическую кристаллическую решетку.

По своим химическим свойствам полоний очень близок к своему аналогу — теллуру. Кроме того, на характер его соединений большое влияние имеет высокий уровень радиации. Так что реакции с участием полония могут быть весьма зрелищными и интересными, хоть и довольно опасными с точки зрения пользы для здоровья.

Изотопы

Всего науке на данный момент известно 27 (по другим источникам — 33) форм полония. Ни одна из них не является стабильной, и все они радиоактивны. Наиболее тяжелые из изотопов (с порядковыми числами от 210 до 218) в небольшом количестве встречаются в природе, остальные могут быть получены только искусственными путями.

Радиоактивный полоний-210 — наиболее долгоживущий из природных форм. Он содержится в небольшом количестве в радиево-урановых рудах и образуется за счет цепочки реакций, начинающейся с U-238 и длящейся примерно 4,5 миллиарда лет, если говорить про период полураспада.

Получение

В 1 тонне урановой руды содержится изотоп полоний-210 в количестве, равном примерно 100 микрограммам.

Их можно выделить при обработке отходов производства, однако для получения более или менее значительного объема элемента пришлось бы обработать огромное количество материала.

Гораздо более простым и эффективным способов является синтез с помощью облучения нейтронами природного висмута в ядерных реакторах.

В результате после еще некоторых процедур получается полоний-210. Изотопы 208 и 209 также можно получить, если облучать висмут или свинец ускоренными пучками альфа-частиц, протонов или дейтронов.

Радиоактивность

Полоний-210, как и остальные изотопы, является альфа-излучателями. Группа более тяжелых также испускает гамма-лучи.

Несмотря на то что изотоп 210 является источником только альфа-частиц, он достаточно опасен, его нельзя брать руками и даже приближаться на близкое расстояние, поскольку, разогреваясь, он переходит в аэрозольное состояние.

Крайне опасно также попадание полония внутрь с дыханием или пищей. Именно поэтому работа с этим веществом проходит в специальных герметичных боксах. Любопытно, что этот элемент около полувека назад был обнаружен в табачных листьях.

Период распада полония-210 по сравнению с другими изотопами достаточно велик, а потому он может накопиться в растении и впоследствии навредить здоровью курильщика еще больше. Тем не менее, любые попытки извлечь из табака это вещество оказались безуспешными.

Опасность

Поскольку полоний-210 испускает лишь альфа-частицы, соблюдая определенные меры предосторожности, бояться работы с ним не следует. Длина пробега этих волн редко превышает десяток сантиметров, кроме того, они обычно не могут проникнуть сквозь кожу.

Однако, оказавшись внутри организма, они наносят ему огромный вред. При попадании в кровь он быстро разносится по всем тканям — уже через несколько минут его присутствие можно заметить во всех органах. Прежде всего он присутствует в почках и печени, но в общем и целом он распределяется довольно равномерно, чем и можно объяснить его высокое общее поражающее действие.

Токсичность полония настолько велика, что даже небольшие дозы вызывают хроническую лучевую болезнь и смерть через 6-11 месяцев. Основные пути выведения из организма — через почки и ЖКТ. Наблюдается зависимость от способа попадания. Период полувыведения составляет от 30 до 50 дней.

Случайное отравление полонием совершенно невозможно. Для получения достаточного количества вещества необходимо иметь доступ к ядерному реактору и намеренно подложить изотоп жертве. Сложность диагностики заключается также в том, что известно лишь несколько случаев за всю историю.

Первой жертвой считается дочь первооткрывателей полония — Ирен Жолио-Кюри, которая в ходе исследований разбила капсулу с веществом в лаборатории и скончалась спустя 10 лет. Еще два случая приходятся на XXI век.

Первый из них — нашумевшее дело Литвиненко, скончавшегося в 2006 году, а второй — смерть Ясера Арафата, в вещах которого были найдены следы радиоактивного изотопа. Тем не менее окончательный диагноз так и не был подтвержден.

Распад

Одним из наиболее долгоживущих изотопов, наряду с 208 и 209, является полоний-210. Период полураспада (то есть времени, за которое количество радиоактивных частиц уменьшается вдвое) у первых двух составляет соответственно 2,9 и 102 года, а у последнего 138 дней и 9 часов. Что касается остальных изотопов, время их жизни исчисляется в основном минутами и часами.

Сочетание различных свойств полония-210 делает его наиболее удобным из ряда для использования в различных сферах жизни. Находясь в специальной металлической оболочке, он уже не может навредить здоровью, но способен отдать свою энергию на благо человечества. Итак, для чего используется полоний-210 сегодня?

Современное применение

По некоторым данным, около 95% производства полония сосредоточено в России, причем в год синтезируется примерно 100 граммов вещества, и почти все оно экспортируется в США.

Существует несколько сфер, в которых применяется полоний-210. Прежде всего это космические аппараты. При своих компактных размерах он незаменим как прекрасный источник энергии и тепла. Несмотря на то что примерно каждые 5 месяцев его эффективность снижается вдвое, более тяжелые изотопы являются гораздо более дорогостоящими в производстве.

