Поверхностное натяжение

SA. Поверхностное натяжение

Поверхностное натяжение

Наиболее характерным свойством жидкости, отличающим ее от газа, является то, что на границе с газом жидкость образует свободную поверхность, наличие которой приводит к возникновению явлений особого рода, называемых поверхностными. Своим возникновением они обязаны особым физическим условиям, в которых находятся молекулы вблизи свободной поверхности.

На каждую молекулу жидкости действуют силы притяжения со стороны окружающих ее молекул, расположенных от нее на расстоянии порядка 10-9 м (радиус молекулярного действия). На молекулу M1, расположенную внутри жидкости (рис. 1), действуют силы со стороны таких же молекул, и равнодействующая этих сил близка к нулю.

Рис. 1

Для молекул M2 равнодействующие сил отличны от нуля и направлены внутрь жидкости, перпендикулярно к ее поверхности. Таким образом, все молекулы жидкости, находящиеся в поверхностном слое, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость (молекулярное давление).

Чтобы переместить молекулу M3, расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией.

Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности. Пусть площадь свободной поверхности изменилась на ΔS, при этом поверхностная энергия изменилась на (~Delta W_p = sigma cdot Delta S), где σ — коэффициент поверхностного натяжения. Так как для этого изменения необходимо совершить работу

(~A = Delta W_p ,) то (~A = sigma cdot Delta S .)

Отсюда (~sigma = dfrac{A}{Delta S}) .

Единицей коэффициента поверхностного натяжения в СИ является джоуль на квадратный метр (Дж/м2).

Коэффициент поверхностного натяжения — величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на 1 м2 при постоянной температуре .

Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности. Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, т.е. все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме.

Например, капля жидкости в состоянии невесомости имеет сферическую форму.

Поверхностное натяжение

Свойство поверхности жидкости сокращаться можно истолковать как существование сил, стремящихся сократить эту поверхность. Молекула M1 (рис.

2), расположенная на поверхности жидкости, взаимодействует не только с молекулами, находящимися внутри жидкости, но и с молекулами, находящимися на поверхности жидкости, расположенными в пределах сферы молекулярного действия.

Для молекулы M1 равнодействующая (~vec R) молекулярных сил, направленных вдоль свободной поверхности жидкости, равна нулю, а для молекулы M2, расположенной у границы поверхности жидкости, (~vec R e 0) и (~vec R) направлена по нормали к границам свободной поверхности и по касательной к самой поверхности жидкости.

Рис. 2

Равнодействующая сил, действующих на все молекулы, находящиеся на границе свободной поверхности, и есть сила поверхностного натяжения. В целом она действует так, что стремится сократить поверхность жидкости.

Можно предположить, что сила поверхностного натяжения (~vec F) прямо пропорциональна длине l границы поверхностного слоя жидкости, ведь на всех участках поверхностного слоя жидкости молекулы находятся в одинаковых условиях:

(~F sim l .)

Действительно, рассмотрим вертикальный прямоугольный каркас (рис. 3, а, б), подвижная сторона которого уравновешена. После извлечения рамки из раствора мыльной пленки подвижная часть перемещается из положения 1 в положение 2.

Учитывая, что пленка представляет собой тонкий слой жидкости и имеет две свободные поверхности, найдем работу, совершаемую при перемещении поперечины на расстояние h = a1 ⋅ a2: A = 2F⋅h, где F — сила, действующая на каркас со стороны каждого поверхностного слоя.

С другой стороны, (~A = sigma cdot Delta S = sigma cdot 2l cdot h).

Рис. 3

Следовательно, (~2F cdot h = sigma cdot 2l cdot h Rightarrow F = sigma cdot l), откуда (~sigma = dfrac Fl).

Согласно этой формуле единицей коэффициента поверхностного натяжения в СИ является ньютон на метр (Н/м).

