Растворимость

Понятие о растворах. Растворимость веществ

Растворимость

Растворы — гомогенные (однородные) системы переменного состава, которые содержат два или несколько компонентов.

Наиболее распространены жидкие растворы. Они состоят из растворителя (жидкости) и растворенных веществ (газообразных, жидких, твердых):

Жидкие растворы могут быть водные и неводные. Водные растворы — это растворы, в которых растворителем является вода.

Неводные растворы — это растворы, в которых растворителями являются другие жидкости (бензол, спирт, эфир и т. д.). На практике чаще применяются водные растворы.

Растворимость веществ

Мы знаем, что одни вещества хорошо растворяются, другие — плохо. При растворении веществ образуются насыщенные и ненасыщенные растворы.

Насыщенный раствор — это раствор, который содержит максимальное количество растворяемого вещества при данной температуре.

Ненасыщенный раствор — это раствор, который содержит меньше растворяемого вещества, чем насыщенный при данной температуре.

Количественной характеристикой растворимости является коэффициент растворимости. Коэффициент растворимости показывает, какая максимальная масса вещества может раствориться в 1000 мл растворителя при данной температуре.

Растворимость выражают в граммах на литр (г/л).

По растворимости в воде вещества делят на 3 группы.

Таблица растворимости солей, кислот и оснований в воде

Таблица растворимости солей кислот и оснований

Растворимость веществ зависит от природы растворителя, от природы растворенного вещества, температуры, давления (для газов). Растворимость газов при повышении температуры уменьшается, при повышении давления — увеличивается.

Зависимость растворимости твердых веществ от температуры показывают кривые растворимости. Растворимость многих твердых веществ увеличивается при повышении температуры.

По кривым растворимости можно определить: 1) коэффициент растворимости веществ при различных температурах; 2) массу растворенного вещества, которое выпадает в осадок при охлаждении раствора от t1oC до t2oC.

Процесс выделения вещества путем испарения или охлаждения его насыщенного раствора называется перекристаллизацией. Перекристаллизация используется для очистки веществ.

Растворимость веществ: таблица. Растворимость веществ в воде

Растворимость

В повседневной жизни люди редко сталкиваются с чистыми веществами. Большинство предметов представляют собой смеси веществ.

Раствор — это однородная смесь, в которой компоненты равномерно смешались. Есть несколько их видов по размеру частиц: грубодисперсные системы, молекулярные растворы и коллоидные системы, которые часто называют золи. В этой статье речь идет о молекулярных (или истинных) растворах. Растворимость веществ в воде — одно из главных условий, влияющих на образование соединений.

Растворимость веществ: что это и зачем нужно

Чтобы разобраться в этой теме, нужно знать, что такое растворы и растворимость веществ. Простым языком, это способность вещества соединяться с другим и образовывать однородную смесь.

Если подходить с научной точки зрения, можно рассмотреть более сложное определение.

Растворимость веществ — это их способность образовывать с одним или более веществами гомогенные (или гетерогенные) составы с дисперсным распределением компонентов. Существует несколько классов веществ и соединений:

  • растворимые;
  • малорастворимые;
  • нерастворимые.

О чем говорит мера растворимости вещества

вещества в насыщенной смеси — это мера его растворимости. Как сказано выше, у всех веществ она разная. Растворимые — это те, которые могут развести более 10 г себя на 100 г воды. Вторая категория — менее 1 г при тех же условиях. Практически нерастворимые — это те, в смесь которых переходит менее 0,01 г компонента. В этом случае вещество не может передавать воде свои молекулы.

Что такое коэффициент растворимости

Коэффициент растворимости (k) — это показатель, максимальной массы вещества (г), которая может развестись в 100 г воды или другого вещества.

Растворители

В данном процессе участвуют растворитель и растворенное вещество. Первый отличается тем, что изначально он пребывает в таком же агрегатном состоянии, что и конечная смесь. Как правило, он взят в большем количестве.