Кроме того, полоний совершенно незаменим в ядерной физике. Он широко применяется в изучении влияния альфа-излучения на другие вещества.

Наконец, еще одной областью применения является производство устройств для снятия статического электричества как для промышленности, так и для домашнего использования. Даже удивительно, как такой опасный элемент может стать чуть ли не кухонной утварью, будучи заключен в надежную оболочку.

Источник: http://fb.ru/article/211484/poloniy-period-poluraspada-dlya-chego-ispolzuetsya-poloniy

ПОЛОНИЙ

ПОЛОНИЙ
статьи

  • Открытие полония.
  • Свойства полония.
  • Получение полония.
  • Применение полония.

ПОЛОНИЙ – радиоактивный химический элемент VI группы периодической системы, аналог теллура. Атомный номер 84. Не имеет стабильных изотопов.

Известно 27 радиоактивных изотопов полония с массовыми числами от 192 до 218, из них семь (с массовыми числами от 210 до 218) встречаются в природе в очень малых количествах как члены радиоактивных рядов урана, тория и актиния,остальные изотопы получены искусственно.

Наиболее долгоживущие изотопы полония – искусственно полученные 209Ро (t1/2 = 102 года) и 208Ро (t1/2 = 2,9 года), а также содержащийся в радиево-урановых рудах 210Ро (t1/2 = 138,4 сут). в земной коре 210Ро составляет всего 2·10–14%; в 1 т природного урана содержится 0,34 г радия и доли миллиграмма полония-210.

Самый короткоживущий из известных изотопов полония – 21ЗРо (t1/2 = 3·10–7 с). Самые легкие изотопы полония – чистые альфа-излучатели, более тяжелые одновременно испускают альфа- и гамма-лучи. Некоторые изотопы распадаются путем электронного захвата, а самые тяжелые проявляют также очень слабую бета-активность (см. РАДИОАКТИВНОСТЬ).

Разные изотопы полония имеют исторические названия, принятые еще в начале 20 в., когда их получали в результате цепочки распадов из «родительского элемента»: RaF (210Po), AcC' (211Po), ThC' (212Po), RaC' (214Po), AcA (215Po), ThA (216Po), RaA (218Po).

Открытие полония

Существование элемента с порядковым номером 84 было предсказано Д.И.Менделеевым в 1889 – он назвал его двителлуром (на санскрите – «второй» теллур) и предположил, что его атомная масса будет близка к 212. Конечно, Менделеев не мог предвидеть, что этот элемент окажется неустойчивым.

Полоний – первый радиоактивный элемент, открытый в 1898 супругами Кюри в поисках источника сильной радиоактивности некоторых минералов (см. РАДИЙ). Когда оказалось, что урановая смоляная руда излучает сильнее, чем чистый уран, Мария Кюри решила выделить из этого соединения химическим путем новый радиоактивный химический элемент.

До этого было известно только два слабо радиоактивных химических элемента – уран и торий. Кюри начала с традиционного качественного химического анализа минерала по стандартной схеме, которая была предложена немецким химиком-аналитиком К.Р.

Фрезениусом (1818–1897) еще в 1841 и по которой многие поколения студентов в течение почти полутора веков определяли катионы так называемым «сероводородным методом». Вначале у нее было около 100 г минерала; затем американские геологи подарили Пьеру Кюри еще 500 г. Проводя систематический анализ, М.

Кюри каждый раз проверяла отдельные фракции (осадки и растворы) на радиоактивность с помощью чувствительного электрометра, изобретенного ее мужем. Неактивные фракции отбрасывались, активные анализировались дальше. Ей помогал один из руководителей химического практикума в Школе физики и промышленной химии Густав Бемон.

Прежде всего, Кюри растворила минерал в азотной кислоте, выпарила раствор досуха, остаток растворила в воде и пропустила через раствор ток сероводорода. При этом выпал осадок сульфидов металлов; в соответствии с методикой Фрезениуса, этот осадок мог содержать нерастворимые сульфиды свинца, висмута, меди, мышьяка, сурьмы и ряда других металлов.

Осадок был радиоактивным, несмотря на то, что уран и торий остались в растворе. Она обработала черный осадок сульфидом аммония, чтобы отделить мышьяк и сурьму – они в этих условиях образуют растворимые тиосоли, например, (NH4)3AsS4 и (NH4)3SbS3. Раствор не обнаружил радиоактивности и был отброшен. В осадке остались сульфиды свинца, висмута и меди.

Не растворившуюся в сульфиде аммония часть осадка Кюри снова растворила в азотной кислоте, добавила к раствору серную кислоту и выпарила его на пламени горелки до появления густых белых паров SO3. В этих условиях летучая азотная кислота полностью удаляется, а нитраты металлов превращаются в сульфаты.