Коэффициент поверхностного натяжения σ численно равен силе поверхностного натяжения, действующей на единицу длины границы свободной поверхности жидкости. Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей. При увеличении температуры он уменьшается.

  • При критической температуре, когда исчезает различие между жидкостью и паром, σ = 0.

Примеси в основном уменьшают (некоторые увеличивают) коэффициент поверхностного натяжения.

Таким образом, поверхностный слой жидкости представляет собой как бы эластичную растянутую пленку, охватывающую всю жидкость и стремящуюся собрать ее в одну «каплю». Такая модель (эластичная растянутая пленка) позволяет определять направление сил поверхностного натяжения.

Например, если пленка под действием внешних сил растягивается, то сила поверхностного натяжения будет направлена вдоль поверхности жидкости против растяжения. Однако это состояние существенно отличается от натяжения упругой резиновой пленки.

Упругая пленка растягивается за счет увеличения расстояния между частицами, при этом сила натяжения возрастает, при растяжении же жидкой пленки расстояние между частицами не меняется, а увеличение поверхности достигается в результате перехода молекул из толщи жидкости в поверхностный слой.

Поэтому при увеличении поверхности жидкости сила поверхностного натяжения не изменяется (она не зависит от площади поверхности).

Смачивание

В случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекул жидкости с молекулами твердого тела.

Смачивание — явление, возникающее вследствие взаимодействия молекул жидкости с молекулами твердых тел.

Если силы притяжения между молекулами жидкости и твердого тела больше сил притяжения между молекулами жидкости, то жидкость называют смачивающей; если силы притяжения жидкости и твердого тела меньше сил притяжения между молекулами жидкости, то жидкость называют несмачивающей это тело.

Одна и та же жидкость может быть смачивающей и несмачивающей по отношению к разным телам. Так, вода смачивает стекло и не смачивает жирную поверхность, ртуть не смачивает стекло, а смачивает медь.

Смачивание или несмачивание жидкостью стенок сосуда, в котором она находится, влияет на форму свободной поверхности жидкости в сосуде.

Если большое количество жидкости налито в сосуд, то форма ее поверхности определяется силой тяжести, которая обеспечивает плоскую и горизонтальную поверхность.

Однако у самых стенок явление смачивания и несмачивания приводят к искривлению поверхности жидкости, так называемые краевые эффекты.

Количественной характеристикой краевых эффектов служит краевой угол θ — угол между плоскостью касательной к поверхности жидкости и поверхностью твердого тела.

Внутри краевого угла всегда находится жидкость (рис. 4, а, б). При смачивании он будет острым (рис. 4, а), а при несмачивании – тупым (рис. 4, б).

В школьном курсе физики рассматривают только полное смачивание (θ = 0º) или полное несмачивание (θ = 180º).

Рис. 4

Силы, связанные с наличием поверхностного натяжения и направленные по касательной к поверхности жидкости, в случае выпуклой поверхности дают результирующую, направленную внутрь жидкости (рис. 5, а). В случае вогнутой поверхности результирующая сила направлена, наоборот, в сторону газа, граничащего с жидкостью (рис. 5, б).

Рис. 5.

Если смачивающая жидкость находится на открытой поверхности твердого тела (рис. 6, а), то происходит ее растекание по этой поверхности. Если на открытой поверхности твердого тела находится несмачивающая жидкость, то она принимает форму, близкую к шаровой (рис. 6, б).

Рис. 6

Смачивание имеет важное значение как в быту, так и в промышленности. Хорошее смачивание необходимо при крашении, стирке, обработке фотоматериалов, нанесении лакокрасочных покрытий, при склеивании материалов, при пайке, во флотационных процессах (обогащение руд ценной породой). И наоборот, при сооружении гидроизоляционных устройств необходимы материалы, не смачиваемые водой.

Капиллярные явления

Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском.

У смачивающей жидкости образуется вогнутый мениск (рис. 7, а), а у несмачивающей — выпуклый (рис. 7, б).

Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Рис. 7

Силы поверхностного натяжения создают дополнительное (лапласово) давление под искривленной поверхностью жидкости.

Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости (рис.

8, а), и давление под вогнутой поверхностью жидкости меньше, чем под плоской, на (~p = dfrac{2 sigma }{R}).

Если поверхность жидкости выпуклая, то сила поверхностного натяжения направлена внутрь жидкости (рис. 8, б), и давление под выпуклой поверхностью жидкости больше, чем под плоской, на ту же величину.

  • а
  • б

Рис. 8

  • Эта формула является частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

(~p = sigma cdot left( dfrac{1}{R_1} + dfrac{1}{R_2}
ight),)

где R1 и R2 — радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости.

Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

Для цилиндрической поверхности (R1 = l; R2 = ∞) избыточное давление (~p = dfrac{sigma}{R}) .

Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается (если жидкость смачивающая) или опускается (если жидкость несмачивающая) (рис. 9, а, б), так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет.

Рис. 9

Явления изменения высоты уровня жидкости в капиллярах по сравнению с уровнем жидкости в широких сосудах называются капиллярными явлениями.

Жидкость в капилляре поднимается или опускается на такую высоту h, при которой сила гидростатического давления столба жидкости уравновешивается силой избыточного давления, т.е.

(~dfrac{2 sigma}{R} =
ho cdot g cdot h .)

Откуда (~h = dfrac{2 sigma}{
ho cdot g cdot R}). Если смачивание не полное θ ≠ 0 (θ ≠ 180°), то, как показывают расчеты, (~h = dfrac{2 sigma}{
ho cdot g cdot R} cdot cos heta).

Капиллярные явления весьма распространены. Поднятие воды в почве, система кровеносных сосудов в легких, корневая система у растений, фитиль и промокательная бумага — капиллярные системы.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 178-184.
  2. Википедия
  3. Открытая Физика

Поверхностное натяжение, формулы и примеры

Поверхностное натяжение

Опишем механизм возникновения поверхностного натяжения в жидкостях. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Рассмотрим две молекулы A и B.

Молекула A находится внутри жидкости, молекула B – на ее поверхности (рис. 1). Молекула A окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу A со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или, другими словами, их равнодействующая равна нулю.

Молекула B с одной стороны окружена молекулами жидкости, а с другой стороны – молекулами газа, концентрация которых значительно ниже, чем концентрация молекул жидкости.

Так как со стороны жидкости на молекулу B действует гораздо больше молекул, чем со стороны газа, равнодействующая всех межмолекулярных сил уже не будет равна нулю и будет направлена внутрь объема жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил. А это означает, что молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией, которая называется поверхностной энергией.

Очевидно, чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

где поверхностная энергия жидкости, площадь свободной поверхности жидкости и коэффициент пропорциональности, который называется коэффициентом поверхностного натяжения.

Коэффициент поверхностного натяжения

Единицей измерения коэффициента поверхностного натяжения в системе СИ является .

Коэффициент поверхностного натяжения жидкости зависит: 1) от природы жидкости (у «летучих жидкостей таких, как эфир, спирт, бензин, коэффициент поверхностного натяжения меньше, чем у «нелетучих – воды, ртути); 2) от температуры жидкости (чем выше температура, тем меньше поверхностное натяжение); 3) от свойств газа, который граничит с данной жидкостью; 4) от наличия поверхностно-активных веществ таких, как мыло или стиральный порошок, которые уменьшают поверхностное натяжение. Также следует отметить, что коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости.

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Вследствие поверхностного натяжения жидкость всегда принимает форму с минимальной поверхностью.

Если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать форму сферы, как, например, капля воды, мыльный пузырь. Также будет вести себя вода в невесомости.

Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называютсясилами поверхностного натяжения.

Поэтому коэффициент поверхностного натяжения можно также определить как модуль силы поверхностного натяжения, действующей на единицу длины контура, ограничивающего свободную поверхность жидкости:

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т.е.

от того, как пленка деформирована), а силы поверхностного натяженияне зависятот площади поверхности жидкости. Если положить швейную иглу на поверхность воды, поверхность прогнется и не даст ей утонуть.

Действием сил поверхностного натяжения можно объяснить скольжение легких насекомых таких, например, как водомерки, по поверхности водоемов (рис.2). Лапка водомерки деформирует водную поверхность, увеличивая тем самым ее площадь.

Вследствие этого возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, компенсируя при этом силу тяжести.

На действии сил поверхностного натяжения основан принцип действия пипетки (рис.3). Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности.

Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться.

При нажатии на резиновый колпачок пипетки, создается дополнительное давление, которое помогает силе тяжести, в результате чего капля падает вниз.

Примеры решения задач

Поверхностное натяжение воды

Поверхностное натяжение

Поверхностное натяжение воды – одно из самых интересных свойств воды.

Приведем несколько определений этого термина из компетентных источников.

Поверхностное натяжение, это …

Поверхностное натяжение (П. н.) — это сила притяжения, с которой каждый участок поверхностной пленки (свободной поверхности жидкости или же любой поверхности раздела двух фаз) действует на смежные части поверхности. Внутреннее давление и П. н. Поверхностный слой жидкости ведет себя, как эластическая растянутая мембрана. Согласно представлению, развитому гл. обр.

Лапласом (Laplace), это свойство жидких поверхностей зависит от «молекулярных сил притяжения, быстро убывающих с расстоянием. Внутри однородной жидкости силы, действующие на каждую молекулу со стороны молекул, ее окружающих, взаимно уравновешиваются.

Но вблизи поверхности равнодействующая сил молекулярного притяжения направлена внутрь; она стремится втянуть поверхностные молекулы в толщу жидкости. Вследствие этого весь поверхностный слой подобно упругой растянутой пленке оказывает на внутреннюю массу жидкости в направлении, нормальном к поверхности, весьма значительное давление.

По подсчетам это «внутреннее давление», под которым находится вся масса жидкости, достигает нескольких тысяч атмосфер. Оно возрастает на выпуклой поверхности и убывает на вогнутой. В силу стремления свободной энергии к минимуму всякая жидкость стремится принять форму, при к-рой ее поверхность — место действия поверхностных сил — имеет наименьшую возможную величину.

Чем больше поверхность жидкости, тем большую площадь занимает ее поверхностная пленка, тем значительнее запас свободной поверхностной энергии, освобождающейся при ее сокращении. Натяжение, с которым каждый участок сокращающейся поверхностной пленки действует на смежные части (в направлении, параллельном свободной поверхности), называется П. н.

В отличие от эластического напряжения упругого растянутого тела, П. н. не ослабевает по мере сжатия поверхностной пленки. … Поверхностное натяжение равняется работе, которую нужно совершить, чтобы увеличить свободную поверхность жидкости на единицу. П. н. наблюдается на границе жидкости с газом (также и с собственным паром), с другой несмешивающейся жидкостью или же с твердым телом.

Точно так же и твердое тело имеет П. н. на границе с газами и жидкостями. В отличие от П. н.

, к-рое жидкость (или твердое тело) имеет на своей свободной поверхности, граничащей с газообразной средой, натяжение на внутренней границе двух жидких (или жидкой и твердой) фаз удобно обозначить специальным термином—принятым в немецкой литературе, термином «пограничное натяжение» (Grenzflachenspannung). Если в жидкости растворено вещество, понижающее ее П. н., то свободная энергия уменьшается не только путём уменьшения величины пограничной поверхности, но и посредством адсорпции: поверхностно активное (или капилярноактивное) вещество собирается в повышенной концентрации в поверхностном слое …

Большая медицинская энциклопедия. 1970

Подытожить все вышесказанное можно таким образом – молекулы, которые находятся на поверхности какой либо жидкости, в том числе и воды, притягиваются остальными молекулами внутрь жидкости, вследствие чего и возникает поверхностное натяжение. Подчеркнем, что это упрощенное понимание этого свойства.

Для лучшего понимания этого свойства приведем несколько проявлений поверхностного натяжения воды в реальной жизни:

  • Когда мы видим как вода с кончика крана капает а не льётся — это поверхностное натяжение воды;
  • Когда капля дождя в полете принимает округлую слегка вытянутую форму — это поверхностное натяжение воды;
  • Когда вода на водонепроницаемой поверхности принимает шарообразную форму — это поверхностное натяжение воды;
  • Рябь, возникающая при дуновении ветра на поверхности водоемов, так же является проявлением поверхностного натяжения воды;
  • Вода в космосе принимает шарообразную форму благодаря поверхностному натяжению;
  • Насекомое водомерка держится на поверхности воды благодаря именно этому свойству воды;
  • Если на поверхность воды аккуратно положить иглу, она будет плавать;
  • Если в стакан поочерёдно налить жидкости разной плотности и цвета, мы увидим , что они не смешиваются;
  • Радужные мыльные пузыри, так же являются прекрасным проявление поверхностного натяжения.

Коэффициент поверхностного натяжения воды

Коэффициент поверхностного натяжения зависит от температуры жидкости. Приведем его значения при различных температурах воды.

  • При температуре 0°C  — 75,64 σ, 10–3 Ньютон / Метр;
  • При температуре  10°C — 74,22 σ, 10–3 Ньютон / Метр;
  • При температуре  20°C — 72,25 σ, 10–3 Ньютон / Метр;
  • При температуре  30°C — 71,18 σ, 10–3 Ньютон / Метр;
  • При температуре 40°C — 69,56 σ, 10–3 Ньютон / Метр;
  • При температуре 50°C — 67,91 σ, 10–3 Ньютон / Метр;
  • При температуре  60°C — 66,18 σ, 10–3 Ньютон / Метр;
  • При температуре 70°C — 64,42 σ, 10–3 Ньютон / Метр;
  • При температуре 80°C — 62,61 σ, 10–3 Ньютон / Метр;
  • При температуре 90°C — 60,75 σ, 10–3 Ньютон / Метр;
  • При температуре 100°C — 58,85 σ, 10–3 Ньютон / Метр.

ДАТА СОЗДАНИЯ ПУБЛИКАЦИИ: Мар 13, 2016 18:49 Waterman
11.09.2014

Поверхностное натяжение жидкости

Поверхностное натяжение

Определение 1

Поверхностное натяжение – порыв жидкости уменьшить собственную свободную поверхность, то есть сократить избыток потенциальной энергии на границе разъединения с газообразной фазой.

Рисунок 1. Натяжение жидкости. Автор24 — интернет-биржа студенческих работ

Упругими характеристиками оснащены не только твердые физические тела, но и поверхность самой жидкости. Каждый в своей жизни видел, как растягивается мыльная пленка при небольшом выдувании пузырей.

Силы поверхностного натяжения, которые возникают в мыльной пленке, удерживают на определенный период времени воздух, аналогичному тому, как резиновая растянувшаяся камера сохраняет воздух в футбольном мяче.

Поверхностное натяжение появляется на границе раздела основных фаз, например, газообразной и жидкой, или жидкой и твердой. Это непосредственно обусловлено тем, что элементарные частицы поверхностного слоя жидкости всегда испытывают различную силу притяжения изнутри и снаружи.

Указанный физический процесс возможно рассматривать на примере капли воды, где жидкость движется себя так, как будто она находится в эластичной оболочке. Здесь атомы поверхностного слоя жидкого вещества притягиваются к собственным внутренним соседям сильнее, чем к внешним частицам воздуха.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Пример 1

Другой яркий пример – пленка любого нефтепродукта на воде. Здесь молекулы исследуемого объекта приближаются друг к другу слабее, чем к атомам воды, в итоге вещество растекается очень тонкой пленкой.

В целом поверхностное натяжение можно объяснить, как бесконечно малую или элементарную работу $sigma A$, которую необходимо совершить для увеличения общей площади поверхности жидкости на бесконечно малую величину $dS$ при неизменной температуре $dt$.

Механизм возникновения поверхностного натяжения в жидкостях

Рисунок 2. Скалярная положительная величина. Автор24 — интернет-биржа студенческих работ

Жидкость, в отличие от твердых тел и газов, не способна заполнить весь объем сосуда, в который она была помещена. Между паром и жидким веществом формируется определенная граница раздела, которая действует в особых условиях по сравнению с другой массой жидкости. Рассмотрим для более наглядного примера две молекулы $A$ и $B$.

Частица $A$ находится внутри самой жидкости, молекула $B$ – непосредственно на ее поверхности.

Первый элемент окружен другими атомами жидкости равномерно, поэтому действующие на молекулу силы со стороны попадающих в сферу межмолекулярного взаимодействия частиц всегда скомпенсированы, или, иными словами, их равнодействующая мощность равна нулю.

Молекула $B$ с одной стороны обрамлена молекулами жидкости, а с другой стороны –атомами газа, итоговая концентрация которых в значительной степени ниже, чем объединение элементарных частиц жидкости.

Так как со стороны жидкости на молекулу $B$ воздействует гораздо больше молекул, чем со стороны идеального газа, равнодействующую всех межмолекулярных сил уже невозможно приравнять нулю, так как этот параметр направлен внутрь объема вещества.

Таким образом, для того чтобы молекула из глубины жидкости оказалась в поверхностном слое, следует выполнить работу против нескомпенсированных сил. А это означает, что атомы приповерхностного уровня, по сравнению с частицами внутри жидкости, оснащены избыточной потенциальной энергией, которая носит название поверхностной энергии.

Коэффициент поверхностного натяжения

Рисунок 3. Поверхностное напряжение. Автор24 — интернет-биржа студенческих работ

Определение 2

Коэффициент поверхностного натяжения – это физический показатель, характеризующий определенную жидкость и численно равный соотношению поверхностной энергии к общей площади свободной среды жидкости.

В физике основной единицей измерения коэффициента поверхностного натяжения в концепции СИ является {N}/{m}.

Указанная величина напрямую зависит от:

  • природы жидкости (у «летучих элементах таких, как спирт, эфир, бензин, коэффициент поверхностного натяжения значительно меньше, чем у «нелетучих – ртути, воды);
  • температуры жидкого вещества (чем выше температура, тем меньше итоговое поверхностное натяжение);
  • свойств идеального газа, граничащий с данной жидкостью;
  • наличия стабильных поверхностно-активных элементов таких, как стиральный порошок или мыло, которые способны уменьшить поверхностное натяжение.

Замечание 1

Также следует отметить, что параметр поверхностного натяжения не зависит от начальной площади свободной среды жидкости.

Из механики также известно, что неизменным состояниям системы всегда соответствует минимальное значение ее внутренней энергии. Вследствие такого физического процесса жидкое тело часто принимает форму с минимальной поверхностью.

Если на жидкость не влияют посторонние силы или их действие крайне мало, ее элементы к форме сферы в виде капли воды или мыльного пузыря. Аналогичным образом начинают вести себя вода находясь в невесомости.

Жидкость движется так, как будто по касательной к ее основной поверхности действуют факторы, сокращающие данную среду. Эти силы называются силами поверхностного натяжения.

Следовательно, коэффициент поверхностного натяжения возможно также определить, как основной модуль силы поверхностного натяжения, который в общем действует на единицу длины начального контура, ограничивающего свободную среду жидкости.

Наличие указанных параметров делает поверхность жидкого вещества похожей на растянутую упругую пленку, с единственной разницей, что неизменные силы в пленке непосредственно зависят от площади ее системы, а сами силы поверхностного натяжения способны самостоятельно работать.

Если положить небольшую швейную иглу на поверхность воды, гладь прогнется и не даст ей утонуть.

Действием внешнего фактора можно описать скольжение легких насекомых таких, как водомерки, по всей поверхности водоемов. Лапка этих членистоногих деформирует водную поверхность, тем самым увеличивая ее площадь.

В результате этого возникает сила поверхностного натяжения, стремящаяся уменьшить подобное изменение площади. Равнодействующая сила будет всегда направлена исключительно вверх, компенсируя при этом действие тяжести.

Результат действия поверхностного натяжения

Под воздействием поверхностного натяжения небольшие количества жидких сред стремятся принять шарообразную форму, которая будет идеально соответствовать наименьшей величине окружающей среды. Приближение к шаровой конфигурации достигается тем больше, чем слабее начальные силы тяжести, так как у малых капель показатель силы поверхностного натяжения гораздо превосходит влияние тяжести.

Поверхностное натяжение считается одной из важнейших характеристик поверхностей раздела фаз. Оно непосредственно воздействует на формирование мелкодисперсных частиц физических тел и жидкостей при их разделении, а также на слияние элементов или пузырьков в туманах, эмульсиях, пенах, на процессы адгезии.

Замечание 2

Поверхностное натяжение устанавливает форму будущих биологических клеток и их основных частей.

Изменение сил данного физического процесса влияет на фагоцитоз и на процессы альвеолярного дыхания.

Благодаря этому явлению пористые вещества могут в течение длительного времени удерживать огромное количество жидкости даже из паров воздуха, Капиллярные явления, предполагающие изменения высоты уровня жидкости в капиллярах по сравнению с уровнем жидкости в более широком сосуде, весьма распространены. Посредством данных процессов обусловлено поднятие воды в почве, по корневой системе растений, движение биологических жидкостей по системе мелких канальцев и сосудов.

Химия нефти

Поверхностное натяжение

Поверхностным натяжением называется термодинамическая характеристика поверхности раздела фаз, определенная как работа обратимого изотермического образования единицы плошали этой поверхности. Для жидкости поверхностное натяжение рассматривается как сила, действующая на единицу длины контура поверхности и стремящаяся сократить поверхность до минимума при заданных объемах фаз.

Нефть — это нефтяная дисперсная система, состоящая из дисперсной фазы и дисперсионной среды.

Поверхность частицы дисперсной фазы (например, ассоциат асфальтенов, глобула воды и т. п.) обладает некоторым избытком свободной поверхностной энергии Fs, пропорциональной площади поверхности раздела фаз S:

Величина σ может рассматриваться не только как удельная поверхностная энергия, но и как сила, приложенная к единице длины контура, ограничивающего поверхность, направленная вдоль этой поверхности перпендикулярно контуру и стремящаяся эту поверхность стянуть или уменьшить. Эта сила носит название поверхностного натяжения.

Действие поверхностного натяжения можно наглядно представить в виде совокупности сил, стягивающих края поверхности к центру.

Длина каждой стрелочки вектора отражает величину поверхностного натяжения, а расстояние между ними соответствует принятой единице длины контура поверхности. В качестве размерности величины σ в равной мере используются как [Дж/м2] = 103 [эрг/см2], так и [Н/м] = 103 [дин/см].

В результате действия сил поверхностного натяжения жидкость стремится сократить свою поверхность, и если влияние силы земного притяжения незначительно, жидкость принимает форму шара, имеющего минимальную поверхность на единицу объема.

Поверхностное натяжение различно для разных групп углеводородов — максимально для ароматических и минимально для парафиновых. С увеличением молекулярной массы углеводородов оно повышается.

Большинство гетероатомных соединений, обладая полярными свойствами, имеют поверхностное натяжение ниже, чем углеводороды. Это очень важно, поскольку их наличие играет значительную роль в образовании водонефтяных и газонефтяных эмульсий и в последующих процессах разрушения этих эмульсий.