Однако многие знают, что в химии вода занимает особое место. Для нее существуют отдельные правила. Раствор, в котором присутствует H2O называется водным.

Когда говорится о них, жидкость является экстрагентом и тогда, когда она в меньшем количестве. В пример можно привести 80%-ный раствор азотной кислоты в воде.

Пропорции здесь не равны Хоть доля воды меньше, чем кислоты, вещество называть 20%-ным раствором воды в азотной кислоте некорректно.

Существуют смеси, в которых отсутствует H2O. Они будут носить имя неводная. Подобные растворы электролита представляют собой ионные проводники. Они содержащие один или смеси экстрагентов. В их состав входят ионы и молекулы. Они используются в таких отраслях, как медицина, производство бытовой химии, косметики и в другие направления.

Они могут сочетать в себе несколько нужных веществ с различной растворимостью. Компоненты многих средств, которые применяются наружно, являются гидрофобными. Иными словами, они плохо взаимодействуют с водой. В таких смесях растворители могут быть летучими, нелетучими и комбинированными.

Органические вещества в первом случае хорошо растворяют жиры. К летучим относятся спирты, углеводороды, альдегиды и другие. Они часто входят в состав бытовой химии. Нелетучие чаще всего применяются для изготовления мазей. Это жирные масла, жидкий парафин, глицерин и прочие.

Комбинированные — это смесь летучих и нелетучих, например, этанол с глицерином, глицерин с димексидом. Также они могут содержать воду.

Насыщенный раствор — это смесь химических веществ, содержащая максимальную концентрацию одного вещества в растворителе при определенной температуре. Дальше оно разводиться не будет.

В препарате твёрдого вещества заметно выпадение осадка, который находится в динамическом равновесии с ним.

Под этим понятием подразумевается состояние, сохраняющееся во времени вследствие его протекания одновременно в двух противоположных направлениях (прямая и обратная реакции) с одинаковой скоростью.

Если вещество при постоянной температуре все еще может разлагаться, то этот раствор — ненасыщенный. Они устойчивы. Но если в них продолжать добавлять вещество, то оно будет разводиться в воде (или другой жидкости), пока не достигнет максимальной концентрации.

Еще один вид — перенасыщенный. В нем содержится больше растворенного вещества, чем может быть при постоянной температуре. Из-за того, что они находятся в неустойчивом равновесии, при физическом воздействии на них происходит кристаллизация.

Как отличить насыщенный раствор от ненасыщенного?

Это сделать достаточно просто. Если вещество — твердое, то в насыщенном растворе можно увидеть осадок.

При этом экстрагент может загустевать, как, например, в насыщенном составе вода, в которую добавили сахар.

Но если изменить условия, повысить температуру, то он перестанет считаться насыщенным, так как при более высокой температуре максимальная концентрация этого вещества будет другой.

Теории взаимодействия компонентов растворов

Существует три теории относительно взаимодействия элементов в смеси: физическая, химическая и современная. Авторы первой — Сванте Август Аррениус и Вильгельм Фридрих Оствальд.

Они предположили, что вследствие диффузии частицы растворителя и растворённого вещества равномерно распределились по всему объему смеси, но взаимодействия между ними нет. Химическая теория, которую выдвинул Дмитрий Иванович Менделеев, ей противоположна.

Согласно ей, в результате химического взаимодействия между ними формируются неустойчивые соединения постоянного или переменного состава, которые называются сольваты.

В настоящее время используется объединенная теория Владимира Александровича Кистяковского и Ивана Алексеевича Каблукова. Она совмещает физическую и химическую. Современная теория гласит, что в растворе существуют как не взаимодействующие частицы веществ, так и продукты их взаимодействия — сольваты, существование которых доказывал Менделеев.

В случае, когда экстрагент — вода, их называют гидратами. Явление, при котором образуются сольваты (гидраты) носит имя сольватация (гидратация). Она воздействует на все физико-химические процессы и меняет свойства молекул в смеси.