После охлаждения смеси и добавления холодной воды в осадке оказался нерастворимый сульфат свинца PbSO4 – активности в нем не было. Осадок она выбросила, а к отфильтрованному раствору добавила крепкий раствор аммиака.

При этом снова выпал осадок, на этот раз – белого цвета; он содержал смесь основного сульфата висмута (BiO)2SO4 и гидроксида висмута Bi(OH)3. В растворе же остался комплексный аммиакат меди [Cu(NH3)4]SO4 ярко-синего цвета. Белый осадок, в отличие от раствора, оказался сильно радиоактивным.

Поскольку свинец и медь были уже отделены, в белом осадке был висмут и примесь нового элемента.

Кюри снова перевела белый осадок в темно-коричневый сульфид Bi2S3, высушила его и нагрела в вакуумированной ампуле. Сульфид висмута при этом не изменился (он устойчив к нагреву и лишь при 685°С плавится), однако из осадка выделились какие-то пары, которые осели в виде черной пленки на холодной части ампулы.

Пленка была радиоактивной и, очевидно, содержала новый химический элемент – аналог висмута в периодической таблице. Это был полоний – первый после урана и тория открытый радиоактивный элемент, вписанный в периодическую таблицу (в том же 1898 году были открыты радий, а также группа благородных газов – неон, криптон и ксенон).

Как потом выяснилось, полоний при нагревании легко возгоняется – его летучесть примерно такая же, как у цинка.

Супруги Кюри не спешили назвать черный налет на стекле новым элементом. Одной радиоактивности было мало.

Коллега и друг Кюри французский химик Эжен Анатоль Демарсе (1852–1903), специалист в области спектрального анализа (в 1901 он открыл европий), исследовал спектр испускания черного налета и не обнаружил в нем новых линий, которые могли бы свидетельствовать о присутствии нового элемента.

Спектральный анализ – один из самых чувствительных методов, позволяющий обнаруживать многие вещества в микроскопических, невидимых глазом количествах.

Тем не менее, в статье, опубликованной 18 июля 1898 супруги Кюри написали: «Мы думаем, что вещество, выделенное нами из урановой смолки, содержит не известный пока металл, являющийся по аналитическим свойствам аналогом висмута.

Если существование нового металла будет подтверждено, мы предлагаем назвать его полонием, по родине одного из нас» (Polonia на латыни – Польша). Это единственный случай, когда еще не идентифицированный новый химический элемент уже получил название. Однако получить весовые количества полония не удалось – его в урановой руде было слишком мало (позднее полоний был получен искусственно). И прославил супругов Кюри не этот элемент, а радий

Свойства полония

Уже теллур частично проявляет металлические свойства, полоний же – мягкий серебристо-белый металл. Из-за сильной радиоактивности светится в темноте и сильно нагревается, поэтому нужен непрерывный отвод тепла.

Температура плавления полония 254° С (чуть выше, чем у олова), температура кипения 962° С, поэтому уже при небольшом нагревании полоний возгоняется. Плотность полония почти такая же, как у меди – 9,4 г/см3.

В химических исследованиях применяется только полоний-210, более долгоживущие изотопы практически не используются ввиду трудности их получения при одинаковых химических свойствах.

https://www.youtube.com/watch?v=9ribK_hEDKI

Химические свойства металлического полония близки к свойствам его ближайшего аналога – теллура, он проявляет степени окисления –2, +2, +4, +6.

На воздухе полоний медленно окисляется (быстро при нагревании до 250° С) с образованием красного диоксида РоО2 (при охлаждении он становится желтым в результате перестройки кристаллической решетки).

Сероводород из растворов солей полония осаждает черный сульфид PoS.

Сильная радиоактивность полония отражается на свойствах его соединений. Так, в разбавленной соляной кислоте полоний медленно растворяется с образованием розовых растворов (цвет ионов Ро2+): Po + 2HCl ® PoCl2 + H2, однако под действием собственной радиации дихлорид превращается в желтый PoCl4.

Разбавленная азотная кислота пассивирует полоний, а концентрированная быстро его растворяет. С неметаллами VI группы полоний роднит реакция с водородом с образованием летучего гидрида РоН2 (т.пл. –35° С, т.кип.

+35° С, легко разлагается), реакция с металлами (при нагревании) с образованием твердых полонидов черного цвета (Na2Po, MgPo, CaPo, ZnPo, HgPo, PtPo и др.) и реакция с расплавленными щелочами с образованием полонидов: 3Po + 6NaOH ® 2Na2Po + Na2PoO3 + H2O.

С хлором полоний реагирует при нагревании с образованием ярко-желтых кристаллов PoCl4, с бромом получаются красные кристаллы PoBr4, с иодом уже при 40° С полоний реагирует с образованием черного летучего иодида PoI4. Известен и белый тетрафторид полония PoF4.

При нагревании тетрагалогениды разлагаются с образованием более стабильных дигалогенидов, например, PoCl4 ® PoCl2 + Cl2. В растворах полоний существует в виде катионов Ро2+, Ро4+, анионов РоО32–, РоО42–, также разнообразных комплексных ионов, например, PoCl62–.