Параметры влияющие на поверхностное натяжение

Поверхностное натяжение существенно зависит от температуры и давления, а также от химического состава жидкости и соприкасающейся с ней фазы (газ или вода).

С повышением температуры поверхностное натяжение убывает и при критической температуре равно нулю. С увеличением давления поверхностное натяжение в системе газ — жидкость также снижается.

Поверхностное натяжение нефтепродуктов может быть найдено расчетным путем по уравнению:

или

Пересчет σ от одной температуры T0 к другой T можно проводить по соотношению:

Значения поверхностного натяжения для некоторых веществ.

Вещества, добавка которых к жидкости уменьшает ее поверхностное натяжение, называют поверхностно-активными веществами (ПАВ).

Поверхностное натяжение нефти и нефтепродуктов зависит от количества присутствующих в них поверхностно-активных компонентов (смолистых веществ, нафтеновых и других органических кислот и т. п.).

Нефтепродукты с малым содержанием поверхностно-активных компонентов имеют наибольшее значение поверхностного натяжения на границе с водой, с большим содержанием — наименьшее.

Хорошо очищенные нефтепродукты имеют высокое поверхностное натяжение на границе с водой.

Понижение поверхностного натяжения объясняется адсорбцией ПАВ на границе раздела фаз.

С увеличением концентрации добавляемого ПАВ поверхностное натяжение жидкости сначала интенсивно снижается, а затем стабилизируется, что свидетельствует о полном насыщении поверхностного слоя молекулами ПАВ.

Природными поверхностно-активными веществами, резко изменяющими поверхностное натяжение нефтей и нефтепродуктов, являются спирты, фенолы, смолы, асфальтены, различные органические кислоты.

С поверхностными силами на границе раздела твердой и жидкой фаз связаны явления смачивания и капиллярные явления, на которых основаны процессы миграции нефти в пластах, подъем керосина и масла по фитилям ламп и масленок и т. д.

Экспериментальное определение поверхностного натяжения

Для экспериментального определения поверхностного натяжения нефтей и нефтепродуктов применяются различные методы.

Первый метод (а) основан на измерении силы, необходимой для отрыва кольца от поверхности раздела двух фаз. Эта сила пропорциональна удвоенной силе окружности кольца. При капиллярном методе (б) измеряют высоту подъема жидкости в капиллярной трубке.

Недостатком его является зависимость высоты подъема жидкости не только от величины поверхностного натяжения, но и от характера смачивания стенок капилляра исследуемой жидкостью. Более точной разновидностью капиллярного метода является метод висячей капли (в), основанный на измерении массы капли жидкости, отрывающейся от капилляра.

На результаты измерения влияют плотность жидкости и размеры капли и не влияет угол смачивания жидкостью твердой поверхности. Этот метод позволяет определять поверхностное натяжение в сосудах высокого давления.

Наиболее распространенным и удобным способом измерения поверхностного натяжения является способ наибольшего давления пузырьков или капель (г), что объясняется простотой конструкции, высокой точностью и независимостью определения от смачивания.

Этот способ основан на том, что при выдавливании пузырька воздуха или капли жидкости из узкого капилляра в другую жидкость поверхностное натяжение σ на границе с той жидкостью, в которую выпускается капля, пропорционально наибольшему давлению, необходимому для выдавливания капли.

Поверхностное натяжение о входит в выражение для так называемого парахора П — величины, связывающей молекулярную массу М углеводородов и плотность их в жидкой фазе ρж и в парах ρп:

Парахор углеводородов зависит от структуры их молекул: с увеличением числа боковых цепей, двойных связей, ароматических и нафтеновых циклов величина парахора уменьшается. При одинаковой температуре кипения углеводородов парахор уменьшается в следующем порядке: парафины — олефины — нафтены — ароматические углеводороды.

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть