Внутренняя энергия

Формула внутренней энергии

Внутренняя энергия
Определение

Внутренней энергией тела (системы) называют энергию, которая связана со всеми видами движения и взаимодействия частиц, составляющих тело (систему), включая энергию взаимодействия и движения сложных частиц.

Из выше сказанного следует, что к внутренней энергии не относят кинетическую энергию движения центра масс системы и потенциальную энергию системы, вызванную действием внешних сил. Это энергия, которая зависит только от термодинамического состояния системы.

Внутреннюю энергию чаще всего обозначают буквой U. При этом бесконечно малое ее изменение станет обозначаться dU. Считается, что dU является положительной величиной, если внутренняя энергия системы растет, соответственно, внутренняя энергия отрицательна, если внутренняя энергия уменьшается.

Внутренняя энергия системы тел равна сумме внутренних энергий каждого отдельного тела плюс энергия взаимодействия между телами внутри системы.

Внутренняя энергия – функция состояния системы. Это означает, что изменение внутренней энергии системы при переходе системы из одного состояния в другое не зависит от способа перехода (вида термодинамического процесса при переходе) системы и равно разности внутренних энергий конечного и начального состояний:

Для кругового процесса полное изменение внутренней энергии системы равно нулю:

Для системы, на которую не действуют внешние силы и находящуюся в состоянии макроскопического покоя, внутренняя энергия – полная энергия системы.

Внутренняя энергия может быть определена только с точностью до некоторого постоянного слагаемого (U0), которое не определимометодами термодинамики.

Однако, данный факт не существенен, так как при использовании термодинамического анализа, имеют дело с изменениямивнутренней энергии, а не абсолютными ее величинами. Часто U_0 полагают равным нулю.

При этом в качестве внутренней энергии рассматривают еесоставляющие, которые изменяются в предлагаемых обстоятельствах.

Внутреннюю энергию считают ограниченной и ее граница (нижняя) соответствует T=0K.

Внутренняя энергия идеального газа

Внутренняя энергия идеального газа зависит только от его абсолютной температуры (T) и пропорциональна массе:

где CV – теплоемкость газа в изохорном процессе; cV — удельная теплоемкость газа в изохорном процессе; – внутренняя энергия, приходящаяся на единицу массы газапри абсолютном нуле температур. Или:

i – число степеней свободы молекулы идеального газа, v – число молей газа, R=8,31 Дж/(моль•К) – универсальная газовая постоянная.

Первое начало термодинамики

Как известно первое начало термодинамики имеет несколько формулировок. Одна из формулировок, которую предложил К.Каратеодори говорит о существовании внутренней энергии как составляющей полной энергии системы.

Она является функцией состояния,в простых системах зависящей от объема (V), давления (p), масс веществ (mi), которые составляют данную систему: .

В формулировке, которую дал Каратеодори внутренняяэнергия не является характеристической функцией своих независимых переменных.

В более привычных формулировках первого начала термодинамики, например, формулировке Гельмгольца внутренняя энергия системы вводится как физическая характеристика системы. При этом поведение системы определено законом сохранения энергии. Гельмгольц не определяет внутреннюю энергию как функцию конкретных параметров состояния системы:

– изменение внутренней энергии в равновесном процессе,Q – количество теплоты, которое получила система в рассматриваемом процессе, A – работа, которую система совершила.

Единицы измерения внутренней энергии

Основной единицей измерения внутренней энергии в системе СИ является: [U]=Дж

Примеры решения задач

Пример

Задание. Вычислите, на какую величину изменится внутренняя энергия гелия имеющего массу 0,1 кг, если его температура увеличилась на 20С.

Решение. При решении задачи считаем гелий одноатомным идеальным газом, тогда для расчетов можно применить формулу:

Так как мы имеем с одноатомным газом, то , молярную массу() возьмем из таблицы Менделеева( кг/моль). Масса газа в представленном процессене изменяется, следовательно, изменение внутренней энергии равно:

где

Все величины необходимые для вычислений имеются:

(Дж)

Ответ. (Дж)

Пример

Задание. Идеальный газ расширили в соответствии с законом, который изображен графиком на рис.1. от начального объема V0. При расширении объем сал равен . Каково приращение внутренней энергии газа в заданном процессе? Коэффициент адиабаты равен .

Решение. Исходя из рисунка, уравнение процесса можно представить аналитически как:

Показатель адиабаты связан с числом степеней свободы газа выражением:

Выразим число степеней свободыиз (2.2):

Приращение внутренней энергии для постоянной массы газа (см. Пример 1) найдем в соответствии с формулой:

Запишем уравнения состояний идеального газа для точек (1) и (2) рис.1:

Тогда приращение температуры, учитывая уравнение процесса и выражения (2.5), (2.6) найдем как:

Подставим в выражение для (2.4), получим:

Ответ.

Читать дальше: Формула времени.

Внутренняя энергия. — Гипермаркет знаний

Внутренняя энергия

Гипермаркет знаний>>Физика и астрономия>>Физика 10 класс>>Физика: Внутренняя энергия

Вступление

Термодинамика была создана в середине XIX в. после открытия закона сохранения энергии. В ее основе лежит понятие внутренняя энергия. С него мы и начнем. Предварительно остановимся на вопросе о том, какая связь существует между термодинамикой и молекулярно-кинетической теорией.

Термодинамика и статистическая механика

Первой научной теорией тепловых процессов была не молекулярно-кинетическая теория, а термодинамика. Она возникла при изучении оптимальных условий использования теплоты для совершения работы. Это произошло в середине XIX в., задолго до того, как молекулярно-кинетическая теория получила всеобщее признание.

Сейчас в науке и технике при изучении тепловых явлений используются как термодинамика, так и молекулярно-кинетическая теория. В теоретической физике молекулярно-кинетическую теорию называют статистической механикой. Термодинамика и статистическая механика изучают различными методами одни и те же явления и взаимно дополняют друг друга.

Главное содержание термодинамики состоит в двух основных ее законах, касающихся поведения энергии. Эти законы установлены опытным путем. Они справедливы для всех веществ независимо от их внутреннего строения.

Статистическая механика более глубокая и точная наука, чем термодинамика, но и более сложная. К ней прибегают в тех случаях, когда простые соотношения термодинамики оказываются недостаточными для объяснения наблюдаемых явлений.

Внутренняя энергия в молекулярно-кинетической теории

В середине XIX в. было доказано, что наряду с механической энергией макроскопические тела обладают еще и энергией, заключенной внутри самих тел. Эта внутренняя энергия входит в баланс энергетических превращений в природе. После открытия внутренней энергии был сформулирован закон сохранения и превращения энергии.

Что такое внутренняя энергия?

Когда скользящая по льду шайба останавливается под действием силы трения, то ее механическая (кинетическая) энергия не просто исчезает, а передается беспорядочно движущимся молекулам льда и шайбы. Неровности поверхностей трущихся тел деформируются при движении, и интенсивность беспорядочного движения молекул возрастает. Оба тела нагреваются, что и означает увеличение их внутренней энергии.

Нетрудно наблюдать и обратный переход внутренней энергии в механическую. Если нагревать воду в пробирке, закрытой пробкой, то внутренняя энергия воды и внутренняя энергия пара начнут возрастать.

Давление пара увеличится настолько, что пробка будет выбита. Кинетическая энергия пробки увеличится за счет внутренней энергии пара. Расширяясь, водяной пар совершает работу и охлаждается.

Его внутренняя энергия при этом уменьшается.

С точки зрения молекулярно-кинетической теории внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).

Вычислить внутреннюю энергию тела (или ее изменение), учитывая движение отдельных молекул и их положения относительно друг друга, практически невозможно из-за огромного числа молекул в макроскопических телах. Поэтому необходимо уметь определять значение внутренней энергии (или ее изменение) в зависимости от макроскопических параметров, которые можно непосредственно измерить.

Внутренняя энергия идеального одноатомного газа

Наиболее прост по своим свойствам одноатомный газ, состоящий из отдельных атомов, а не молекул. Одноатомными являются инертные газы — гелий, неон, аргон и др. Вычислим внутреннюю энергию идеального одноатомного газа.

Так как молекулы идеального газа не взаимодействуют друг с другом, то их потенциальная энергия равна нулю. Вся внутренняя энергия идеального газа определяется кинетической энергией беспорядочного движения его молекул.

Для вычисления внутренней энергии идеального одноатомного газа массой m нужно умножить среднюю кинетическую энергию одного атома на число атомов . Учитывая, что kNA=R, получим формулу для внутренней энергии идеального газа:

Внутренняя энергия идеального одноатомного газа прямо пропорциональна его абсолютной температуре.

Она не зависит от объема и других макроскопических параметров системы.

Изменение внутренней энергии идеального газа равно

, т.е. определяется температурами начального и конечного состояний газа и не зависит от процесса.

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия также пропорциональна абсолютной температуре, но коэффициент пропорциональности между U и T другой. Объясняется это тем, что сложные молекулы не только движутся поступательно, но и вращаются. Внутренняя энергия таких газов равна сумме энергий поступательного и вращательного движений молекул.

Зависимость внутренней энергии от макроскопических параметров

Мы установили, что внутренняя энергия идеального газа зависит от одного параметра — температуры. От объема внутренняя энергия идеального газа не зависит потому, что потенциальная энергия взаимодействия его молекул равна нулю.

У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул не равна нулю. Правда, для газов она много меньше средней кинетической энергии молекул, но для твердых и жидких тел сравнима с ней.

Средняя потенциальная энергия взаимодействия молекул газа зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия реального газа в термодинамике в общем случае зависит, наряду с температурой T, и от объема V.

Значения макроскопических параметров (температуры T, объема V и др.) однозначно определяют состояние тел. Поэтому они определяют и внутреннюю энергию макроскопических тел.

Внутренняя энергия U макроскопических тел однозначно определяется параметрами, характеризующими состояние этих тел: температурой и объемом.
   В основе термодинамики лежит понятие внутренней энергии. Эта энергия зависит от макроскопических параметров: температуры и объема.

Внутренняя энергия идеального газа прямо пропорциональна его абсолютной температуре.

Внутренняя энергия человека

На сегодняшнем уроке мы с вами расширили свои знания о внутренней энергии. Теперь давайте закрепим материал и вспомним определение, что же называется внутренней энергией. Внутренней энергией называют такую энергию тела, с помощью которой появляется возможность совершать механическую работу, не вызывая спада механической энергии этого тела.

А из изученного материала мы с вами уже знаем, что внутренняя энергия может зависеть от ряда причин, которыми могут быть: массы и температуры тела, состояния вещества, положения этого тела относительно других тел и т.д.

Внутренняя энергия присутствует в различных телах: как больших, так и маленьких; как в горячих, так и холодных, а так же в твердых, жидких и газообразных.

Можно с уверенностью сказать, что все, что нас окружает, вся живая и неживая материя является энергией. Ведь, в переводе с древнегреческого языка, термин «энергия» обозначает силу, действие и мощь.

Поэтому, все, что мы видим, слышим, чувствуем и можем потрогать, можно сказать, что все это является энергией вселенной.

А сейчас давайте с вами поговорим о таком важном свойстве, как внутренняя энергия человека.

Можно образно выразиться, что так же как происходит круговорот воды в природе, точно также существует и круговорот энергии. А если с этой точки зрения рассматривать человека, то его внутренняя энергия зависит от многого. Ведь каждый человек постоянно расходует свою внутреннюю энергию и поэтому появляется необходимость в ее пополнении.

Если рассматривать человека с точки зрения физики, то человек является живой электростанцией с множеством генераторов в каждой клетке его тела, которые беспрерывно занимаются выработкой энергии в организме в виде статического электричества.

Но очень важно, чтобы с приходом энергии и ее расходом существовал баланс.

А если такой баланс отсутствует, то происходит нарушение энергетического обмена, и в итоге мы получаем недостаток или переизбыток энергии, и это приводит к отрицательным последствиям.

Поэтому вопрос энергии является очень важным. Ведь от нашей внутренней энергии может зависеть не только наш успех и благополучие, но и самое ценное – это наше здоровье.

Поэтому, человек, который обладает высоким уровнем внутренней энергии, имеет более крепкое здоровье, и больше возможностей для полноценной жизни.

А вот пониженный энергетический уровень может стать причиной многих сбоев в организме и привести к хроническим заболеваниям.