Получение полония

Полоний-210 синтезируют путем облучения нейтронами природного висмута (он содержит только 208Bi) в ядерных реакторах (промежуточно образуется бета-активный изотоп висмута-210): 208Bi + n ® 210Bi ® 210Po + e.

При облучении висмута ускоренными протонами образуется полоний-208, его отделяют от висмута возгонкой в вакууме – как это делала М.Кюри. В нашей стране методику выделения полония разработала Зинаида Васильевна Ершова (1905–1995).

В 1937 она была командирована в Париж в Институт радия в лабораторию М.Кюри (руководимую в то время Ирэн Жолио-Кюри). В результате этой командировки коллеги стали называть ее «русской мадам Кюри». Под научным руководством З.В.

Ершовой в стране было создано постоянно действующее, экологически чистое производство полония, что позволило реализовать отечественную программу запуска луноходов, в которых полоний использовали в качестве источника тепла.

Долгоживущие изотопы полония пока не получили заметного практического применения из-за сложности их синтеза. Для их получения можно использовать ядерные реакции 207Pb + 4He ® 208Po + 3n, 208Bi + 1H ® 208Po + 2n, 208Bi + 2D ® 208Po + 3n, 208Bi + 2D ® 208Po + 2n, где 4Не – альфа-частицы, 1Н – ускоренные протоны, 2D – ускоренные дейтроны (ядра дейтерия).

Применение полония

Полоний-210 испускает альфа-лучи с энергией 5,3 МэВ, которые в твердом веществе тормозятся, проходя всего тысячные доли миллиметра и отдавая при этом свою энергию.

Время его жизни позволяет использовать полоний как источник энергии в атомных батареях космических кораблей: для получения мощности 1 кВт достаточно всего 7,5 г полония. В этом отношении он превосходит другие компактные «атомные» источники энергии.

Такой источник энергии работал, например, на «Луноходе-2», обогревая аппаратуру во время долгой лунной ночи. Конечно, мощность полониевых источников энергии со временем убывает – вдвое каждые 4,5 месяца, однако более долгоживущие изотопы полония слишком дороги.

Полоний удобно применять и для исследования воздействия альфа-излучения на различные вещества. Как альфа-излучатель, полоний в смеси с бериллием применяют для изготовления компактных источников нейтронов: 9Be + 4He ® 12C + n. Вместо бериллия в таких источниках можно использовать бор.

Сообщалось, что в 2004 инспекторы международного агентства по атомной энергии (МАГАТЭ) обнаружили в Иране программу по производству полония. Это привело к подозрению, что он может быть использован в бериллиевом источнике для «запуска» с помощью нейтронов цепной ядерной реакции в уране, приводящей к ядерному взрыву.

Полоний при попадании в организм можно считать одним из самых ядовитых веществ: для 210Ро предельно допустимое содержание в воздухе составляет всего 40 миллиардных долей микрограмма в 1 м3 воздуха, т.е. полоний в 4 триллиона раз токсичнее синильной кислоты.

Вред наносят испускаемые полонием альфа-частицы (и в меньшей мере также гамма-лучи), которые разрушают ткани и вызывают злокачественные опухоли. Атомы полония могут образоваться в легких человека в результате распада в них газообразного радона. Кроме того, металлический полоний способен легко образовывать мельчайшие частицы аэрозолей.

Поэтому все работы с полонием проводят дистанционно в герметичных боксах.

Илья Леенсон

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/POLONI.html

№84 Полоний

ПОЛОНИЙ

Самоходный аппарат Луноход-2.
С 16 января 1973 года за 4 месяца работы он проделал путь в 37 км, передал на Землю 86 панорам и более 80 тыс снимков лунной поверхности.

Вскоре после открытия радиоактивности Поль Кюри и Мария Склодовская-Кюри изучая урановую смоляную руду установили, что она обладает значительно большей радиоактивностью, чем чистый уран.

Было сделано предположение, что руда содержит другие химические элементы, более радиоактивные чем уран.

Переработка многих тонн урановой руды позволило в 1898 году выделить из нее еще два новых химических элемента: радий и элемент № 84, который в честь Польши был назван Полонием.

Получение:

В природе изотопы полония входят в естественный радиоактивный ряд 238U и всегда присутствуют в урановых рудах, но, вследствии короткого периода полураспада не накапливаются в ней в значительных количествах.

в урановой руде наиболее устойчивого изотопа 210Po (период полураспада 138,3 суток) 2*10-10. Для выделения полония из руды сначала извлекают радий, затем остатки растворяют в соляной кислоте и осаждают полоний вместе с висмутом сероводородом.

От висмута полоний отделяют дробной кристаллизацией соединений, обладаюших разной растворимостью, хроматографией, электрохимическими методами.

В настоящее время 210Po получают главным образом в ядерных реакторах, облучая висмут нейтронами:
209Bi (n, g ) 210Bi; 210Bi (-, b ) 210Po Наиболее долгоживущий изотоп полония (период полураспада 103 года) получают бомбардировкой висмута протонами:

209Bi (p, n) 209Po.

Физические свойства:

Серебристо-белый металл, напоминающий висмут и свинец. Вследствие высокой радиоактивности в темноте можно заметить светло-голубое свечение, а также наблюдается саморазогревание.

Полоний выделяет так много тепловой энергии, что это тепло способно расплавить образец. Температура плавления Po равна 254°С; температура кипения 962°С, плотность 9,4 г/см3.

Полоний претерпевает a-распад, превращаясь в устойчивый изотоп свинца: 210Po (-, a ) 206Pb

Химические свойства:

По своим свойствам полоний типичный металл, окисляется на воздухе, взаимодействует с галогенами, с водородом образует летучий гидрид.

Положение полоние в электрохимическом ряду напряжений противоречиво: по одним данным он реагирует с кислотами с выделением водорода, по другим — расположен между Cu и Ag, по третьим — вытесняется серебром из растворов..

Азотной кислотой полоний окисляется образуя нитрат Po(IV):

Po + 8HNO3 = Po(NO3)4 + 4NO2 + 4H2O

В соединениях проявляет степени окисления -2, +2 и +4 (+6 не характерна).

Важнейшие соединения:

Степень окисления -2. Гидрид полония PoH2 по свойства аналогичен теллуроводороду, но еще менее устойчив. Следы PoH2 образуются при растворении полония в соляной кислоте в присутствии магния. Полониды — соединения полония с более активными металлами, например Na2Po
Степень окисления +2.

Галогениды полония (PoCl2 — красный, PoBr2) по свойствам аналогичны солям. Известны также черный сульфид PoS и красный сульфит PoSO3.
Степень окисления +4, наиболее характерная.
Оксид полония(IV), PoO2 (красный) — амфотерный оксид с преобладанием основных свойств, со щелочами взаимодействует лишь при сплавлении, образуя полониты M2PoO3.

С кислотами реагирует как основной оксид:
PoO2 + 2H2SO4 = Po(SO4)2 + 2H2O
Соли полония(IV) Po(SO4)2*nH2O, Po(NO3)4, бесцв. кристаллы, в растворе сильно гидролизуются, образуя коллоидные растворы PoO(OH)2 (светло-желтый). Этот гидроксид тоже амфотерен, его можно считать полонистой кислотой.

Галогениды полония(IV) PoCl4 (желтый), PoBr4 (красный), PoI4 черный), не растворимы в воде, взаимодействуют с галогенидами щелочных металлов, образуя соединения типа K2[PoCl6]

Применение:

Основная область применения полония-210 изготовление атомных батареек, применяемых на космических аппаратах. По сравнению с другими источниками полоний-210 обладает самой высокой удельной мощностью, 1210 вт/см3.

Радиоактивный изотоп полоний-210 служил, например, топливом «печки», установленной на «Луноходе-2», поддерживая приемлемую температуру приборного отсека этого аппарата.
Используется он также как источник a-частиц, а в смеси с бериллием или бором — как ампульный источник нейтронов.

a-частицы, испускаемые полонием, порождают поток нейтронов из ядер атома бора или бериллия.
Высокая токсичность полония объясняется, главным образом его радиоактивностью. Испускаемое им a-излучение, с одной стороны, наиболее легко поглощается даже листом бумаги. Проникающая способность и длина пробега альфа-частицы минимальны.

С другой стороны, это излучение оказывает наиболее разрушительное воздействие при попадании источника внутрь организма. Поскольку полоний способен быстро переходить в аэрозольное состояние и заражать воздух, он опасен и на расстоянии, превышающим длину пробега альфа-частиц.

См. также:
Трифонов Д.Н. М. Склодовская-Кюри: познание радиоактивности./ Химия в школе, 1997, №7.

Источник: http://www.kontren.narod.ru/x_el/info84.htm

Полоний получение

ПОЛОНИЙ

Здесь вполне уместен вопрос: если полоний действительно ультраредкий и сверх труднодоступный элемент, то во что же обходится добыча полония в наше время?Точными цифрами мы не располагаем, однако сегодня элемент № 84 не менее доступен, чем радий.

Получить его из руды действительно сложно, но есть другой путь — ядерный синтез.Сегодня полоний получают двумя способами, причем исходным сырьем в обоих случаях служит висмут-209.

В атомных реакторах его облучают потоками нейтронов, и тогда по сравнительно несложной цепочке ядерных превращений образуется самый важный сегодня изотоп элемента № 84 — полоний-210:

                        γ               β—

20983Bi + 10n → 21083Bi → 21084Po

А если тот же изотоп висмута поместить в другую важнейшую машину ядерного синтеза — циклотрон и там обстрелять потоками протонов, то по реакции

                       γ

20983Bi + 11p → 20984Po + 10n

образуется самый долгоживущий изотоп элемента № 84.Первая реакция важнее: полоний-210 — значительно более интересный для техники изотоп, чем полоний-209. (О причинах — ниже.) К тому же по второй реакции одновременно с полонием образуется свинец-209 — одна из самых трудноудаляемых примесей к полонию.