Сольватация происходит благодаря тому, что сольватная оболочка, состоящая из тесно связанных с ней молекул экстрагента, окружает молекулу растворенного вещества.

Факторы, влияющие на растворимость веществ

Химический состав веществ. Правило «подобное притягивает подобное» распространяется и на реагенты. Схожие по физическим и химическим свойствам вещества могут взаимно растворяться быстрее. Например, неполярные соединения хорошо взаимодействуют с неполярными.

Вещества с полярными молекулами или ионным строением разводятся в полярных, например, в воде. В ней разлагаются соли, щёлочи и другие компоненты, а неполярные — наоборот. Можно привести простой пример. Для приготовления насыщенного раствора сахара в воде потребуется большее количество вещества, чем в случае с солью.

Как это понимать? Проще говоря, вы можете развести гораздо больше сахара в воде, чем соли.

Температура. Чтобы увеличить растворимость твердых веществ в жидкостях, нужно увеличить температуру экстрагента (работает в большинстве случаев). Можно продемонстрировать такой пример. Если положить щепотку хлорида натрия (соль) в холодную воду, то данный процесс займет много времени.

Если проделать то же самое с горячей средой, то растворение будет проходить гораздо быстрее. Это объясняется тем, что вследствие повышения температуры возрастает кинетическая энергия, значительное количество которой часто тратится на разрушение связей между молекулами и ионами твёрдого вещества.

Однако, когда повышается температура в случае с солями лития, магния, алюминия и щелочами, их растворимость понижается.

Давление. Этот фактор влияет только на газы. Их растворимость увеличивается при повышении давления. Ведь объём газов сокращается.

Изменение скорости растворения

Не стоит путать этот показатель с растворимостью. Ведь на изменение этих двух показателей влияют разные факторы.

Степень раздробленности растворяемого вещества.

Этот фактор влияет на растворимость твердых веществ в жидкостях. В цельном (кусковом) состоянии состав разводится дольше, чем тот, который разбит на мелкие куски. Приведем пример.

Цельный кусок соли будет растворяться в воде намного дольше, чем соль в виде песка.

Скорость помешивания. Как известно, этот процесс можно катализировать с помощью помешивания. Его скорость также важна, потому что чем она больше, тем быстрее растворится вещество в жидкости.

Для чего нужно знать растворимость твердых веществ в воде?

Прежде всего, подобные схемы нужны, чтобы правильно решать химические уравнения. В таблице растворимости есть заряды всех веществ. Их необходимо знать для правильной записи реагентов и составления уравнения химической реакции. Растворимость в воде показывает, может ли соль или основание диссоциировать.

Водные соединения, которые проводят ток, имеют в своем составе сильные электролиты. Есть и другой тип. Те, которые плохо проводят ток, считаются слабыми электролитами. В первом случае компоненты представляют собой вещества, полностью ионизованные в воде.

Тогда как слабые электролиты проявляют этот показатель лишь в небольшой степени.

Уравнения химической реакции

Есть несколько видов уравнений: молекулярный, полный ионный и краткий ионный. По сути последний вариант — сокращённая форма молекулярного. Это окончательный ответ. В полном уравнении записаны реагенты и продукты реакции. Теперь наступает очередь таблицы растворимости веществ.

Для начала надо проверить, является ли реакция осуществимой, то есть выполняется ли одно из условий проведения реакции. Их всего 3: образование воды, выделение газа, выпадение осадка. Если два первых условия не соблюдаются, нужно проверить последнее.

Для этого нужно посмотреть в таблицу растворимости и выяснить, есть ли в продуктах реакции нерастворимая соль или основание. Если оно есть, то это и будет осадок. Далее таблица потребуется для записи ионного уравнения.