Конечно же, и лишняя внутренняя энергия не сулит ничего хорошего и может быть причиной сбоев в организме и привести к нервным срывам и даже инсультам.

Лишняя внутренняя энергия человека должна выводиться с организма и пополняться новой энергией.

А теперь давайте рассмотрим, какие могут быть причины неконтролируемого расхода энергии:

• Во-первых, наша внутренняя энергия может быть излишне расходована при неправильном питании и некачественной пище;• Во-вторых, на нашу внутреннюю энергию оказывает влияние «зашлакованность» организма и плохая работа кишечника;• В-третьих, причиной лишнего расхода внутренней энергии являются умственные перегрузки, нервное напряжение и неконтролируемые эмоции;• В-четвертых, такой причиной могут быть и излишняя активность человека;• В-пятых, к этому перечню относятся и вредные привычки, и плохая экология, и недостаточная физическая нагрузка.

Чтобы устранить необоснованный расход энергии, необходимо: полноценно питаться, вести активный образ жизни, запасаться положительными эмоциями, иметь полноценный сон и отдых.

Интересно знать

А знаете ли вы, что ваш организм способен подавать сигналы, когда он скопил вредную энергию? Замечали ли вы, что бывали моменты, когда вы здоровались с другим человеком, или дотрагивались до металлических предметов, то чувствовали удар током. Вот это и есть тот сигнал тревоги, когда необходимо избавиться от такой энергии.

Вопросы

1. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту.2. От каких физических величин зависит внутренняя энергия тела?3. Чему равна внутренняя энергия идеального одноатомного газа?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Внутренняя энергия в термодинамике

Внутренняя энергия

Важнейшей физической величиной, которая отвечает за характеристику равновесного состояния термодинамической системы, считается внутренняя энергия.

Термодинамическая система и определение энергии

Рисунок 1. Внутренняя энергия термодинамической системы. Автор24 — интернет-биржа студенческих работ

Определение 1

Термодинамическая система представляет собой систему, в которой производится процесс материального обмена между составляющими ее частями (речь идет о массообмене и теплообмене).

Различают (в зависимости от степени изолированности) следующие разновидности систем:

  • изолированные (представляют системы, которые не взаимодействуют с внешней средой);
  • закрытые (не производят обмен с внешней средой веществом (атомами, ионами, молекулами и пр.), но при этом взаимодействуют с ней, благодаря процессу механической работы, излучения и теплового обмена);
  • открытые (данный вид систем обменивается с внешней средой механической работой, веществом, излучением и теплотой).

Энергия (в переводе с греческого, — действие) представляет собой общую количественную меру движения и взаимодействия всех разновидностей материи. Энергия не может возникать из ничего и исчезать.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

В изолированной системе энергия способна к переходу из одной формы в другую, однако в количественном отношении она сохраняет свое постоянство.

При не изолированности системы ее энергия способна к изменениям, однако, при параллельном изменении энергии внешней среды на аналогичную величину (или посредством энергии взаимодействия с внешней средой).

В процессе перехода системы из одного состояния в другое степень изменения энергии не будет зависеть от того, каким именно способом (вследствие каких превращений) был произведен данный переход. Энергия, иными словами, является не функцией процесса, а функцией состояния.

Энергия представляет неотъемлемое свойство системы в том плане, что абсолютно любая система будет обладать определенными запасами энергии.

Внутренняя энергия системы

Рисунок 2. Изменение внутренней энергии. Автор24 — интернет-биржа студенческих работ

В природе выделяют три вида энергии:

  • движения (кинетическая);
  • положения и взаимодействия (потенциальная);
  • состояния (внутренняя энергия).

Определение 2

Внутренняя энергия системы считается в физике суммой потенциальной энергии взаимодействия каждой ее частицы в совокупности между собой, а также кинетической энергии их движения.

Внутренняя энергия включает такие составляющие:

  • энергию поступательного, колебательного, вращательного движений молекул;
  • энергии внутриатомного, межмолекулярного, внутримолекулярного, внутриядерного взаимодействия;
  • энергии излучения и гравитации и т.д.

Внутренняя энергия представляет собой суммарный энергетический запас системы за вычетом кинетической и потенциальной энергий ее пространственного положения. Абсолютная величина у внутренней энергии остается неизвестной, однако важно знать изменение внутренней энергии в процессе перехода системы из одного состояния в другое.