А вообще очистка полония и выделение его из смеси с другими металлами для современной техники не представляют особо трудной задачи. Существуют разные способы выделения полония, в частности электрохимический, когда металлический полоний выделяют на платиновом или золотом катоде, а затем отделяют возгонкой.

Полоний — металл легкоплавкий и сравнительно низ-кокипящий; температуры его плавления и кипения соответственно 254 и 962° С.

Основы химии полония

Получения и выделения полония стали воз можны лишь после досконального изучения этого редкого радиоактивного металла и его соединенийОсновы химии полония заложены его первооткрывателями. В одной из лабораторных тетрадей супругов Кюри есть запись сделанная в 1898 г.

: «После первой обработки смоляной обманки серной кислотой полоний осаждается не полностью и может быть частично извлечен путем промывания разбавленной SО4H2 (здесь и ниже сохранена химическая индексация оригинала).

В противоположность этому две обработки остатка смоляной обманки и одна обработка остатка немецкой [руды] карбонатами дают карбонаты, причем из карбоната, растворенного в уксусной кислоте, SО4H2 полностью осаждает активное вещество».Позже об этом элементе узнали значительно больше.

Узнали, в частности, что элементарный полоний — металл серебристо-белого цвета — существует в двух аллотропных модификациях.

Кристаллы одной из них —низкотемпературной — имеют кубическую решетку, а другой — высокотемпературной — ромбическую.Фазовый переход из одной формы в другую происходит при 36° С, однако при комнатной температуре полоний находится в высокотемпературной форме.

Его подогревает собственное радиоактивное излучение.По внешнему виду полоний похож на любой самый обыкновенный металл. По легкоплавкости — на свинец и висмут. По электрохимическим свойствам —на благородные металлы. По оптическому и рентгеновскому спектрам — только на самого себя.

А по поведению в растворах — на все другие радиоактивные элементы: благодаря ионизирующему излучению в растворах, содержащих полоний, постоянно образуются и разлагаются озон и перекись водорода.По химическим свойствам полонии — прямой аналогсеры, селена и теллура.

Он проявляет валентность 2-2+, 4+ и 6+, что естественно для элемента этой группы .

Известны и достаточно хорошо изучены многочисленные соединения полония, начиная от простого окисла PoO2растворимого в воде, и кончая сложными комплексными соединениями.Последнее не должно удивлять. Склонность к комплек-сообразованию — удел большинства тяжелых металлов, а полонии относится к их числу.

Кстати, его плотность — 9,4 г/см3 — чуть меньше, чем у свинца.Очень важное для радиохимии в целом исследование свойств полония было проведено в 1925—1928 гг. в ленинградском Радиевом институте.

Было принципиально важно выяснить, могут ли радиоактивные элементы, находящиеся в растворах в исчезающе малых количествах, образовывать собственные коллоидные соединения.

Техника безопасности при работе с полонием

При работе с полонием приходится соблюдать особуюосторожность. Пожалуй, это один из самых опасных радиоэлементов.

Его активность настолько велика, что, хотя он излучает только альфа-частицы, брать его руками нельзя, результатом будет лучевое поражение кожи и, возможно, всего организма: полоний довольно легко проникает внутрь сквозь кожные покровы.

Элемент № 84 опасен и на расстоянии, превышающем длину пробега альфа-частиц. Он способен быстро переходить в аэрозольное состояние и заражать воздух.

Поэтому работают с полонием лишь в герметичных боксах, а то обстоятельство, что от излучения полония защититься несложно, чрезвычайно благоприятно для всех, кто имеет дело с этим элементом.Внимательный читатель, вероятно, уже заметил, что в этой статье везде, где говорится о практическом применении полония, фигурирует лишь один изотоп — с массовым числом 210.

Действительно, другие изотопы элемента № 84, в том числе и самый долгоживущий полоний-209, пока не вышли за пределы лабораторий.Правда, многие ученые считают, что для космических источников энергии перспективен и полоний-208, тоже чистый альфа-излучатель. Период полураспада у него значительно больше, чем у полония-210, — 2,9 года.

Но пока этот изотоп почти недоступен.

Статья на тему Полоний получение

Источник: https://znaesh-kak.com/x/o/polonii/%D0%BF%D0%BE%D0%BB%D0%BE%D0%BD%D0%B8%D0%B9-%D0%BF%D0%BE%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5

Отравление полонием в симптомах и истории

ПОЛОНИЙ

Среди всех существующих интоксикаций отравление полонием – одно из самых страшных. Оно характеризуется тяжелыми симптомами и приводит к необратимым последствиям.

Являясь радиоактивным элементом, полоний поражает человека вплоть до смертельного исхода. Благо, отравится им не так уж легко.

И все же узнать о том, где мы можем сталкиваться с этим опасным веществом, будет не только интересно, но и поучительно.

Что это за вещество?

Полоний – это радиоактивный химический элемент в виде мягкого металла серебристого цвета. В мизерных количествах полоний встречается в природе. В микроскопических дозах изотопы полония содержаться в некоторых продуктах питания, например, смородине и клубнике. На растения они попадают из почвы или воздуха. Толика полония присутствует в морской воде, а поэтому и в морской рыбе.

Искусственно полоний производится в атомных реакторах с помощью облучения изотопов висмута. В малом количестве его используют в промышленности.

Он настолько опасен для жизни, что работают с этим материалом только в специальных герметичных боксах, предварительно облачившись в защитные костюмы. Ни в коем случае нельзя допускать его контакт с телом.

Попав в организм даже в очень маленьких дозах (менее одного грамма), он необратимо разрушает внутренние органы и ткани, поражает все системы жизнедеятельности. Полоний в 4 триллиона раз токсичнее синильной кислоты.

В большей степени вредоносными для человеческого здоровья являются излучаемые полонием альфа-частицы. Они и становятся причиной разрушения органов и образования злокачественных опухолей.

Этот редкий химический элемент был открыт еще в 1898 году семейной четой Кюри и назван в честь родины супруги семейства – Польши. Женщина получила за открытие Нобелевскую премию.

Где используют полоний?

В промышленной деятельности обычно работают с так называемым полонием-210, период полураспада которого самый короткий – 138 дней и 9 часов. В основном его используют, чтобы снять статическое напряжение.

Кроме того, полоний применяют в космонавтике и машиностроении, в создании нейтронных источников и радиоактивного оружия. Также предпринимают попытки лечить рак полонием, который способен убивать метастазы.

Серебристый металл применяли на космических кораблях, чтобы обогревать аппаратуру. Для этого его нужно немного, а по количеству производимой энергии он обходит другие атомные источники.

Как отличный антистатик полоний используют в пульверизаторах для покраски автомобилей. Подача воздуха происходит через ионизатор с полонием. Раньше вещество использовали, чтобы уменьшить напряжение возникновения искры в автомобильных свечах зажигания.

Из-за угрозы ядерного терроризма полоний должен жестко контролироваться в любой стране.

Случаи отравления полонием

История приводит в доказательство опасности полония некоторые известные смертельные случаи. Дочь первооткрывателей вещества Ирен Кюри умерла от лейкемии. Считается, что она получила отравление радиоактивным полонием, работая с ним в лаборатории. Через время это привело к болезни и смерти.

В наше время громкое отравление полонием случилось в 2006 году, когда в Лондоне серебристый порошок подсыпали в чай критику Москвы, бывшему работнику КГБ, Александру Литвиненко. Чтобы диагностировать попадание элемента в организм, врачам понадобилось несколько недель.

Все признаки указывали на то, что Литвиненко получил радиационное поражение. Но так как счетчик, который замеряет подобные заражения, не мог обнаружить вещество, ученые склонялись к мнению, что больной поражен радиоактивным таллием.

Полоний нелегко определить в организме, медицинская практика сталкивается с подобными случаями крайне редко.

Ученые случайно обнаружили вещество в организме Литвиненко, хотя для того, чтобы понять причину болезни, были запущены мощные средства. В тот день, когда ученые наконец-то выявили причину отравления, Литвиненко умер. Его болезнь развивалась в течение месяца и привила к смертельному исходу, несмотря на то, что за его жизнь боролись опытные британские специалисты.

Существует версия, по которой смерть палестинского лидера Ясира Арафата в 2004 году наступила вследствие отравления полонием.

Важно! Получить отравление полонием в быту сложно. Это редкое вещество строго контролируется государством.

Хотя полонию не существует противоядия, убить им не так и просто. Доступ к этому редкому серебристому порошку имеют немногие, так как объекты, на которых производится полоний, жестко контролируются правительством. А попасть случайно в организм с едой или любым другим способом в смертельных дозах он не может.

Полоний и курение

Полоний накапливается в табаке. Листья табака содержат радиоактивные частички, которые не удаляются во время обработки. Это одна из причин вреда курения.

В 2008 году ученые Стэндфордского университета и клиники Майо в Рочестере провели исследования в данной области.

Их выводы относительно накопления полония в табаке красноречивы: «Производители табака обнаружили этот элемент более 40 лет назад, попытки изъять его были безуспешны».

При активном курении полоний скапливается в организме очень медленно. Его действие не будет заметным быстро. Но через определенный промежуток времени этот радиоактивный элемент способен вызвать рак легких.

Хуже всего, что производители сигарет, знают о проблеме, но пытаются скрыть ее от потребителей. Много лет они пытались избавиться от проблемы, используя разные технологии обработки сырья и даже генную инженерию.  Но их попытки оказались безуспешными. Не помогают в данном вопросе и сигаретные фильтры.

Ученые предлагают размещать информацию о присутствии полония в табаке на сигаретных пачках. Но пока их энтузиазм не находит отклика у производителей.

Полоний вызывает онкологию

Американские исследователи в 1991 году провели обследование работников одного из ядерных предприятий США, которые проработали там с 1944 по 1972 год. Ученые обнаружили, что многие из них заболели на рак почек и легких. Одной из основных причин онкологий считают именно полоний. Строгие меры безопасности не были способны оградить здоровье работников полностью.

В лабораториях, где проводятся работы с опасным веществом, нельзя хранить ни воду, ни еду, ни косметику. Более того, то, что люди едят и пьют, нельзя ставить на полки, на которых хоть раз держали полоний. Малейший контакт с серебристым порошком может привести к непоправимым последствиям.

Опыты, которые проводились на лабораторных крысах, показали, что полоний приводит к образованиям опухолей толстого кишечника, почек, семенников и других органов. Кроме того, он вызывает изменения в крови и цирроз печени.

Симптомы отравления полонием

Вещество становится жизненно опасным, попадая в организм человека. Это может случиться через дыхательные пути, если надышаться полонием. Заражение способно произойти через рану на теле. Самым надежным способом отравления считается попадания полония в пищевод, то есть с едой или напитками.

Признаки отравления таким редкостным ядом на самом деле не уникальны. Это одна из причин, почему диагностировать отравление полонием очень сложно. Попадая в организм, он начинает медленно, но уверенно разрушать его.

Частички элемента оседают в костном мозге, коже, почках, печени и селезенке. Достаточно 0,1-0,2 мкг, чтобы запустить машину смерти в человеке. Данная доза способна убить за месяц-два.

Если увеличить дозу, смерть наступит быстрее.

Если количество вещества, попавшего в организм, небольшое, у больного наблюдаются следующие признаки:

  • боль в животе,
  • тошнота,
  • рвота,
  • диарея,
  • запор,
  • повышение артериального давления,
  • учащенное сердцебиение,
  • усталость, вплоть до апатии,
  • онемение пальцев на руках и ногах,
  • помутнение сознания и бред,
  • нарушение зрения.

О тяжелом отравлении говорят такие симптомы:

  • организм стареет на глазах,
  • обостряются хронические заболевания,
  • кожа и ногти становятся тонкими,
  • выпадают волосы,
  • изменения в двигательной моторике,
  • кровавый стул,
  • иммунитет перестает функционировать,
  • судороги,
  • психозы,
  • начинаются перебои в работе печени и почек,
  • распухает горло,
  • происходит частичная или полная слепота,
  • образовываются опухоли в разных местах.

Тяжелая симптоматика возникает при дальнейшем развитии лучевой болезни. Поражаются все внутренние системы: пищеварительная, кроветворная, сердечная, нервная. Наиболее губительно полоний действует на печень, почки и костный мозг. Поэтому функционирование этих органов отказывает в первую очередь.

Важно! Из-за сложности обнаружения полония в организме, установить правильный диагноз медикам тяжело.

Полоний сложно обнаружить в крови. Чтобы понять причину болезни, медикам необходимо сделать большое количество анализов. Так как симптомы отравления подобны признакам отравлений другими тяжелыми металлами, выдвинуть версию интоксикации именно полонием непросто.

Если вовремя не определить причину болезни, летальный исход наступает необратимо. Зная причину заболевания, врачи могут только облегчить страдания и продлить жизнь.

Необходимые меры при отравлении полонием

При отравлении человека полонием, необходимо срочно оказать первую помощь:

  • убрать пострадавшего подальше от места, где произошло заражение,
  • немедленно уничтожить его одежду и обувь,
  • промыть слизистые покровы,
  • если есть возможность, вымыть пострадавшего полностью,
  • сделать промывание желудка,
  • дать принять сорбент,
  • дать слабительное и мочегонное,
  • отправить пострадавшего в больницу.

Уже в больнице врачи будут регулярно промывать больному желудок, бороться за работу печени и почек с помощью всевозможных препаратов. Оказать более ощутимую помощь могут решительные методы: пересадка костного мозга и переливание крови.

Заключение

Радиоактивный полоний является одним из самых сильных ядов в мире. Работая с ним, важно соблюдать все меры предосторожности.

Необходимо использовать специальные костюмы, не прикасаться к веществу, ни в коем случае не хранить рядом напитки или еду. Заражение полонием очень болезненно и смертельно для человека.

Квалифицированная помощь может облегчить состояние, но вылечить полностью не способна.

Курение – как медленный процесс накопления ядовитого вещества в организме – также является опасным. Об этом следует не забывать активным курильщикам. Приложить усилия для того, чтобы бросить вредную привычку, на самом деле жизненно важно. Берегите себя!

  • fj28aujdx
  • Распечатать

Источник: http://medtox.net/otravleniya-yadoximikatami/priznaki-i-simptomy-otravleniya-poloniem

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

    ×
    Рекомендуем посмотреть