Так как все растворимые соли и основания — сильные электролиты, то они будут распадаться на катионы и анионы. Далее сокращаются несвязанные ионы, и уравнение записывается в кратком виде. Пример:
  1. K2SO4+BaCl2=BaSO4↓+2HCl,
  2. 2K+2SO4+Ba+2Cl=BaSO4↓+2K+2Cl,
  3. Ba+SO4=BaSO4↓.

Таким образом, таблица растворимости веществ — одно из ключевых условий решения ионных уравнений.

Подробная таблица помогает узнать, сколько компонента нужно взять для приготовления насыщенной смеси.

Как пользоваться таблицей растворимости веществ?

Таблица растворимости веществ в воде — один из главных помощников химика. Она показывает, как различные вещества и соединения взаимодействуют с водой. Растворимость твердых веществ в жидкости — это показатель, без которого многие химические манипуляции невозможны.

Растворимость веществ

Таблица очень проста в использовании. В первой строке написаны катионы (положительно заряженные частицы), во второй — анионы (отрицательно заряженные частицы). Большую часть таблицы занимает сетка с определенными символами в каждой ячейке.

Это буквы «Р», «М», «Н» и знаки «-» и «?».

  • «Р» — соединение растворяется;
  • «М» — мало растворяется;
  • «Н» — не растворяется;
  • «-» — соединения не существует;
  • «?» — сведения о существовании соединения отсутствуют.

В этой таблице есть одна пустая ячейка — это вода.

Простой пример

Теперь о том, как работать с таким материалом. Допустим, нужно узнать растворима ли в воде соль — MgSo4 (сульфат магния). Для этого необходимо найти столбик Mg2+ и спускаться по нему до строки SO42-. На их пересечении стоит буква Р, значит соединение растворимо.

Заключение

Итак, мы изучили вопрос растворимости веществ в воде и не только. Без сомнений, эти знания пригодятся при дальнейшем изучении химии. Ведь растворимость веществ играет там важную роль. Она пригодится при решении и химических уравнений, и разнообразных задач.

Растворы, растворители и растворимость

Растворимость

Растворы (на латинском «solution«) – жидкие лекарственные формы, получаемые путем растворения жидких, твердых и газообразных веществ в соответствующем растворителе, предназначенные для наружного, внутреннего, парентерального применения.

Растворы имеют огромное значение в природе, науке и технике. Отличие растворов от других смесей в том, что частицы составных частей распределяются в нем равномерно, и в любом микрообъеме такой смеси состав будет одинаков.

Физическая теория растворов:

Основоположенниками были Вант Гофф, Оствальд, Лррениус, которые считали, что процесс растворения является результатом диффузии (процесс взаимного перемешивания веществ).

Химическая теория растворов:

В противоположность физической теории растворов — Д.И. Менделеев доказывал, что растворение является результатом химического взаимодействия растворенного вещества с молекулами воды и что правильнее определять раствор как однородную систему, которая состоит из частиц растворенного вещества, растворителя и продуктов их взаимодействия.

Современная физико-химическая теория растворов:

Ее предсказывал еще в 1906 г. Д. И. Менделеев, которую он описал в своем учебнике «Основы химии»: «Две указанные стороны растворения и гипотезы, до сих пор приложенные к рассмотрению растворов, хотя имеют отчасти различные исходные точки, но без всякого сомнения, по всей вероятности, приведут к общей теории растворов, потому что одни общие законы управляют как физическими, так и химическими явлениями».

Требования к растворителям:

  • Хорошая растворяющая способность
  • Инертность к растворенному веществу и аппаратуре;
  • Минимальная токсичность, огнеопасность;
  • Микробная устойчивость;
  • Растворитель должен получаться быстро и дешево, не иметь неприятного вкуса и запаха;
  • Должен быть фармакологически индифферентным.

Растворимость

Растворимость (определение растворимости) — способность вещества в смеси с одним или несколькими другими веществами образовывать растворы. Растворимость веществ различна. Существует таблица в Государственной Фармакопее характеризующая растворимость лекарственных веществ в зависимости от количества растворителя.