Внутренняя энергия остается независимой от пути процесса, последовав которому система пришла в подобное состояние, и однозначно определяется исключительно самим состоянием.

Поскольку внутренняя энергия зависима от массы, она представляет собой экстенсивную величину (объем, количество и масса вещества).

В то же время, интенсивными величинами будут считаться: давление, температура и все удельные характеристики.

Первый закон термодинамики

Внутренняя энергия термодинамической системы может меняться за счет той работы, которую будут совершать над ней внешние тела, или же сама система осуществит над внешними телами.

К примеру, приложив внешнюю силу, мы можем сжать газ, что приведет в результате к повышению его температуры, и, следовательно, — к росту внутренней энергии.

Также внутреннюю энергию возможно изменить за счет передачи системе (или отнимая у нее) некоторого количества теплоты.

Замечание 1

Если основываться на закон сохранения энергии, то можно прийти к выводу, что изменение внутренней энергии системы приравнивается к сумме полученной ею теплоты и работы, совершенной над ней. Такая формулировка закона по сохранению энергии, применительно к термодинамическим системам, получила название «первый закон термодинамики».

Ученые акцентируют внимание на том, что, в отличие от внутренней энергии (энергии состояния), работа и количество теплоты являются зависимыми не только от начального и конечного состояния системы, но и от того пути, по которому производилось изменение ее состояния.

Внутренняя энергия идеального и молекулярных газов

Рисунок 3. Внутренняя энергия идеального газа. Автор24 — интернет-биржа студенческих работ

В условиях изучения тепловых явлений (наряду с механической энергией тел) в физике вводится такой вид энергии, как внутренняя энергия идеального газа, вычислить которую особого труда не составляет.

Наиболее простым по своим свойствам считается одноатомный газ, состоящий не из молекул, а из отдельных атомов. К одноатомным относятся такие инертные газы, как неон, гелий, аргон и др. Можно также получить одноатомный (атомарный) водород, кислород и др. Но подобные газы не будут устойчивыми, поскольку при столкновениях атомов образуются молекулы $H_2, O_2$.

Молекулы идеального газа не будут взаимодействовать между собой (исключение составят моменты непосредственных столкновений).

Это объясняет незначительность их средней потенциальной энергии и ситуацию, когда вся энергия является кинетической энергией хаотического перемещения молекул.

Тогда становится справедливым утверждение о покоящемся газе в сосуде, поскольку он, как целое, не движется (упорядоченное движение отсутствует, а механическая энергия газа приравнивается к нулю).

Идеальный газ обладает энергией, называемой внутренней. Она является прямо пропорциональной его абсолютной температуре и не зависимой от объема газа. Внутренняя энергия газа считается средней кинетической энергией всех его атомов.

Внутренняя энергия одноатомного газа, по существу, представляет среднекинетическую энергию поступательного молекулярного движения молекул. В сравнении с атомами, молекулы, которые лишены сферической симметрии, еще способны к вращению. По этой причине, в комплексе с кинетической энергией от поступательного движения, молекулам также свойственна кинетическая энергия вращательного движения.

В классической молекулярной кинетической теории рассмотрение молекул и атомов осуществляется в качестве очень малых и абсолютно твердых тел. Любое тело в рамках классической механики будет характеризоваться конкретным числом степеней свободы (числом независимых переменных), которые однозначно определяют положение тела в пространстве.

Атом способен к совершению исключительно поступательного движения, согласно трем независимым и взаимно перпендикулярным направлениям.

Двухатомная молекула имеет осевую симметрию и обладает пятью степенями свободы, три из которых будут соответствовать ее поступательному, а две — вращательному движениям вокруг двух перпендикулярных друг другу осей и оси симметрии (объединяющей центры атомов в молекуле).

Многоатомная молекула (подобно твердому телу произвольной формы) будет характеризоваться шестью степенями свободы; молекула, наряду с поступательным движением, способна совершать вращения вокруг трех осей (взаимно перпендикулярных).

Внутренняя энергия газа считается зависимой от числа степеней свободы молекул. Следствием полной беспорядочности теплового движения является тот факт, что ни один из видов движения молекулы не обладает преимуществами перед другим.

На каждую соответствующую поступательному (вращательному) движениям молекул степень свободы приходится одинаковая средняя кинетическая энергия. В этом заключается теорема равномерного распределения кинетической энергии согласно степеням свободы, доказываемая в статистической механике.

Внутренняя энергия — материалы для подготовки к ЕГЭ по Физике

Внутренняя энергия

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: внутренняя энергия, теплопередача, виды теплопередачи

Частицы любого тела — атомы или молекулы — совершают хаотическое непрекращающееся движение (так называемое тепловое движение). Поэтому каждая частица обладает некоторой кинетической энергией.

Кроме того, частицы вещества взаимодействуют друг с другом силами электрического притяжения и отталкивания, а также посредством ядерных сил. Стало быть, вся система частиц данного тела обладает ещё и потенциальной энергией.

Кинетическая энергия теплового движения частиц и потенциальная энергия их взаимодействия вместе образуют новый вид энергии, не сводящийся к механической энергии тела (т.е. кинетической энергии движения тела как целого и потенциальной энергии его взаимодействия с другими телами). Этот вид энергии называется внутренней энергией.

Внутренняя энергия тела — это суммарная кинетическая энергия теплового движения его частиц плюс потенциальная энергия их взаимодействия друг с другом.

Внутренняя энергия термодинамической системы — это сумма внутренних энергий тел, входящих в систему.

Таким образом, внутреннюю энергию тела образуют следующие слагаемые.

1. Кинетическая энергия непрерывного хаотического движения частиц тела.2. Потенциальная энергия молекул (атомов), обусловленная силами межмолекулярного взаимодействия.3. Энергия электронов в атомах.
4. Внутриядерная энергия.

В случае простейшей модели вещества — идеального газа — для внутренней энергии можно получить явную формулу.

Внутренняя энергия одноатомного идеального газа

Потенциальная энергия взаимодействия частиц идеального газа равна нулю (напомним, что в модели идеального газа мы пренебрегаем взаимодействием частиц на расстоянии).

Поэтому внутренняя энергия одноатомного идеального газа сводится к суммарной кинетической энергии поступательного (у многоатомного газа приходится ещё учитывать вращение молекул и колебания атомов внутри молекул) движения его атомов.

Эту энергию можно найти, умножив число атомов газа на среднюю кинетическую энергию одного атома:

или

Мы видим, что внутренняя энергия идеального газа (масса и химический состав которого неизменнны) является функцией только его температуры. У реального газа, жидкости или твёрдого тела внутренняя энергия будет зависеть ещё и от объёма — ведь при изменении объёма изменяется взаимное расположение частиц и, как следствие, потенциальная энергия их взаимодействия.

Функция состояния

Важнейшее свойство внутренней энергии заключается в том, что она является функцией состояния термодинамической системы.

А именно, внутренняя энергия однозначно определяется набором макроскопических параметров, характеризующих систему, и не зависит от «предыстории» системы, т.е.

от того, в каком состоянии система находилась прежде и каким конкретно образом она оказалась в данном состоянии.

Так, при переходе системы из одного состояния в другое изменение её внутренней энергии определяется лишь начальным и конечным состояниями системы и не зависит от пути перехода из начального состояния в конечное. Если система возвращается в исходное состояние, то изменение её внутренней энергии равно нулю.

Опыт показывает, что существует лишь два способа изменения внутренней энергии тела:

• совершение механической работы;
• теплопередача.

Попросту говоря, нагреть чайник можно только двумя принципиально разными способами: тереть его чем-нибудь или поставить на огонь 🙂 Рассмотрим эти способы подробнее.

Изменение внутренней энергии: совершение работы

Если работа совершается над телом, то внутренняя энергия тела возрастает.

Например, гвоздь после удара по нему молотком нагревается и немного деформируется. Но температура — это мера средней кинетической энергии частиц тела. Нагревание гвоздя свидетельствует об увеличении кинетической энергии его частиц: в самом деле, частицы разгоняются от удара молотком и от трения гвоздя о доску.

Деформация же есть не что иное, как смещение частиц друг относительно друга; гвоздь после удара испытывает деформацию сжатия, его частицы сближаются, между ними возрастают силы отталкивания, и это приводит к увеличению потенциальной энергии частиц гвоздя.

Итак, внутренняя энергия гвоздя увеличилась. Это явилось результатом совершения над ним работы — работу совершили молоток и сила трения о доску.

Если же работа совершается самим телом, то внутренняя энергия тела уменьшается.

Пусть, например, сжатый воздух в теплоизолированном сосуде под поршнем расширяется и поднимает некий груз, совершая тем самым работу (процесс в теплоизолированном сосуде называется адиабатным. Мы изучим адиабатный процесс при рассмотрении первого закона термодинамики).

В ходе такого процесса воздух будет охлаждаться — его молекулы, ударяя вдогонку по движущемуся поршню, отдают ему часть своей кинетической энергии. (Точно так же футболист, останавливая ногой быстро летящий мяч, делает ею движение от мяча и гасит его скорость.

) Стало быть, внутренняя энергия воздуха уменьшается.

Воздух, таким образом, совершает работу за счёт своей внутренней энергии: поскольку сосуд теплоизолирован, нет притока энергии к воздуху от каких-либо внешних источников, и черпать энергию для совершения работы воздух может только из собственных запасов.

Изменение внутренней энергии: теплопередача

Теплопередача — это процесс перехода внутренней энергии от более горячего тела к более холодному, не связанный с совершением механической работы. Теплопередача может осуществляться либо при непосредственном контакте тел, либо через промежуточную среду (и даже через вакуум). Теплопередача называется ещё теплообменом.

Различают три вида теплопередачи: теплопроводность, конвекция и тепловое излучение.

Сейчас мы рассмотрим их более подробно.

Теплопроводность

Если железный стержень сунуть одним концом в огонь, то, как мы знаем, долго его в руке не продержишь. Попадая в область высокой температуры, атомы железа начинают колебаться интенсивнее (т.е. приобретают добавочную кинетическую энергию) и наносят более сильные удары по своим соседям.

Кинетическая энергия соседних атомов также возрастает, и теперь уже эти атомы сообщают дополнительную кинетическую энергию своим соседям. Так от участка к участку тепло постепенно распространяется по стержню — от помещённого в огонь конца до нашей руки. Это и есть теплопроводность (рис. 1)(Изображение с сайта educationalelectronicsusa.com).

Рис. 1. Теплопроводность

Теплопроводность — это перенос внутренней энергии от более нагретых участков тела к менее нагретым за счёт теплового движения и взаимодействия частиц тела.

Теплопроводность разных веществ различна. Высокую теплопроводность имеют металлы: лучшими проводниками тепла являются серебро, медь и золото. Теплопроводность жидкостей гораздо меньше.

Газы проводят тепло настолько плохо, что относятся уже к теплоизоляторам: молекулы газов из-за больших расстояний между ними слабо взаимодействуют друг с другом.

Вот почему, например, в окнах делают двойные рамы: прослойка воздуха препятствует уходу тепла).

Плохими проводниками тепла являются поэтому пористые тела — такие, как кирпич, вата или мех. Они содержат в своих порах воздух. Недаром кирпичные дома считаются самыми тёплыми, а в мороз люди надевают меховые шубы и куртки с прослойкой пуха или синтепона.

Но если воздух так плохо проводит тепло, то почему тогда прогревается от батареи комната?

Происходит это вследствие другого вида теплопередачи — конвекции.

Конвекция

Конвекция — это перенос внутренней энергии в жидкостях или газах в результате циркуляции потоков и перемешивания вещества.

Воздух вблизи батареи нагревается и расширяется.

Действующая на этот воздух сила тяжести остаётся прежней, а выталкивающая сила со стороны окружающего воздуха увеличивается, так что нагретый воздух начинает всплывать к потолку.

На его место приходит холодный воздух (тот же процесс, но в куда более грандиозных масштабах, постоянно происходит в природе: именно так возникает ветер), с которым повторяется то же самое.

В результате устанавливается циркуляция воздуха, которая и служит примером конвекции — распространение тепла в комнате осуществляется воздушными потоками.

Совершенно аналогичный процесс можно наблюдать и в жидкости. Когда вы ставите на плиту чайник или кастрюлю с водой, нагревание воды происходит в первую очередь благодаря конвекции (вклад теплопроводности воды тут весьма незначителен).

Конвекционные потоки в воздухе и жидкости показаны на рис. 2 (изображения с сайта physics.arizona.edu).

Рис. 2. Конвекция

В твёрдых телах конвекция отсутствует: силы взаимодействия частиц велики, частицы колеблются вблизи фиксированных пространственных точек (узлов кристаллической решётки), и никакие потоки вещества в таких условиях образоваться не могут.

Для циркуляции конвекционных потоков при отоплении комнаты необходимо, чтобы нагретому воздуху было куда всплывать.

Если радиатор установить под потолком, то никакая циркуляция не возникнет — тёплый воздух так под потолком и останется. Именно поэтому нагревательные приборы помещают внизу комнаты.

По той же причине чайник ставят на огонь, в результате чего нагретые слои воды, поднимаясь, уступают место более холодным.

Наоборот, кондиционер нужно располагать как можно выше: тогда охлаждённый воздух начнёт опускаться, и на его место будет приходить более тёплый. Циркуляция пойдёт в обратном направлении по сравнению с движением потоков при обогреве комнаты.

Тепловое излучение

Каким образом Земля получает энергию от Солнца? Теплопроводность и конвекция исключены: нас разделяет 150 миллионов километров безвоздушного пространства.

Здесь работает третий вид теплопередачи — тепловое излучение. Излучение может распространяться как в веществе, так и в вакууме. Как же оно возникает?

Оказывается, электрическое и магнитное поля тесно связаны друг с другом и обладают одним замечательным свойством.

Если электрическое поле изменяется со временем, то оно порождает магнитное поле, которое, вообще говоря, также изменяется со временем (подробнее об этом будет рассказано в листке про электромагнитную индукцию).

В свою очередь переменное магнитное поле порождает переменное электрическое поле, которое опять порождает переменное магнитное поле, которое опять порождает переменное электрическое поле…

В результате развития этого процесса в пространстве распространяется электромагнитная волна —«зацепленные» друг за друга электрическое и магнитное поля. Как и звук, электромагнитные волны обладают скоростью распространения и частотой — в данном случае это частота, с которой колеблются в волне величины и направления полей. Видимый свет — частный случай электромагнитных волн.

Скорость распространения электромагнитных волн в вакууме огромна: км/с. Так, от Земли до Луны свет идёт чуть больше секунды.

Частотный диапазон электромагнитных волн очень широк. Подробнее о шкале электромагнитных волн мы поговорим в соответствующем листке. Здесь отметим лишь, что видимый свет — это крохотный диапазон данной шкалы. Ниже него лежат частоты инфракрасного излучения, выше — частоты ультрафиолетового излучения.

Вспомним теперь, что атомы, будучи в целом электрически нейтральными, содержат положительно заряженные протоны и отрицательно заряженные электроны.

Эти заряженные частицы, совершая вместе с атомами хаотическое движение, создают переменные электрические поля и тем самым излучают электромагнитные волны.

Эти волны и называются тепловым излучением — в напоминание о том, что их источником служит тепловое движение частиц вещества.

Источником теплового излучения является любое тело. При этом излучение уносит часть его внутренней энергии. Встретившись с атомами другого тела, излучение разгоняет их своим колеблющимся электрическим полем, и внутренняя энергия этого тела увеличивается. Именно так мы и греемся в солнечных лучах.

При обычных температурах частоты теплового излучения лежат в инфракрасном диапазоне, так что глаз его не воспринимает (мы не видим, как мы «светимся»). При нагревании тела его атомы начинают излучать волны более высоких частот.

Железный гвоздь можно раскалить докрасна — довести до такой температуры, что его тепловое излучение выйдет в нижнюю (красную) часть видимого диапазона.

А Солнце кажется нам жёлто-белым: температура на поверхности Солнца настолько высока , что в спектре его излучения присутствуют все частоты видимого света, да ещё ультрафиолет, благодаря которому мы загораем.

Давайте ещё раз взглянем на три вида теплопередачи (рис. 3)(изображения с сайта beodom.com).

Рис. 3. Три вида теплопередачи: теплопроводность, конвекция и излучение

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.

×
Рекомендуем посмотреть