Условный термин Количество растворителя, необходимое для растворения 1,0  вещества, мл
Очень легко растворим До 1
Легко растворим От 1 до 10
Растворим От 10 до 30
Умеренно растворим От 30 до 100
Мало растворим От 100 до 1000
Очень мало растворим От 1000 до 10000
Практически нерастворим От 10000

Растворимость зависит от:

  • Температуры при которой происходит растворение (для большинства веществ растворимость при повышении температуры увеличивается, исключение составляет кальция глицерофосфат, его растворимость уменьшается при повышении температуры);- Свойств растворителя (подобное растворяется в подобном);
  • От предела растворимости. Каждое вещество имеет свой предел растворимости (ПР).

Предел растворимости – наибольшее количество лекарственного вещества, которое может раствориться в данном растворителе при данной температуре.

В зависимости от количества растворенного вещества растворы делятся на три группы:

  1. Ненасыщенные – не достигнут предел растворимости;
  2. Насыщенные – достигнут предел растворимости;
  3. Перенасыщенные – предел растворимости превышен (данные растворы готовят при нагревании, но при охлаждении избыток вещества выпадает в осадок).

В медицинской практике используются в основном ненасыщенные растворы.

Процессы ускоряющие растворимость

Некоторые вещества растворяются медленно, хотя в значительных количествах, с целью ускорения растворения таких веществ прибегают к следующим приемам:

1) Растворению при нагревании или использование горячего растворителя:

  • горячий растворитель используется при приготовлении растворов сульфацила натрия, борной кислоты, растворов глюкозы в больших концентрациях, перманганата калия;- масляные, глицериновые растворы готовят при нагревании;
  • фурацилин растворяют при нагревании раствора на открытом огне.

2) Перед растворением вещества измельчают (кристаллогидраты — магния сульфат, натрия тетраборат, меди сульфат);

3) Перемешивание;

4) Вещества помещают в верхний слой растворителя (протаргол, йод).

Факторы растворимости

Растворимость

Растворимость — это  свойство вещества образовывать с различными растворителями гомогенные смеси.

Как мы уже упоминали, количество растворяемого вещества, необходимое для получения насыщенного раствора и определяет растворимость этого вещества.

В связи с этим  растворимость имеет ту же меру, что и состав, например, массовая доля растворенного вещества в его насыщенном растворе или количество растворенного вещества в  его насыщенном  растворе.

Все вещества с точки зрения его растворимости можно классифицировать на:

  • Хорошо растворимые – в 100 г воды способно раствориться более 10 г. вещества.
  • Малорастворимые — в 100 г воды способно раствориться менее 1 г. вещества.
  • Нерастворимые — в 100 г воды способно раствориться менее 0,01 г. вещества.

Известно, что если полярность растворяемого вещества схожа с полярностью растворителя, то оно скорее всего растворится. Если же полярности разные, то с большой долей вероятности раствора не получится. Почему же так происходит?

Полярный растворитель – полярное растворяемое вещество.

Для примера опишем раствор поваренной соли в воде. Как мы уже знаем, молекулы воды имеют полярную природу с частичным положительным зарядом на каждом атоме водорода и частичным отрицательным – на атоме кислорода. А твердые ионные вещества, вроде хлорида натрия, содержат катионы и анионы.

Поэтому, когда  поваренную соль помещают в воду, частичный положительный заряд на атомах водорода молекул воды притягивается отрицательно заряженным ионом хлора в NaCl. Аналогично, частичный отрицательный заряд на атомах кислорода молекул воды притягивается положительно заряженным ионом натрия в NaCl.

И, поскольку притяжение молекул воды для ионов натрия и хлора сильнее взаимодействия, удерживающего их вместе, соль растворяется.

Неполярный растворитель – неполярное растворяемое вещество.

Попробуем растворить кусочек тетрабромида углерода в тетрахлориде углерода. В твердом состоянии молекулы тетрабромида углерода удерживаются вместе благодаря очень слабому дисперсионному взаимодействию. При помещению его в тетрахлорид углерода его молекулы будут располагаться более хаотично, т.е. увеличивается энтропия системы и соединение растворится.

Равновесия при растворении

Рассмотрим раствор малорастворимого соединения. Для того, чтобы между твердым веществом и его раствором установилось равновесие, раствор должен быть насыщенным и соприкасаться с нерастворившейся частью твердого вещества.

Например, пусть равновесие установилось в насыщенном растворе хлорида серебра:

AgCl(тв)=Ag+(водн.) + Cl—(водн.)

Рассматриваемое соединение является ионным и в растворенном виде присутствует в виде ионов. Нам уже известно, что в гетерогенных реакциях концентрация твердого вещества остается постоянной, что позволяет включить ее в константу равновесия. Поэтому выражение для константы равновесия будет выглядеть следующим образом:

K = [Ag+][ Cl—]

Такая константа называется произведением растворимости ПР, при условии, что концентрации выражаются в моль/л.

ПР = [Ag+][ Cl—]

Произведение растворимости равно произведению молярных концентраций ионов, участвующих в равновесии, в степенях, равных соответствующим стехиометрическим коэффициентам в уравнении равновесия.

Следует отличать понятие растворимости и произведения растворимости.  Растворимость вещества может меняться при добавлении в раствор еще какого-либо вещества, а произведение растворимости не зависит от присутствия в растворе дополнительных веществ.

Хотя эти две величины взаимосвязаны, что позволяет зная одну величину, вычислить другую.

Зависимость растворимости от температуры и давления

Вода играет важную роль в нашей жизни, она способна растворять большое количество веществ, что имеет большое значение для нас. Поэтому основное внимание уделим именно водным растворам.

Растворимость газов повышается при росте давления газа над растворителем, а растворимость твердых и жидких веществ зависит от давления несущественно.

Уильям Генри впервые пришел к выводу, что количество газа, которое растворяется  при постоянной температуре в заданном объеме жидкости, прямо пропорциональна его давлению. Данное утверждение известно как закон Генри и выражается оно следующим соотношением:

С = k·P,

где С – растворимость газа в жидкой фазе

Р – давление газа над раствором

k – постоянная Генри

Влияние температуры на растворимость зависит от изменения энтальпии, которое происходит при процессе растворения. При протекании эндотермического процесса происходит увеличение растворимости с ростом температуры.

Это следует из уже известного нам принципа Ле – Шателье: если изменить одно из условий, при котором система находится в состоянии равновесия – концентрацию, давление или температуру, — то равновесие сместится в направлении той реакции, которая противодействует этому изменению.

Представим, что мы имеем дело с раствором, находящимся в равновесии с частично растворившимся веществом. И этот процесс является эндотермическим, т.е. идет с поглощением теплоты из вне, тогда:

Вещество + растворитель + теплота = раствор

Согласно принципу Ле – Шателье,  при эндотермическом процессе, равновесие смещается в направлении, способствующее уменьшению поступления теплоты, т.е. вправо. Таким образом, растворимость увеличивается. Если же процесс экзотермический, то повышение температуры приводит к уменьшению растворимости.

Известно, что существуют растворы жидкостей в жидкостях. Некоторые из них могут растворяться друг в друге в неограниченных количествах, как вода и этиловый спирт, а другие — растворяются лишь частично.

Так, если попробовать растворить четыреххлористый углерод в воде, то при этом образуются два слоя: верхний — насыщенный раствор воды в четыреххлористом углероде и нижний — насыщенный раствор четыреххлористого углерода в воде. При повышении температуры, в основном, взаимная растворимость таких жидкостей увеличивается.

Это происходит до тех пор, пока не будет достигнута критическая температура, при которой обе жидкости смешиваются в любых пропорциях. От давления растворимость жидкостей практически не зависит.

При вводе в смесь, состоящую из двух несмешивающихся между собой жидкостей, вещества, которое может растворяться в любой из этих двух жидкостей, то его распределение между этими  жидкостями будет пропорционально растворимости в каждой из них.

Т.е., согласно закону распределения вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:

С1/С2 = К,

где С1 и С2 – концентрации вещества в двух жидкостях

К – коэффициент распределения.

Таблица Обозначения растворимости фармацевтических субстанций и вспомогательных веществ

Растворимость вещества (в пересчете на 1 г вещества) выражают в следующих терминах, приведенных в таблице.

Термин Примерное количество растворителя (мл), необходимое для растворения 1 г вещества
Очень легко растворим до 1 включительно
Легко растворим от 1 до 10 включительно
Растворим от 10 до 30 включительно
Умеренно растворим от 30 до100 включительно
Мало растворим от 100 до 1000 включительно
Очень мало растворим от 1000 до 10 000 включительно
Практически нерастворим более 10 000

Вещество считают растворившимся, если в растворе при наблюдении в проходящем свете не обнаруживаются частицы вещества. В растворе могут присутствовать следовые количества физических примесей, например, таких как волокна фильтровальной бумаги. Для веществ, образующих при растворении опалесцирующие растворы, соответствующее указание должно быть приведено в фармакопейной статье.

Термин «смешивается с…» используется для характеристики жидкостей, смешивающихся с указанным растворителем во всех соотношениях.

Если указано, что вещество растворимо в жирных маслах, то имеется в виду, что оно растворимо в любом масле, относящемся к классу жирных масел.

Методика определения растворимости

К навеске растертого в тонкий порошок вещества прибавляют отмеренное количество растворителя и непрерывно встряхивают в течение 10 мин при (20 ± 2) ºC.

Для медленно растворимых веществ, требующих для своего растворения более 10 мин, допускается нагревание на водяной бане до 30 ºC. Наблюдение производят после охлаждения раствора до комнатной температуры и энергичного встряхивания в течение 1 – 2 мин.

Условия растворения медленно растворимых веществ указывают в фармакопейных статьях.

Для веществ с неизвестной растворимостью испытание проводят по следующей методике.

К 1,0 г растертого вещества прибавляют 1,0 мл растворителя и проводят растворение, как описано выше. Если вещество полностью растворилось, оно очень легко растворимо.

Если вещество растворилось не полностью, то к 100 мг растертого вещества прибавляют 1,0 мл растворителя и проводят растворение, как описано выше. Если вещество полностью растворилось, оно легко растворимо.

Если вещество растворилось не полностью, то добавляют 2,0 мл растворителя и продолжают растворение. Если вещество полностью растворилось, оно растворимо.

Если вещество растворилось не полностью, то добавляют 7,0 мл растворителя и продолжают растворение. Если вещество полностью растворилось, оно умеренно растворимо.

Если вещество растворилось не полностью, то к 10 мг растертого вещества прибавляют 10,0 мл растворителя и проводят растворение, как описано выше. Если вещество полностью растворилось, оно мало растворимо.

Если вещество растворилось не полностью, то к 10 мг растертого вещества прибавляют 100 мл растворителя и проводят растворение, как описано выше. Если вещество полностью растворилось, оно очень мало растворимо.

Если вещество не растворилось, оно практически нерастворимо в данном растворителе.

Для веществ с известной растворимостью испытание проводят по описанной выше методике, но только для крайних значений, относящихся к указанному термину. Например, если вещество растворимо, то 100 мг растертого вещества не должны растворяться в 1,0 мл растворителя, но должны раствориться полностью в 3,0 мл растворителя.

Растворимость

Растворимость

Раствори́мость — способность вещества образовывать с другими веществами однородные системы — растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц.

Растворимость выражается концентрацией растворённого вещества в его насыщенном растворе либо в процентах, либо в весовых или объёмных единицах, отнесённых к 100 г или 100 см³ (мл) растворителя (г/100 г или см³/100 см³). Растворимость газов в жидкости зависит от температуры и давления.

Растворимость жидких и твёрдых веществ — практически только от температуры. Все вещества в той или иной степени растворимы в растворителях. В случае, когда растворимость слишком мала для измерения, говорят, что вещество нерастворимо.

Зависимость растворимости веществ от температуры выражается с помощью кривых растворимости. По кривым растворимости производят различные расчёты. Например, можно определить массу вещества, которое выпадет в осадок из насыщенного раствора при его охлаждении.

Процесс выделения твёрдого вещества из насыщенного раствора при понижении температуры называется кристаллизацией. Кристаллизация играет огромную роль в природе — приводит к образованию некоторых минералов, участвует в процессах, протекающих в горных породах.

Способы выражения характеристик растворимости

Характеристики растворимости подразделяются на качественные и количественные.

Качественные характеристики определяют мнение исследователя в отношении растворимости данного вещества — хорошо растворимо, плохо растворимо, мало растворимо, нерастворимо и т. п., и являются субъективными. Попытка сделать их более объективными была сделана в Государственной фармакопее СССР для обозначения растворимости лекарственных средств, но она не получила распространения.

Количественные характеристики определяют количество вещества, растворённого в данном количестве растворителя при данных условиях и обычно имеют размерности концентрации (моль/л, г/100 г растворителя, г/100 г раствора, г/кг растворителя, мольная доля и т. д.).

Качественная и количественная растворимость приводится в справочной литературе.

Влияние условий на растворимость

Для определения качественной растворимости часто используется эмпирическое правило «подобное растворяется в подобном». Это правило разные источники объясняют немного по разному: полярные вещества растворяются в полярных растворителях, вещества имеющие гидроксильные группы хорошо растворяются в растворителях с гидроксильными группами и т. п.

Растворимость зависит от

  • растворяемого вещества,
  • растворителя,
  • температуры,
  • давления,
  • наличия в растворителе других веществ.

Растворимость большинства газов растет с ростом давления и уменьшается с ростом температуры. Для твёрдых и жидких веществ влияние давления на растворимость менее значимо, чем для газов.

Температура имеет различное влияние на различные системы «растворяемое вещество — растворитель», но в большинстве случаев при увеличении температуры растёт растворимость (обратной зависимостью обладают, например, многие соли кальция).

Так как растворяемое вещество часто увеличивает температуру кипения растворителя, растворимость при атмосферном давлении может быть измерена и выше температуры кипения растворителя.

При повышенном давлении и температуре растворимость может сильно увеличиваться (например, в воде при высоком давлении и температуре относительно хорошо растворяются углеводороды и кварц, которые почти нерастворимы при обычных условиях).

Наличие в растворителе других веществ может сильно влиять на растворимость.

Примеры:

  1. добавление в водный раствор неполярных веществ солей может привести к выделению неполярного вещества в осадок, за счет эффекта высаливания,
  2. наличие растворённого кислорода сильно влияет на растворимость ртути в воде за счет эффектов поверхностного окисления,
  3. наличие небольшого количества влаги в абсолютном этаноле может сильно изменить растворимость неполярных веществ.

Энергетические эффекты при растворении

Растворение веществ часто происходит с разогреванием или охлаждением раствора.

Способы измерения растворимости

Самым старым способом измерения растворимости является растворение вещества до его выпадения в осадок, выдерживание такой смеси при определенной температуре, отделение осадка и вычисление растворившегося вещества.

В современных условиях для измерения очень малых значений растворимости часто пользуются хроматографическими системами.

При измерениях растворимости важно учесть все факторы, которые могут повлиять на растворимость.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть